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ABSTRACT

In this note we study the Jacobian cocycle associated to a smooth, distal action of
a discrete group on a compact manifold. The first resull is that with a mild additional

hypothesis {which is satisfied, e.g., by all equicontinuous actions) the Radon-Nikodyn

cocycle of the action is arbitrarily close to a coboundary in the Ll—topology. If the group
is Kazhdan, this implies the existence of an invariant measure. The sccond resull is that
for any smooth distal action, the Lyapunov exponents of the Jacobian cocycle are zero.
We give two applicalions: I a Kazhdan group acls smoothly on a compact manifold, V, and
the action is distal with the extra hypothesis, then there is a measurable field of
Riemannian metrics on TV invariant under the group action. Thus, the group action is
tangentially distal. Secondly, our cocycle results imply new vanishing theorems for the

secondary classes associated to smooth group actions.



1. Distal Actions with Good Convergence

Let V be a smooth compact Riemannian manifold of dimension q with volume element
dx and total volume 1, and let m({X) denole the corresponding volume of a measurable

subset X € V. Let I be a discrete group, and ¥: T X V — V a Cl—action of " on V.

We also use the notation ¥x for @lv,x). The additive Radon-Nikodyn cocycle associated to

@ and dx is denoted by

* -—
dy: T X V — R: dp{v.x) = log u—‘_il‘l(x)l.
dx

A cocycle ¢: T X V— R is cohomologous to dp if there is a measurable (transter)

function g V — IR so that «{v,x) = glvx) + dy{v,x} - g{x) all vy €r, ae x€ V.

Equivalently, define an absolutely continuous density on V by d;.tg = exp(g)-d;, then

*
¥ (dy )
v, x) = log | ————8—(x)

{
(ug

a.e X €V,

Let dV denote the metric on V obtained from the Riemannian metric on TV. The

aclion @©: T XV — V s distal at x€EV if for all v €V, x=zvy,
ef

d
dix,y) — inf dylyx,vyy) > 0. The action ¢ is distal (resp., a.e. distal) if ¥ is
YET

distal at every x € V (resp., a.e. x € V).
For x €V, s >0 and & > 0, set Xix,s) = {y € V1 dix,y) < s2 and define the
bad set Bi{x,s,3) = (y € X(x,s8) 1 dv(x,y) > 5. Note ¥ is distal at x if and only if

N Xixs) = @,
g>0)

The action ¢ is d¢.e. distal with good convergence if for a.e. x € V and
all €,5 > 0 there exists S(x,5,€) » 0 so that for aill 0 < s < S{x,5,¢€),

m{B{x.s,5)) < € = mi{X{x,s)}.

Equivalently, 1im m(B(x,8,8)) 0. This says that for all & > 0, for s sufficiently
s=0 m(X{(x,s))

small, most of the d-ball of radius s is contained in the dv—ball of radius 5.



The action v is equicontinuwous at x if for all & > 0, there exists
S{x,5) > 0 so that s < 8{x,5) implies B{(x,s,5) = @. Clearly, an a.e. equicontinuous action
is a.c. dislal with good convergence. For background on egquicontinuous and distal actlions,

see the monograph [3].

Theorem 1.1. Let I' X V— V be a smooth action which {s a.e. distal with
gqood convergence. For each finite se! ACT, there exists «
constant KA so that for all € >0, there iy & cocycle v

cohomologous to dr and ¢ set Xley C V such that
{a) m(V - X(e)) < €
(b Iy vt < e for all ¥ € A, x € X(e)

{c} |¢z€t7,x)l < K‘:s for altl ¥y € A, any x € V.

A cocvele w: 1" X V — G, with values in a Polish group G, is said to be in the

1.P-closure of the coboundaries if for each finile sel A ¢ T and € > 0, there exislts a

cohomologous coeycle ¢ _ so that for all ¥ € A,

[roeran g dx < e
v

where el o is the distance from g € G te the identily. Problem 25 of [6] asks which

geometric cocycles are in the LP-closure of the coboundaries. An immediate corollary of

Theorem 1.1 provides a partial answer:

Corollary 1.2. Let . T XV — V be a smooth a.e. distal action with good
CONVETrgence. Then the Radon-Nikoduyn cocycle of v is in the

tPclosure of the coboundaries for att p > 0.

Let % be the Hilbert space of 1/2-deusities on V with finite Lz—norm. and inner

product (f,g) = ff-z.?. A smooth aclion of I on V induces a unilary representalion of T
v
on %, denoted by pl{w): I — U(¥).

Corollary 1.3. Ffor @: T XV — V an da.e, distael smooth action with good



convergence, the representation pl¥w) weakly contains the identity

representatiaon.

