Select alternative format: $\underline{B i b T e X} \mid \underline{\text { ASCII }}$

MR800011 (88d:57022)
Hurder, Steven (1-MSRI)
Foliation dynamics and leaf invariants.
Comment. Math. Helv. 60 (1985), no. 2, 319-335.
57R30 (58F18 58H15)

Journal	Article	DoC Delivery

References: 0
Reference Citations: 0
Review Citations: 0
Let \mathcal{F} be a foliation of codimension n on a smooth manifold M without boundary. Assume \mathcal{F} is transversally C^{2}. The purpose of this paper is to examine the relation between the linear holonomy of the leaves of \mathcal{F} and the growth rates of the leaves.
Above all, the following results are obtained. Theorem 1: Let \mathcal{F} and M be as above. Given a leaf L of \mathcal{F}, suppose its linear holonomy group $\Gamma_{L} \subset \mathrm{GL}(n, \mathbf{R})$ is not amenable. Then \mathcal{F} has a leaf L^{\prime} which contains L in its closure, and for all Riemannian metrics on M, L^{\prime} has exponential growth. Theorem 2: Let \mathcal{G} be a pseudogroup of local diffeomorphisms of \mathbf{R}^{n}, all of whose elements are defined at and fix the origin $0 \in \mathbf{R}^{n}$, and are C^{2} in a neighborhood of 0 . Let Γ denote the linear group of Jacobians at 0 of the elements of \mathcal{G}. If Γ is not amenable, then the action of \mathcal{G} on \mathbf{R}^{n} has an orbit with exponential growth and which contains 0 in its closure.

Reviewed by Masahisa Adachi
(c) Copyright American Mathematical Society 1988, 2004

