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Abstract. We study the various notions of spectrum for an action a of a locally
compact abelian group G on a type JC *-algebra A, and discuss how these are
related to the structure of the crossed product AxaG. In the case where A has
continuous trace and the action of G on A is minimal, we completely describe the
ideal structure of the crossed product. A key role is played by the restriction of a
to a certain 'symmetrizer subgroup' S of the common stabilizer in G of the points
of A. We show by example that, contrary to a conjecture of Bratteli, it is possble
for AxG to be primitive but not simple, provided that S is not discrete. In such
cases, the Connes spectrum T(a) differs from the strong Connes spectrum f (a) of
Kishimoto. The counterexamples come from subtle phenomena in topological
dynamics.

0. Introduction and preliminaries
Let (A, G, a) be a C*-dynamical system, i.e. a triple consisting of a C*-algebra A,
a locally compact group G and a representation of G as automorphisms of A which
are pointwise norm-continuous. In this paper we shall further assume that A is of
type I and that G is abelian. The structure of crossed products of such systems has
been investigated in many papers over the past years under various more specific
assumptions on the algebra or the action. (For surveys of the literature, see [P2],
[Gootl], and [PI].) For the case where A is commutative, hence of the form C0(X),
a detailed knowledge of the structure of the primitive ideal space of the crossed
product - in this context more often referred to as the transformation group
C*-algebra C*(G,X)- has been obtained by Williams in [Wi]. For the algebra
3V(3€) of all compact operators on a Hilbert space $f, it is known that the primitive
ideal space of the crossed product by an action a is always Hausdorff, in fact
isomorphic to the quotient of the dual group G by the Connes spectrum: [Gr2] and
[Ol]. For more general type I algebras, results have been reached with additional
assumptions on the action. In [PR2] it is shown that if the given action induces a
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trivial action on the primitive ideal space of A, and the canonical action on each
primitive quotient is implemented by a unitary group, then the primitive ideal space
of the crossed product is mapped canonically onto the primitive ideal space of A,
and for a rather large subclass of these actions, the locally unitary actions,
Prim (A xi aG) becomes a locally trivial principal G-bundle relative to the dual
action of G. For general actions on type I algebras the knowledge of Prim {AxaG)
has, however, remained fragmentary. In this paper we show that there may be a
good reason for this: the structure is complicated, and very general structure theorems
cannot be expected. Indeed, as a starting point for any good structure theory one
would want the crossed product to be simple under sufficiently strong assumptions
on the action - but we shall give examples where the cross product is primitive but
not simple.

At the 1977 Second US-Japan Conference Bratteli made the conjecture that the
crossed product should be simple when A was of type I, the action G-simple (i.e.
the only G-invariant ideals are the trivial ones) and with full Connes spectrum.
This was known to be true for G discrete [OP1,6.5], and subsequent to the conjecture
was soon proved for G compact or A unital [OP2, 3.11]. Bratteli restated the
conjecture in [Br], and in the following years several special cases were settled in
the affirmative: [ET], [OP3], [GO]. In the present paper, however, we show that
in general the conjecture fails to be true.

In the case of a G-simple action on a type I C*-algebra A, A is necessarily
liminal and homogeneous. If A is unital or G is compact, A necessarily has
continuous trace, but in the general case Larry Brown tells us that he has an example
where A is G-simple and liminal but has non-Hausdorff spectrum. Here, however,
we shall show that even for a continuous-trace C*-algebra A with a G-simple action
and full Connes spectrum, the crossed product may fail to be simple. The examples
we exhibit arise in the cases of actions of R x T or U x U on algebras of the form
C0(X, 3if($f)), where X is a second-countable locally compact Hausdorff space and
3K(d>6) is the algebra of all compact operators on some infinite dimensional (separ-
able) Hilbert space.

Our way to these counterexamples to Bratteli's conjecture goes through a reduction
of the original question to one in topological dynamics. We focus attention on a
special subgroup of G, the symmetrizer group S for the action. We show that for
any G-simple action on a continuous trace algebra A, the primitive ideal space
Prim (A xi^G) of the crossed product is homeomorphic to the quasi-orbit space for
the associated action on Prim (A xiaS), thus extending a result in [RR, 2.1]. This
sheds further light on the 'unwinding phenomenon' considered in [AM,Ch.I]. We
then construct examples where the action on the Hausdorff space Prim(AxiaS)
has more than one quasi-orbit, albeit the original action has full Connes spectrum.
More precisely, we exhibit examples where there is one dense orbit on Prim (A xiaS),
but not every orbit is dense.