Proof. The representation o(®) weakly contains the identity precisely when there exisls a

sequence of norm one densilies Ehn} C M such that for all Yy €T,

1im <p(§0}('f)hn,hn> = 1. In the proof of Theorem 1, we will exhibit a sequence Cwn3
n=co

of norm 1 full densities on V which are Ll~almost invariant. Then let hn = Ju, he the

corresponding 1/2-densities; these are also almost invariant, which proves the claim. [}

A group I js Kahzdan if every uniltary representation of ' which weakly contains

the identity, leaves fixed a non-zero vector [147].

Corollary 1.4. Let o T XV — V be a smooth, ergodic distal action with
good convergence, I1f I is a Kazhdan group, then there is a fintte

measture on V eguivalent to dXx, and which is invariant under the

C~action.

Proof. By {1.3), the representation p{¥} weakly contains the identity, so there is an
invariant 1/2 density on V whose square is an invariant measure on V. The assumption

that ¢ is ergodic implies the invariant measure is cquivalent to Lebesgue measure. o
The next result sharpens Theorem 4.3 of [4]:

2

Corollary 1.5. et @ T XV —V bhe an a.e. distal C—-action with good

convergence on ¢ compact manifold V. Then the Godbillon-Vey
invariants of the action v are all zero.

Proof. 'The Godbillon-Vey invariants are defined in Bott [2], Hurder [7] or Hurder-Katok
{81. To prove the corollary, use the cocycles e given in Theorem 1.1 to calculate the
Godbillon measure, exactly as in Theorem 4.1 of [7]. The L]-—convergence to zero of
¥ e shows the Godbillon-measure is zero, hence all of the Godbillon-Vey classes are zero,

as discussed in 82 of [7]3.



52. Exponents of Distal Actions

I.et. I be a measurable framing of TV; so for x € V, E{x) is an ordered n-tuple of

vectors in 'l‘xV which form a basis, and depend measurably on x. One way to obtain such

E is to choose a set VO C V of measure zero whose complement {V - V()) = RY,  Then

E on V- VO is the natural framing of RY, and on TV v the framing is arbitrary. Ior
0

Yy €I' and x € V, the differential w{v): TXV—-* TSP(‘T‘ X)V can be expressed as a

malrix via the framings E{x) and E{®{y,x)). The vyields a measurable mapping
Jw{y): V — GL{q,R), and the joint map Jw: I' X V — GL(gq,JR} is the Jacobian c¢ocycle
of ¢ {(with respect to E).

For v € T, define the upper Lyapunov exponent of v al x € V to be

xTvx) = 1im sup £ log NJe(v® 0N

n=boo o0

where IIAIl denotes the multiplicative matrix norm of A € GL{q,R} C End{RY). For a
discussion of these exponents, see [9], [10], {11].

Theorem 2.1. Let ¢: T XV — V bhe a distatl Cl—a(:tion on 4a compact

mani fold V. Then for all vy €ET and x € V, the exponent x+('r,x) = 0.

There is an a.c.-version of this thcorem, valid when we are given an invariant finite

measure.

Thecrem 2.2. fLel v: T XV — V bpe an a.e. distal Clma(:tion on ¢ mant fold
V. Suppose that ¥ preserves a finite medsure on V which 1is
equivatent to Lebesgue measure. Then for all Y €T and a.e. x € V,

the exponent x+h',x) =,

Corollary 2.3. Let . T X V—V phe a3 in (2.2) and assume that T i3
Kazhdan., Then there exists a measurable field of Riemannian metrics
on TV which is invarignt! under the action . In particular, the

action of ' iy tangentially distal.

Combining Corollaries 1.4 and 2.3 we obtain the main result of this note:

W



Corollary 24. Le¢t @1 1" X V— V bHe an erqgodic, d.e~distal ()]-atrtion with
good convergence of ¢ Kazhdan group I' on a compact mani fold V. Then ¢
preserves a4 measurable field of Riemannian metrics on TV, s¢ ¢ acls
tangentially distat. In particular, an equicontinuous daction of g
Kazhdan ¢group is always fdangentially distal.

The conclusion of (2.3) and (2.4) is that the Jacobian cocycle J¥ is cohomologous
to a cocycle with values in Ofq), where q = dimension V. This, and ergodicily of the
action, forces restrictions on the dimension q vis-a-vis ' {cf. [12], [14])}).

It is an open problem whether the invariant Riemannian metric in (2.3} or (2.4) must
be smooth, or at least continuous.

Note thal if T is not Kazhdan, then Corollary 2.4 is false: there exist equicontinuous
actions of Z on the circle which admit no invariant measure equivalent to Lebesgue

measure [13 {see also the Introduction to [5]}.

