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The primary classes of a vector bundle, by their very definition,
measure the geometric obstruction to making the vector bundle into a product,
For a smooth manifold M and a subbundle F TM which is tangent to a
foliation T of M, there are additional characteristic classes, the
secondary classes as defined by Bott-Haefliger | |, Bernstein-Rosenfel'd | |
or Kamber-Tondeur [ |. However, the definition of these classes does nothing
to illuminate their geometric meaning. One of the most interesting problems
in foliation theory at present is to understand what geometric aspects of a
foliation contribute to the values of the secondary classes., In this note we
survey some of the progress on this problem, giving some new results
announced here for the first time. For example, Thecrem 7 implies that a
foliation which is measurably a product foliation has trivial residual
secondary classes.

A second aim of this paper is to discuss some of the properties of the
Godbillon and higher Weil measures of a feoliation. Recall the Geodbillon
measure was introduced by Duminy to solve Sullivan's Conjecture [ ]. The
Weil measures were introduced and studied in Heitsch-Hurder | |; they
generalize to all codimensions Duminy's approach, and include many more
measures than just that arising from the Godbillon operator. The Weil
measures are integral invariants of a foliation, much in the spirit of the
C*-analyitic invariants of a foliation introduced by A. Connes | , |. It is
conjectured that the Weill measures can be calculated from the C¥-algebra of a
foliation, and we indicate here some of the first steps towards interlacing

the two thecries.
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Throughout, questions and problems which arise in the study of
foliations using the Weil measures are given. These hopefully indicate the

variety of applications for the Weil measures.

We denote by M a closed oriented smooth manifold of dimension m, by
a codimension q oriented foliation of M, and Q = TM/F is the normal
bundle of :F . The gquotient M/; is the leaf space of ¥ , and n: M > M/—F
is the canonical map. A set B & M is saturated if B = ﬂ-l(ﬂ(B)) . For
convenience, fix s Riemannian metric h on M with corresponding Lebesgue

measure m on M. BSet
R = { Be M | B is saturated and m-measurable | .,

GB is the measure algebra for the guotient (Mﬁ; y Tum ). The Weill measures

are vector-valued measures on 65 , and continous with respect to Tm .



§1. Weil Measures

All constructions of secondary invariants for a foliation start with
Bott's observation that the natural parallelism of @ along the leaves of
can be extended (by use of the metric h on M) to a smooth connection 9(h}
on Q, said to be basic [ |. Following Kamber-Tondeur, we use V(h) to
define a map of the relative Weil algebra w(gzq,oq) into the deRham complex
of M,

A Wigt ,0) + aA%(M) .
& " q
The secondary classes arise by observing that one can truncate the symmetric
part of the LHS above in degrees above 2q , and the map A will descend to
the quotient algebra by Bott's Vanishing Theorem. The cochomology of the

truncated Weil algebra consists of the secondary classes.

Tt is well known there is a differential subcomplex WOq c W(glq,oq)q

carrying the cohomology, where
= A * 0 e a -
woq - (Y] ,331 5yn!) ® R[C] ’ :cq]q

with d(yi) = ¢, and degree c, = 2i. A typical cocykcle in the Vey basis for

J J
1 aq , ) .
* = . . s s s
H (woq) has the form y c; yil yir c; cq with i, < ee<i
E q
i, + ) Le3, > gq and degree c_= 2 + )} 2+j, < 2q.
1 13 L J L
=1 J=1
A class ¥Y1c7 is residual if degree ¢; = 2q. We set

H*(gf«q,oq) = My ey ) @1 ¢ W .

A typical element in this exterior algebra is denoted by y.
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The class A(yi) € Agi-l(M) is not closed, but it restricts to each
leaf L € M of F to give a cocycle, whose class xL(yi) e H*(L) is
characteristic for the flat bundle QIL + L. It is fundamental that these
forms A(yi) carry the transverse dynamics of F, and so one tries to
extract all possible characteristic invariants from them. This is the idea

of the Weil measures.