1. The symmetrizer group
Let A be a separable C*-algebra of type I and let G be a separable locally compact
abelian group acting on A. Then the primitive ideal space Prim A can be identified
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with A, the space of unitary equivalence classes of irreducible representations of
A, and G acts in a natural way as a topological transformation group on this
spectrum, which we shall henceforth denote by X. For x in X, let

denote the isotropy group of x, and let

denote the quasi-orbit of x, i.e. the points in the spectrum with the same G-orbit
closure as x. For every y in Gx~, Gy = Gx by [Goot2, lemma 2.2] combined with
[GO, proposition 2.2], and all isotropy groups are necessarily closed. Denoting the
orbit space by X/G, we use the symbol 3(X/G) for the quasi-orbit space, which
is given the quotient topology.

Now each x in X determines a multiplier representation u with multiplier a>x

which implements the action of Gx:

VaeA, seGx,

and utx determines a subgroup

Sx = {seGx\(ox(s,t) = a>x(t,s) VteGx}.

The relevance of Sx for the ideal structure of A x „ G originates in the fact that if
o)x is totally skew, i.e. Sx is trivial, all irreducible wx-representations are weakly
equivalent - [BK], [Gr2]. Its role has slowly attracted more attention (cf. [ET], [GO]
and [Gootl] & [Goot2]), and we shall continue these investigations in the present
paper. At this point it seems suitable to search for a name for Sx, and we propose
to call it the symmetrizer group ofx.

Recall the following crucial result from [Goot2, theorem 2.3]:

THEOREM 1.0. Let (A, G, a) be a separable C*-dynamical system with G locally
compact abelian and A of type I. Let x and y have the same quasi-orbit. Then a>x and
o)y determine the same cocycle class, and Sx = Sy.

Note that the second statement of the theorem follows from the first, as 5X clearly
only depends on the cohomology class of cox. By the Mackey obstruction associated
to x in X we mean the cocycle class of wx, and the above implies that this is constant
on each quasi-orbit. We note that the common symmetrizer group S on a given
quasi-orbit Gx~ is the smallest closed subgroup of Gx such that the Mackey
obstruction is trivial on S and totally skew on Gx/S.

Recall from [Gr2, proposition 9] that there are a number of maps from the ideal
space of a crossed product to that of a crossed product by a subgroup, and vice
versa. In what follows, we shall be concerned with the following two maps between
the ideal space ${A xiaH) of a crossed product by some closed subgroup H of G
and the ideal space ^(A^aS) of the crossed product by a smaller closed subgroup
5 c H , In the formulations, we are viewing A x aS as a subalgebra of the multiplier
algebra
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(1) The restriction map from 3>(A xaH) into J>(A xaS) which takes

I<-+Res"l = {yeA>iaS\xy,yxeI VxeAx,, / /}

and
(2) The extension map from $>(A xaS) into 3>(A x a / / ) given by

J1-» Ex "J = the ideal generated by {yd | yeJ, deA x a / / } .

Note that when (TT, £/) is a covariant representation of (A, H, a),

Res? (ker (IT X I/)) = ker (IT X U\S)
by [Gr2, proposition 9(ii)]. Also, in what follows, we shall freely use the isomorphism
A xaH = (A xaS) xT/ / of [Gr2, proposition 1], where xT stands for the twisted
crossed product.

When A x „ S is the crossed product by a subgroup of H, H itself acts canonically
on the dense subalgebra CC(S, A) of continuous functions with compact support
from S into A by

(ahy)(s) = ah(y(s)), yeCc(S,A),

and this action extends to all of A xaS. In turn, it induces an action on the ideal
space S(A xaS), and on the //-invariant ideals in A xo5, the extension map Ex"
coincides with the induction map Ind" by [Gr2, proposition 13(ii)]. This allows us
to use the extension map in the proof of the following theorem:

THEOREM 1.1. Let (A, G, a) be a separable C*-dynamical system with A continuous-
trace and G locally compact abelian. Suppose that the isotropy group H is the same
for every point x in the spectrum X of A, and that the symmetrizer group S is also
constant on X. Then Res" induces a homeomorphism of the primitive ideal space
Prim(Axa/ /) onto Prim(AxaS), with inverse Ind", and this homeomorphism is
G-equivariant.