Proof of (2.3). The action ¢ leaves invariant a finite measure and by (2.2) has zero
exponents for a.e. x € V, We can then apply the superrigidity theorem, as in

Theorem 2.13 of Zimmer [127, to conclude that J® is cohomologous Lo a cocycle with

values in the orthogonal group Oq. As explained in %2 of [12], this implies that Jg

leaves invariant a measurable field of Riemannian metrics on TV. a
As an application of {2.3) or {2.4) we have:

Corollary 2.4. fet . T XV —V be as in {23} ar (24}, and assume the

2

action is C- Then all of the residual secondary clusses of the

actiaon are zero.

Proof. The residual secondary classes are defined in [4], [8]. based on ideas in Bott
[2]1. Combining (2.3} or (2.4) with Theorem 3.17 of [8], we see that all of the Weil
measures of the action are zero. Thus, all of the residual secondary invariants also

vanish, 2

For a further discussion on the tangential properties of distal group aclions, the
reader is refered to the papers of Zimmer [12], [13], the text [i14], and Section & of
the MSRI problem session [6].



£3. Proof of Theorem 1.1

For s > 0 and d as in %1, set X{s) = Clx.y) | dix,y) < s3 = U  X{x,sh Nole
xEV

that d is the decreasing limit of continuous functions, hence d is measurable, as are the
functions y — di{x,y} for all x € V. Therefore, the sets X{s} and X(x.s} are all

measurable. For each integer n > 0, let kn: VXV —=—= €012 be the characteristic
function for the set X{}/n). Then kn is measurable, and invariant under the diagonal action
of ' on V X V.,

Recall that dX is the Riemannian volume density on V. For each v € T, let

¥ -
7_(.‘_1_"‘1 (x)
dx

Hy,x) = exp Cdriy )2 =

denote the voiume expansion of v at x. Then set

Hy) = min v ,x); S{y) = max TH{vy.x).
xEV xEV

For each integer n > 0, define a measurable function

£, = [ kv az

\f
and a measurable density on V
w. = £t dg
n n

Lemma 3.1. For edch v €T, € >0 and a.e. x € V, there exists an integer
Ni{v,e,x} so that for all n > N{v,e,x),

 log cY*wn(Z)/wn(zm <e

where 7 € Aq'l‘xv is the unit volume q-vector. Furthermore, for all

n>0 the term above {5 bounded by a constant Kiv)



vie (Z) £ () Dl %)
Proof. = , and we estimate the denominator. Choose
wn(Z) fn(YX)

€ >0 so that lilog (1 + €'}i < €, and then chovse & > 0 and an integer N{v,5,x) so
that:

(3.2) For all y € V with dV(x.y} < 8,

ID{v,y} - D{v,x}1 <L - e+ Iv)
2

(3.3) & - S{v) <-;— - e e I{y)

{3.4)  Yor all n > N(x,5),

miBx, &, 5) < 5 « m(X{x,1/n)).

n

By the assumplion that T acls a.e. distally with good convergence, for a.e. x € V we can

satisfy the last condition {3.4). Then calculate:

flyx) = I knhrx.y) dy = f kn(x,y) Div.y) dy,
v v

HE\(vR) = DEvRE i € [ Ky (ey) 1D ) - Divix)r dF
v

e - Iy - | k(x.y) d + Siv) - [ ke as
V-B(x,1/n,5) B(x,1/n,8)

o U - S s £

€ €« Dyxx) - £ (x)

where we use {3.1) to estimaie



I kn(x.y) dy = m(B{x,1/n,8) € & » m{X{x,1/n}} = 5 - fn(x).
B(x,1/n,38)

The previous estimate then vields
in(Yx)
log
1n(X)n(7.XJ

To finish the proof of the lemma, nole first that d{x.y) € dv(x,y) for all

£ 1log 1 + €)1 < €.

{x.v}), so far all x and n,

m{X({x,1/n)) 2 m{Cy € V dv(x.y) < —1-})

n T

80

il
s

The function vix,1/n} is continuous in x, and m(V})

A
-

0 < vix,1/n) s { (x}
We define

K{v) = max Cllog v{x,1/n)1 + td¥{v.x}1 + Ilog v('rx.l)l 3,
XEV n

and the hound follows from the inequality

I log fn{x) + log Div.x) - log fn(Yx)l £ K{v}). r1

Lemma 3.1 is essentially a pointwise version of Theorem 1.1. To finish the
proof, we remove the dependence on x. First, given € > 0 the continuity of
D{v,x} implies there exists &{v,e}) > 0 so that (2.2} and (2.3} hold for
5 = &{v,e}) and all x € V,

Nexl define the good set

m(B(x1/n8)) ( 5y
m{X{(x,1/n))

G{sg,n} = {x € V



Our hypothesis implies that m{(V - W G(s,n)) = 0 for all & > 0. Thus, given
n>0

€,5 > 0 Lhere exists N{e,8) so Lthat n > N{e,8) implies m{G{s,n)) > 1 - €.