The Weil operators are defined first. Let w be a g-form on M
defining F, s0 w restricts to a volume form on each leaf of ¥, Here, we

assume for convenience that F 1is orientable. For r » q set
AT(M,F) = ATTI(M) e,

which by the Frobenigus theorem is a differential ideal. Its cohomology is
denoted by H (M,F). This space is a natural but virtually intractable
invariant of F, and has been in the literature since at least the 1960's.

By Bott's Vanishing Theorem we have dA{y)ew = 0 , so exterior multiplication
by the form A(y) defines an operator on H*(M,F). An operator of this type
is implicit in Kamber-Tondeur [§6, | where they study the spectral sequence
associated to the ideal A(M,F}. The actual definition of such operators

appears first in Duminy [ |, with the Godbillon operator.

DEFINITION 1.
a) The Godbillon Operator
-1
g = xlyy) : HU(M,F) > H'(M)

n
=+

is given by glé] = [ A(Yl)'¢ .
M

b) For each y € Hz(glq,Oq) , the Weil Operator

x(y) « M)+ H™MM) = R

is given by x(y el = [ aly)«e .
M



PROPOSITION 1. | ]| Rach cy € WO_ with degree c = 2q determines a
well-defined class [cJ] e qu(M,F).

The residual secondary classes are obtained by applying the Weil
cperators to the [CJI » For example, the Godbillon-Vey class of ?' results
from applying g to [c%] » Implicit in this formal reworking of the
construction of the residual secondary classes is a fundamental observation
of Duminy: To evaluate a residual secondary class A*(yIcJ), one choice of
basic connection can be made to calculate the operator x(yI), and another to

calculate the class [cJ]. This freedom of choice is a very powerful tool.

One of the most useful techniques to come out of the study of Sullivan's
Conjecture in codimension one was that the Godbillon-Vey class can be
localized to open saturated subsets of M. See | | for versions of
this result. Duminy made this all very explicit by defining the Godbillon
measure on the ZI-algebra generated by the open saturated sets in M. In

Heitsch-Hurder | | the following complete result is proven:

THEOREM 1. Let B & {3 be a measurable saturated subset of M.
a) For each % ?» 0 there is a well-defined restriction to B
L

H gzq,oq) > Hom(8™*(M,F), R)

Xp *

where xB(y)[¢] = [ aly)es .
B

b) x 1is continuous with respect to m : If m(B) = 0 , then Xp = 0.

¢) x(y) is additive on @3 : For B, B', B" e (3 with B = B'uU B" and
IE(B'f\ B") = 0, then Xg = Xgr * Xgn -

Thus for each vy ¢ Hz(gﬂq,oq) we get a measure on 63 with values

- L
in the topological dual to H° {M,F). Following Duminy we call g = x(y
the Godbillon measure of F.

)
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The point of Theorem 1 1s that the residual secondary classes are
obtained from the Weil operators, and these in turn can be decomposed

according to the ergodic components of F . So our problem becomes:

QUESTION 1. Given a measurable saturated set B and y € Hg(glq,oq), what
geometric properties of F influence the values (or even Just the norm) of

the linear functional XB(y) ?
The most profound result to date is:

THEOREM 2. (Duminy [ ]) Let ?: be a codimension cone foliation of a compact
manifold. If g # 0 then } contains a resilient leaf.

A leaf is resilient if it has an element of contracting holonomy, and
the leaf itself intersects the domain of this contraction. Transversally, a
resilient leaf contains a Cantor set, and the leaf must have exponential

growth so as a consequence one obtains Sullivan's Conjecture:

COROLLARY 1. If the Godbillon-Vey class of a codimension one foliation of
a compact manifold M is non-zero, then the foliation contains a leaf of

exponential growth.

This has recently been generalized to open manifolds by J. Cantwell and

L. Conlon:

THEOREM 3. [(Cantwell-Conlon [ |) If the Godbillon-Vey class of a codimension

one foliaticn ]? ig non-zerc, then ¥- contains a resilient leaf,

James Heitsch and the author looked for higher codimension versions of

these theorems. We note two such which appear in [ .

THEOREM k. (Heitsch—Hurder [ ]) Assume the holonomy groupoid of ;: is
equicontinuous in its action on the transverse space of F . Then the

Godbillon measure g =0 ,



The conditions of Theorem 4 are satisfied when 1: admits a transverse
continuous distance function which is holonomy invariant. This is the case
for a foliation defined by a group action which is topologically conjugate to

group of iscmetries,

THEQREM 5, (Heitsch—Hurder [ ]) Suppose‘;'admits a transverse invariant
measure W which is isctropiec. Then gy = 0 for all B € support u.