Proof. Note that H acts trivially on X, hence preserves the fibres of the projection
Prim (A x^S) -» X. Since H is abelian, H also acts trivially on 5, and so acts trivially
on Prim (A xaS). Then restriction maps Prim (A x a / / ) into Prim (A xaS), since a
primitive ideal / in A x a / / by [Gr2, proposition ll(i)] maps onto an //-invariant
ideal Res"/, which by quasi-regularity uniquely determines an //-quasi-orbit in
Prim (A x a 5) - but the quasi-orbits are just single points.

Let / e Prim (A x>aS), then by [Gr2, proposition 12(ii)],

where the right hand side denotes the twisted crossed product of the quotient algebra
(A x a S) /1 by the canonical action of H. Now since we know that A x a S is liminal
by [PR2, proposition 2.1], every primitive quotient of A x a S is isomorphic to the
compact operators jfc(ffl) on some Hilbert space "X. Furthermore, any irreducible
representation p: A x<,S-> %(9€) is of the form p = w x A [PI, 7.6.4], where (IT, A, 2f?)
is a covariant representation of (A, S, a | S). By [PR2, proposition 2.1] v is itself an
irreducible representation of A, hence the unitary cocycle implementing the action
of H on %(%!) is totally skew on H/S. It then follows from [Gr2, proposition 32]
that the twisted crossed product in (*) is simple. This implies that Ex"/ is a maximal
ideal, a fortiori primitive, so the extension map takes primitive ideals to primitive
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ideals. Furthermore, the general inclusion Ex" Res? / s 7 becomes equality on
account of the maximality, and combined with the equality

Res" Ex" / = Res" Ind? / = /

[Gr2, proposition 11], this proves that we have a bijection between the primitive
ideal spaces in question. The continuity of both maps now ensures we have a
homeomorphism. The G-equivariance follows from a simple calculation:

t • (Res" (ker (TTx £/))) = * • ker (ITx U\s)

= ker(f • 77 x U\s)

= Res?(ker(f-7rxL/))

= Res"(f-ker(7rxL/)),

for t e G, 77 x U an irreducible covariant representation of (A, H). •

PROPOSITION 1.2. Let (A, G, a), H and S be as in theorem 1.1. Then Prim (AxiaG)
is homeomorphic to the quasi-orbit space 3((AxiaS) / G), and Prim(AxiaS) is
homeomorphic to (A x*aS) .

Proof. By the positive solution of the generalized Effros-Hahn conjecture [GR, 3.1
and 3.2], every primitive ideal of A >4aG is induced from (A, H). So using EH-
regularity and [Gr2, theorem 24] as in the second paragraph of the proof of [RR,
proposition 2.1], we see that Prim(AxiaG) is homeomorphic to the space
S(Prim(A xiaH)/G). Now by theorem 1.1, Prim (A»aH) is G-equivariantly
homeomorphic to Prim(AxiQS), which in turn may be identified with (A*iaS)
since this algebra is type I. Hence

7 •
Remark. If S is compactly generated, then since the action of S on A is pointwise
unitary, it is locally unitary by [R, corollary 2.2]. This implies by [PR2, proposition
4.1] that Ax i a S has continuous trace and that (AxiaS) -> X is a locally trivial
principal S-bundle.

PROPOSITION 1.3. Let (A, G, a) be a C*-dynamical system with A continuous-trace
and G locally compact abelian. Assume that the action is G-simple, i.e. has no non-trivial
G-invariant ideals. Then there is one fixed isotropy group H for the action on the
spectrum of A, and one fixed symmetrizer group S, and Prim (AxaG) is homeomorphic
to the quasi-orbit space S((A xaS)"/G).