Given € >0 and a finite subset A CT, set 5 = min &{v,ek
YENA

K, = max K{vy} and for a choice of n > N{e,8), X(e) = G{5,n). Define a
A yea

transfer function by gn(x) = -log fn(x). and the cocycle Ve by
¢ Avx) = g (vx) + drlvx) - g (x)
Then m{V -~ X(e)) < €, and for x € X{e} and all v € A, the proof of Lemma 3.1

shows that Iwe(Y,x)i < €. For x € X(e), we also showed

1 Av.x < Kiv) € K, ol

10



54, Proofs of Theorems 2.1 and 2.2
The proofs of Theorems 2.1 and 2.2 are based on the use of the siable
manifold theory of Pesin [11] (see also Katok [10]) for non-uniformly hyperbolic

actions. The key resull of Pesin Theory we need is that for v € ', given a

measure U oo V which is @(v)-invariant, for p-a.e. x € V the action of @(¥) is
regular at x. This implies that if x+(Y.x) > 0 for a regular point %, then there is a
stable manifold Lx through x on which 90(7_1) acts as a strict contraction. In

particutar, this means x is not a distal point.

Given v € I, define an action of Lhe integers on V by:
@ Z XV — V; onx) = oy x).
The Jacobian cocycle of & is ihe restriction of Jy:
Jo: Z X V — GLIg,R); Jen,x) = Je(v",x),

and xT(v.x) = 1im sup L WJe(nx)H.
=< 1}

To prove Theorem 2.2, note that an invariant measure i for the aclion

is given. Now, p-a.e. point x € V is regular for all ¥ € T in the sense of
Pesin Theory. Suppose that there exists ¥y € T and a set Y with positive
t-measurc for which x+{Y,y) >0, all vy € Y, Then p-a.e. point y in Y is

regular, hence p-a.e. point in Y is not distal by the discussion above. It is given

that gt is equivalenl to Lebesgue measure, and a.e. poinl in V is distal. This

contradiction implies that for all ¥ € T, x+{‘Y,y) = () for a.e. y € V. ]

The proof of Theorem 2.1 is more delicate, for no invariant measure for the
aclion @ is given. To begin, assume that for some ¥ € T and x € V,

x+(Y.x) > 0. Then form the action ¢ of the integers on V as above. The set of
probability measures on V invariant under ¢ is non-empty by the Krylov-Bogolinbov

melhod, so the task is to show there is a set Y of positive [i-measure, for some

invariant measure pu, on which x+(7.y)> 0 for y €Y. We will invoke

Theorem 10.1 of [9], which requires a further estimate;

Lemma 4.1. For any x € V and for all S8,T > 0,

11



supremum 1 log &M, &mx) 2 x (v.x).
m2Ss n
nz2T

Proof. V is compact, so

Mi{v) = sup He(1,x) < o,
XEV

Then by  multiplicativity of the matrix norm and the cocycle rule,
fiefn, ) € M(Y)" for all n > 0. Fix §,T > 0. Given any 1 > € > 0, choose

N > 2. Miv) = max €8,T2 such that
€

L tog nJeN.N > xT(v,0 - /2.
N

Then by the cocycle law,

L og 1IJR(N-S,0(S, )1 + L log HIS(S, )N
N N

> Llog WM. > xTv.x) - e/2,
N
and from the estimate L log NJ®{S,x} < €/2, we gel
N
L log I®IN-S,8(S.xW 2 xT(¥.x) ~ €. As € can be chosen arbitrarily small
N-S
and N-S > R, we get sup L IJo(m, &S, 2 xT(v.x). DO
m>R m

Suppose that x'(v.x) > 0. Lel 0 be the w-limit set of the forward orbit
Conx) | n > 03, Then Lemma 4.1, combined with Theorem 10.1 of [9] (see

also Remark 10.1) implies that ihere is an ergodic measure o, supported on Q and

invariant. under the action ¢, and a set Y of p-measure 1 for which x+(Y,y) > {

for all vy € Y. We apply the Pesin Theory to u, to conc¢lude ji-a.e. point in Y is

regular, so p-a.e. point in Y is not distal This is a contradiction, forcing
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x+(Y,x) = 0 for all vy € T and x € V. 1
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