A measure is isotropic if its mass is (infinitesimally) equally distributed
in all directions. An absolutely continuocus measure with bounded

coefficients with respect to the metric measure is isotropic.

QUESTION 2, If ¥ admits a transverse invariant measure u and B ¢ supp(u),
then deces gy = 07

It is an enticing observation that in all known examples of foliations
where the residual secondary classes or Weil measures have been calculated,
the geometric conditions which are key to evaluating the classes are

topologically invariant. This leads one to ask

QUESTION 3. Let Fgand F, bve c2? foliations on My and M,
respectively. Assume there is a homeomorphism f : MO > Ml which sends ?:0

to ¥- .

% - =
a) Does f A?i(yIcJ) AFb(yIcJ) when degree cs 2q *

b) Are the Weil measures quasi-invariant under f ? That is, if for ;?0 we

have xB(y) = 0 with B & M , then does Xf(B)(y) =0 also ?
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§2. Operators on & Canonical Hilbert Bundle

The Weil measures involve the integration of forms on M over
saturated sets. It is natural to ask how broad a class of geometric data can
be used to define these measures. The best answer at present uses the notion
of a measurable field of Hilbert bundles over M which arises in A. Connes'
construction of the C*-algebra and von Neumann algebra of the foliation [ ,
, . The complex we need appears in his Index formulation of the average
Euler class of F. We make some preliminiary steps in the study of how the
foliation K-theory K¥(M,F) determines the Weil measures of ]:.

Let R € M x M be the equivalence relation of F . Denote the
projection plx,y) = x by p : R+ M. Then L, = p_l(x) is the leaf
through x.

The metric h on M induces a metric on each leaf Lx , and it is
well-known that the quasi-isometry class of the induced metric is independent
of h. We let L?g)(x) denote the space of p-forms on Lx which have
bounded L(E)_ norm with respect to the induced metric. Define a measurable

field of Hilbert spaces over M %Dy setting

B = Uy

Xx €M

Given measurable sections o , T : M =+ L?e)(M) their inner product is

<o,> = [ <olx),t(x)> dm .
M
Then let
sP = | measurable sections of L?g)(M) with continuous norms}.
d denote the leaf exterior derivative



ZP(F) = [ w e sP with dgw =0 }

{we Sp_1 with d_w e 8P }

B°(F) .

H%Q)(F) = zP(r)/RP(F) .

2
for each x ¢ M , [o(x)] is a class of closed L(e)-forms on the leaf L .

A typical element [o] e H% )(F) is a measurable family of forms over M :

The graph of a foliation G {see Haefliger | | for example) admits a
map to the relation R, and the fiber over a point (x,y) ¢ R is the
holonomy covering of the leaf L containing x and y. Note that Connes
considers the pull-back of the bundles above to the graph. We do not need
the C¥-module structure of the section spaces, and so we can stick with the
simpler complexes defined over R. For this survey we need H?g)(F) in

order to define a new pseudonorm on the forms A(y). First note

PROPOSITICN 2., For each ¥y € Hz(gﬁq,oq) , exterior multiplication by p¥*a(y)

defines a bounded linear operator

e(y) : HI(3 )(F) > WYY,

2 (2)

DEFINITION 2. The e-pseudonorm on Hg(glq,oq) is

|y]e = ess. sup. |e(y)x]
x e M
where e(y)x is the exterior multiplication on H?Q)(x).

QUESTION L4, Does |y[e dominate the norms of the functionals XB(y)

for B e GB 7
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The general question is whether one can assemble the leaf operators

e{y) to get the global operator (y) . Tor example, this is true of

X

B
foliations with all leaves compact, and 1s the essence of our precof that the
secondary classes of such foliations are always zero. There is a known

2
relation between the leaf class [A{y)] e H (Lx) and the transverse geometry

of F .