Proof. Since the action on the spectrum X of A is minimal, the uniqueness of H
and S follows immediately from their constancy on quasi-orbits. The conclusion
about Prim (A xiaG) is then an immediate corollary of 1.2. •

COROLLARY 1.4. Let (A, G, a) be a G-simple C*-dynamical system, where A has
continuous trace and G is locally compact abelian. Then, S denoting the common
symmetrizer group,

(i) A XiaG is simple if and only if every orbit for the G-action on Prim (A >3aS)
is dense; and

(ii) A * a G is prime if and only if there is at least one dense orbit for the G-action
on Prim (A x>aS).
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Proof. This follows from proposition 1.3 after observing that:
(i) A x a G is simple if and only if Prim(AxaG) consists of just one point,

hence if and only if 2.((A xaS) / G) consists of just one point,
(ii) A » a G is prime if and only if 0 is a primitive ideal, hence if and only if at

least one orbit closure for the action on Prim {A xaS) is all of Prim (A xa5). •

2. Various spectra and their actions on (A x a 5)
Let (A, G, a) be a separable C*-dynamical system with G locally compact abelian,
and let G denote the dual group of G. Recall that for any open subset U of G, the
spectral subspace Aa{U) is denned to be the closed linear span of elements of the
form

«/(«)=[ f(t)a,(a)dt,
Ja

where / e Ll(G) and / has compact support in U.
An element y in G is said to belong to the Arveson spectrum Sp (a) of (A, G, a)

if

for every neighbourhood U of y, and to belong to the Connes spectrum T(«) if it
belongs to Sp(a |£ ) for every non-zero G-invariant hereditary C*-subalgebra B
of A

Using the dual C*-dynamical system (A xaG, G, a), the Connes spectrum can
be characterized as follows [OP1, 5.4]: an element y in G belongs to T(a) if and
only if In ay(I) is non-zero for every non-zero closed ideal 7 of A »aG.

It is immediately apparent from this way of looking at the Connes spectrum that
it must be a (closed) subgroup of G - a property that often eases its computation.
This is in marked contrast to Sp (a), which may be any closed subset of G, and is
most easily thought of as the 'spectrum of the generator' of the group action (in
fact a precise statement for the cases G = Z or G = U, in the latter case taking the
infinitesimal generator). In [Ki], Kishimoto introduced variations of these spectra.
He defined the strong Arveson spectrum Sp (a) to be the set of y in G for which
the smallest hereditary C*-subalgebra A(U) generated by the spectral subspace
Aa( U) was all of A for any neighbourhood U of y. He could then show that Sp (a)
is always a closed subsemigroup of G, and this property is in turn inherited by the
strong Connes spectrum, f(a), defined to be the intersection of all Sp(a|B), B
running through the non-zero G-invariant hereditary C*-subalgebras of A

In [Ki, 3.4], Kishimoto obtained the following characterization of the strong
Connes spectrum: an element y in G belongs to t(a) if and only if ay(I)c I for
every ideal / of A >J „ G.

This characterization clearly exhibits the semigroup property of f(a), and also
makes it clear that one cannot in general expect f (a) to be a subgroup like F(a). In
fact, [Ki, 5.2] exhibits an example where f(a) = Z+. For a number of special cases
it is, however, possible to prove that F(a) is indeed a subgroup, and this is desirable
as it facilitates the computation of this otherwise evasive invariant. Obviously, when
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T(a) is known to be a group, the above characterization simplifies - then yeT(a)
if and only if ay(I) = I for every ideal I of A xaG. In fact, defining

(**) f(a) = {yeG\ay(I) = I for every ideal /o f A x a G},

we have another variation of the Connes spectrum, which is clearly a closed subgroup
of the regular Connes spectrum T(a). Note that

f(«)cf(a)cr(a).
In the example mentioned above where f (a) = Z+, the C*-algebra under considera-
tion is C^, the Cuntz algebra generated by a sequence of isometries. This C*-algebra
is highly non-type I, and one might start wondering whether the two spectral notions
T(a) and T(a) might coincide in the type I case. Indeed, it is immediate that if
A=C0(X), then both Sp(a) and T(a) are necessarily subgroups, hence T(a) =
f(a) - in fact in this case it is possible to prove even more:

where G* denotes the annihilator of the isotropy group Gx. It is also true that when
G is discrete, f(a) is necessarily a subgroup (also in the non-type I case), being a
closed subsemigroup of a compact group [Wr], and we can further show that the
following holds:

PROPOSITION 2.0. Let (A, G, a) be a C*-dynamical system where A>iaG is of type
I. Then f (a) = r (a) . This is especially true whenever A is type I and G is compact.

Proof. When A x „ G is of type I, we know from [La, theorem 1] that an automorphism
which maps every ideal into itself is necessarily universally weakly inner, hence
maps every ideal onto itself. Thus f(a) = f (a) .

That A x „ G is of type I when A is of type I and G is compact is an easy
application of Takai duality, for the abelian group case considered here. Indeed,
the double crossed product is by Takai duality A®3fC(L2{G)), hence of type I, and
the crossed product is a C*-subalgebra of this. D

In § 4 of this paper, we shall see that one can go somewhat further along these lines
in different special cases where more assumptions are being put on the action.

At this point, however, we want to turn to the question of the action of these
spectra on S(A xaS). Recall that the dual action is given on the dense subalgebra
CC(G,A) of continuous functions with compact support from G into A simply by

(ayy)(t) = (t,y)y(t),

i.e. by pointwise multiplication by a character, and this action clearly extends to
AxaG and even further to the multiplier algebra M{A~AaG). Now the crossed
product by a subgroup can naturally be viewed as embedded in M(A * a G ) , and
can be characterized inside of this C*-algebra as a certain C*-subalgebra of the
fixed-points under the dual action restricted to the annihilator of the subgroup in
question [LOP, theorem 2.1]. In particular, taking here the subgroup to be S, the
dual action on A x „ S can be viewed both as the dual action on the crossed product
by the group S, or as the canonical restriction of the dual action from M(A~AaG),
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the point being that S is isomorphic to the quotient group G/ S±, and that Sx leaves
the elements of A XOS pointwise fixed.

Looking at a G- simple system, we have as before a fixed isotropy group H and
a fixed symmetrizer group S, and a homeomorphism from Prim(AxQG) to
Q((A x aS) IG). As described above, the actions of the spectra on ${A xaG) are
well-known, and this now enables us to deduce results about the actions on(AxaS) ,
as indeed we have the following observation:

LEMMA 2.1. Let (A, G, a) be a G-simple C*-dynamical system where A is of type I
and G is locally compact abelian. Then the common symmetrizer group S satisfies
5xcf(a).
Proof. By the positive solution of the generalized Effros-Hahn conjecture [GR, 3.1
& 2], every primitive ideal J of A x a G is induced from an ideal of A x a / / , and
this can be chosen G-invariant by [Gr2, proposition ll(ii)]. Applying our reasoning
in the proof of theorem 1.1 we see that this ideal J' in A x a / / is induced from an
ideal I in A x a S which is also G-invariant. Thus J is induced from a G-invariant
ideal of A xaS, or, by [Gr2, proposition 13(ii)], is an extension of such an ideal,
and hence we immediately see from the definition of the extension map that / is
S±- invariant. •

We note that in fact the above lemma could be derived from the proof of [GO,
2.6], where it is shown that in a situation with (possibly) varying symmetrizer groups
for the action on X = Prim A, the intersection (~]xex Sx is always contained in F(a).
The above simple proof is included for the benefit of the reader.

We are now in a position to point out that for actions on type I algebras, the
Connes spectra are effectively acting only on the ideals of A x a S, as Sx leaves all
ideals of the 'big' crossed product A x a G invariant. In fact it is the action on the
G-invariant ideals a$(A xaS) of A x a S - or the quasi-orbits in the primitive ideal
space of A x a S - that determines the relation with the original action on A. Let us
first transcribe the characterization of the F-spectra to AxiaS, viewing the dual
action on this as a quotient action of the one on A x a G:

PROPOSITION 2.2. Let (A, G, a) be a G-simple C*-dynamical system where A is of
type I and G is locally compact abelian. Denote by q the quotient map from G to S. Then:

(i) F(a) is the inverse image under q of the elements q(y) in S that leave every
G-invariant ideal of AxaS invariant;

(ii) f (a) is the inverse image under q of the elements q(y) in Sfor which aq{y)(I) c /
for every I in a$(A xia5); and

(iii) F(a) is the inverse image under q of the elements q(y) in S such that aq(y)(I) n
/ T6 0 for every non-zero G-invariant ideal I of AxaS.