THEOREM 6. (Hurder [ 1) Let F be a C%- foliation on an open manifold M.
If all leaves of }T have subexponential growth, then all leaf classes

£
[A(y)] e H (Lx) are zero,

The proof of Theorem 6 gives no estimate of the norm of the form a9, such
that dox = A{y). By the next proposition, the general form of Sullivan's
Conjecture would follow if cne could show the family {ox} has bounded

L(E)-norm.

PROPOSITION 3. Suppose there exists a section o ¢ Sp_l such that dFo =
Aly)|F . Then the Weil measure x(y) = 0, as well as e{y) = 0.

The hypothesis is that for each X € M there is an L(e)—form ox with
dox = A(y)]Lx and the cheoice of ox can be done measurably. However, we

are not assuming that the restrictions A(y)]Lx are L(g)

QUESTION 5. If the linear functional xB(y) is non-zero, does this impose any

restriction on the possible L( )-cohomology of the leaves in B ? If all

2

leaves in B have the same L( )-cohomology, must xB(y) =07

2
Observe that e(y) depends only on the value of the restrictions

A(y)|L, which are characteristic for the flat bundles Q|L =+ L . This

suggests inquiring Just how general the "metric” h can be and still obtain

the operators A(y) and e(y).
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THEOREM T. (Hurder [ ]) Let hy be a metric on Q + M which :

a) is measurable on M

b) restricts to a smooth metric on each leaf Lx M

¢) has bounded local oscillation on M. That is, there are constants & > 0
and K such that if x and y are on the same leaf Lx with the leaf

distance in the induced metric h[Lx . Distg {x,y) < & , then comparing the
X
metric hy at x with hy at y using the local holonomy Yy W€ have

4
[T;yhg(Y)|h0(x) < K .

Then the Weil measures ¥(y) and the leaf operators e(y) can be calculated

from the forms Ao(y) defined leafwise by means of the metric hg.

The proof of Theorem T is rather technical, invelving the study of how
the forms Aly) operate on the space of forms as we vary the choice of the
metric on Q. It is suspected, though we cannot prove it at present, that

the assumption on bounded leaf geometry (condition ¢) is unnecessary.

The typical construction for such a metriec h, proceeds by choosing a
full transversal T E M to the feliation, say by covering M with flow
boxes and then choosing a section for each of these. So we can assume that
T 1is the disjoint union of clesed q-discs, T = (_J Ti . For pairs (i,J)

i
we have the local holonomy ¥ defined from a closed subset of Ti to a
i)
closed subset of T, . On T choose a measurable metric h, for QT

which has IY§3E0,~ < K when this is defined. Then ﬁo extends to a
h

0
metric h, satisfying the conditions of the theorem.

Some corollaries now i1llustrate the power of being able to calculate the

operators using data which is transversally measurable.
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COROLLARY 2. If a foliation + admits a measurable section, then all of the
the Weil measures and the leaf operators ely) vanish. In particular, the

residual secondary classes of T are zero.

Proof: For a full transversal T as above, there is a measurable subset § T
such that each leaf intersects S exactly once. Now use the holonomy of

to translate the restriction hy|S to all of T. This will give a well
defined metric almost everywhere on T which satisfies the conditions of
Thecrem T, and which is holonomy invariant. By standard methods one then

sees that x(y) = 0 and efy) = 0.

COROLLARY 3. Assume the von Neumann algebra nl(M,F) of ¥- is of type 1
and the set of leaves with non-trivial holonomy has measure zero. Then all
Well operators of '?' are zero, In particular, the residual secondary

classes of :F vanish.
Proof: Connes' shows in | | that a foliation satisfying these conditions

admits a measurable section.

COROLLARY 4, If the von Neumann algebra of a transversally analytic foliation
?: has type I, then all residual secondary classes of 1: vanish,

QUESTION 6, What further implications for the structure of the von Neumann
algebra of ¢? does the non-vanishing of the Weil measures have?
CONJECTURE 1. If the Godbillon measure &5 # 0 ,then B supports a type III,

factor in M(M,F).

COROLLARY 5. The Weil measures x{y)} are quasi-invariant under cl

foliation-preserving diffeomorphisms,
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QUESTION 7. Under what conditions on‘¥? is it possible to choose the metric
hy as in Theorem 7 so that the forms A(y)|F give a section in zP(F) 7
That is, when can we choose a measurable metric on T so that the leaf

¢lasses are in the L( —cohomology of the leaves?

2)
For a foliation with dense leaves, an injudicious choice of metric hy

yields classes A(y)[Lx with infinite norm. But given that h0 need only

be measurable, it seems the answer will depend more on the holonomy of the

leaves or other aspects of the transverse dynamics.
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§3. Bounds on the Norms of the Weil Operators

When the codimension q is odd and 2 =-3L§:;l - 1 , the basis element

Yoax © Hlo(siq,soq) is the volume form on SLq/SOq .
Let ¢ GLq/Oq be a linear simplex. Its projection along rays to

SLq/SOq is called a straight ;implex. For g = 2, a straight simplex is

also a geodesic simplex in H under the standard identification. It is a

classical result that the geodesic n-simplices in H'have bounded volume,

In his thesis, R. OSavage generalized this to the straight Eo-simplices in

SLq/SOq .

THEOREM 8. (Savage | !) There is a constant kq such that all straight

simplices of dimension £ in SL /80 have volume bounded by k .
0 q'""q q

Savage uses this result to show the higher rank spaces I‘\SLq/SOq for T

cocompact have non-zero Gromov norm.

(2)

We apply Theorem 8 to the case of flat Diff X bundles over the torus

I
T . Let X be a compact oriented manifold of dimensicn q, and

p Zn + Diff(z)x a representation., Then the quotient M = Rn x X

n
Z
carries a natural codimension gq foliation -F' transverse to the fibers of

M > T,

THEOREM 9. a} For n = %; + 1 + q and degree c. = 2q, the secondary

J
n+q .
classes A*(ylymach) e H *M) wvanish.

= 4. + = = 0,
b) For n o + @ and degree c, = 2q, the secondary classes A(ymach) 0
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Heitsch [ ] and Kamber—Tondeur | | have shown that for X = S% there
are many flat Diff 5% bundles over base spaces B = I"\GLq/Oq such that
A*(ylymach) # 0. Thus Hn(BDiffGSq) is highly non-trivial, but the above
shows these classes are never non-zero on cycles of the form % > BDiffasq.
Note that A*(ymach) is a rigid class; unfortunately, there are no

examples to show that this particular class can be non-zero.

The first application of Theorem 9, for codimension g = 3, shows that
the variable secondary classes A*(yly3cJ) vanish for a foliated bundle over
the torus T9. It is still an ¢pen problem to show the Godbillon-Vey type

classes A*( ) must vanish in this case. Note this is a special case of

1%
the generalization of Sullivan's Conjecture.

The proof of Theorem 9 uses work of D. Ellis and R. Szczarba to write
the class A(yIcJ) as a semi~-simplicial cochain, whose coefficlents are then

estimated with the aid of Savage's Theorem. The point of the estimate is

+1
that it shows the norm of the class A(ylymach) grows at the rate rq as
the representation p 1is raised to the r-th power. However, the cohomology

Lo+l .
grows at the rate r so it must be zero !

Y1 max®s )
The procf is thus in the spirit of Herman's preoof that the Godbillon-Vey

class A*(

class A*(ylcl) = 0 for flat bundles over T2.

Now consider a manifeld Y and a representation p : I = nl(Y) + Diff X
Suppose that p(I') leaves invariant a probability measure ; on X. Then
the pair (p,ﬁ) determines a family of characteristic classes for the induced
measured foliation on M= Y F X , the u-classes of [Proposition L.4; |,
These are denoted ?u(y) € HE(Y) for y € Hi(giq,oq). Techniques similar to

those of Gromov in [ | are used to prove :
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THEOREM 10. ?u(ymax) € HlO(Y) is a bounded cchomology class. That is,

there is a constant Cq such that for each class Z ¢ Hz (Y)
0

| <% {y

" max)’z> < cq.kq [ZIG

where ]ZI is the Gromov norm on homology.

G

* = - S =
COROLLARY 6. If I-Lbd(Y) 0 then the u-class xu(ymax) 0.
. . _ A .
For example, nl(Y) amenable implies Hbd(Y) = 0. Thus xu(ymax) vanishes for
such base spaces Y. This is analogous to the proof that the Euler class of

a flat sphere bundle over Y vanishes if nl(Y) is amenable,

QUESTION 8. Does Savage's Theorem generalize? Is there a bound on the
integral of an arbitrary y ¢ Hg(slq,soq) over a straight simplex of
dimension £ in SLq/SOq ? If so, this would then extend Theorems ¢ and 10 to

these classes also.
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§4. Transversally Complete Foliations

A vector field v on M preserves F 1if for all vectorfields w
tangent to F , the Lie bracket [v,w] is tangent to 1:. A foliation is

transversally complete if, for all x € M and for all v E TxM » there is a

vector field w on M which preserves F and has w|x =W e Molino has

classified such foliations, with} the maln result:

TEEOREM 11. (Molino [ ]) Let T be a transversally complete foliation on
a compact manifold M. Then the closure of the leaves of F are the fibers
of a locally trivial fibration 7 : M + X. Furthermore, there exists a real
Lie algebra g such that, on each fiber of , T induces a foliation

modelled en the Lie algebra g.

It is not hard to see that Molino's Theorem implies the transverse
structure group of a %transversally complete foliation reduces to g + 2 for

the purposes of calculating the trace invariants. Thus we have:

THECREM 12.(Hurder) Let ?T be a transversally ccomplete foliation of a
compact manifold M.

a) All secondary classes of 1: are zero,

b) The operators x(y) and e(y) depend only on the g-foliations which
induces on the fiters L of =# : M *» X. 1In particular, if ﬂl(i) has
subexponential growth, then all operators x{y) and e{y) vanish.

Compare Theorem 12b to the result of Chys | | which shows that must

be Riemannian under similar circumstances.
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If the secondary classes of T are non-trivial, one sees from this
Thecorem that the foliation'F cannot be too homogenecus. Also, Theroem 12a
is an extention of the vanishing results for G-foliations which Kamber-

Tondeur give in [ |.

As all leaves in a transversally complete foliation are diffeomorphic,

the above suggests:

QUESTION 9. If all leaves of ¥ are diffeomorphic, do the secondary classes of
¥ vanish? If some secondary class of ¥ is non-zero, what can be said
about the number of distinct diffeomorphism types of leaves of F ? Can they

be finite in number?



~19~

85. The Godbillon Invariant of a Diffeomorphism

Let f : X + X be a Cl—diffeomorphism of a compact manifold Xq.

Choose a volume form ©® on X.. Define div £{x) by f*w]y = div f(y)m|y .

DEFINITICN 3. TFor each x € X, the Godbillon measure of f at x is

1 n=k n
g, (1) = lim 5 Y log {aiv (£ (x))}.
) S n=-=k

PROPOSITION L4, gx(f) is independent of the choice of w, and depends only

on the orbit class of x .

Proof: The suspension of f gives a codimension g foliation ¥- of
M = R ﬁ X « The choice of x defines a transverse invariant measure ux for
F . Note that n depends only on the orbit of x under f. Then gx(f)

= 21T'<xu (v.), M> 1is the first measure class for this foliation. The
X

definition is derived using the formulae for the measure classes of Ellis-

1

Szezarba [ |]. The form y; 1s calculated vith respect to the volume w,

and it is standard that the resulting class is independent of w.

PROPOSITION 5. gx(f) = 0 if f preserves an isotropic probability

measure u with support v = X.

Proof: This follows using techniques similar to those in Theorem 4,10 of [ ].
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The Godbillon measure appears to be a new invariant of Cl—diffeomorphisms.
We introduce it because it would be interestging to know if g (f) is a

topological invariant of f. Clearly for x a fixed point of f, this is
not the case. However, for x a dense orbit, it seems reasonable to ask

whether gx(f) is invariant. A test case would be:

QUESTION 10. For £ : sl + gl 4 diffeomorphism with all orbits dense, mnust
= ?
g, (f) 0 ?

Such diffeomorphisms are topologically conjugate to a rotation, for

which gx(f) = 0 is immediate.

QUESTION 11. For f : X * X a Morse-Smale diffeomorphism, is therea simple
expression for gx(f) in terms of the behavior of f on the non-wandering

set?
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