Proof. First note that what we were saying in the proof of lemma 2.1 was that every
primitive ideal of A x a G is in fact induced from a G-invariant ideal in AxaS.
Since every ideal in A x a G is an intersection of primitive ideals, and induction
preserves intersection, this implies that every ideal in A x „ G is induced. Further-
more, the dual action respects the induction in the sense that ay{\nd° I) =



77ie Connes spectrum 549

Indf (aq(y)l), where we confuse the notation for the dual actions on AxaG and

(i) Let •yeF(a), and let / be a G-invariant ideal in A xaS. Then

Indf (<W) = «*(Ind?J) = Indfl,
and by injectivity of Ind on the G-invariant ideals, aqiy)l = I. Conversely, if we
have 17 in 5, then choosing y in G with q(y) = 17, we see that for a given ideal / in
A xia G, there is a G-invariant ideal / in A x a S such that / = Inds /, and supposing
now that av(I) — I we get

ay(J) = ay(lnd% /) = Ind? (o,(y)J) = Indf I = J.

The proofs of (ii) and (iii) are verbatim transcriptions of this line of argument. •

That the role of the different F- spectra is to determine the relation between the
G-invariant ideals in A x a S and the ones in our original algebra A now becomes
very clear:

THEOREM 2.3. Let {A, G,a) be a C*-dynamical system with A of type I, common
symmetrizer group S and common isotropy group H in the locally compact abelian
group G. Then:

• .A

(i) A x a S is G-simple if and only if F(o) = G and A is G-simple;
(ii) A XQS 15 G-prime if and only if F(a) = G and A is G-prime.

/Voo/ (i) Assume that A x a S is G-simple; then by proposition 2.2(i) F(a) = G, and
a fortiori F(a) = G. Since every ideal / in A is S-invariant, I x o S is a non-trivial
ideal whenever / is non-trivial, hence G- simplicityjof A follows from that of A xaS.
Conversely, if F(a) = G and A is G-simple, then F(a) = G since F(a) = G implies

.A

that it is a group, and so every G-invariant ideal of A XQS is also S-invariant, hence
maps onto an ideal of A which is non-trivial if it is itself non-trivial, [Ol, 2.1]. (Note
that the map / as denned in [Ol] coincides with restriction on S-invariant ideals.)
Thus the G-simplicity of A implies G-simplicity of A xaS.

A

(ii) Assume that A XttSis G-prime; then by proposition 2.2(iii) we have F(a)= G,
and whenever lx and I2 are non-zero G-invariant ideals of A, they induce to non-zero
G-invariant ideals with non-zero intersection. Now recalling that induction preserves
intersection, we see that /x n I2 induces to a non-zero ideal, hence is non-zero.
Conversely, assume that A is G-prime and F(a) = G. Then taking J, and J2 to be
G-invariant ideals of A>iaS, we can find some 77 in S such that Jxnav{J2)^
0 - indeed, if not, the ideal spanned by {de{J2), £e S} would be an S-invariant ideal
J such that Jx n / = 0, and the ideal L spanned by {a{(Ji)} would be an S-invariant
ideal such that L n / = 0. But then, reasoning as above, the S-invariance of L and
/ would imply the existence of non-zero ideals L' and J' in A that induced to L
and J, and the G-invariance of /, and J2 ensures G-invariance of L and /, hence
of L' and / ' , thus L ' n / ' = 0, a contradiction. Once Jxr^av(J2)^0, then since
T(a) = G, we have by proposition 2.2(iii)

hence / , n J 2 ^ 0 , and A x o S is G-prime. •
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Putting together theorem 1.1 and theorem 2.3, we have now rederived the well-known
results ([Ki, theorem 3.5] & [OP1, theorem 5.8]) that:

(ii) A xiaG is simple if and only if f(a) = G and A is G-simple; and
(ii) A xiaG is prime if and only if T(a) = G and A is G-prime.

Our reason for writing this out in detail is that it elucidates the role of the symmetrizer
group and clarifies what the various T-spectra do. That simplicity of A xaG could
be deduced from G-simplicity of A xaS was earlier observed in [Gootl, p. 317].

One very good reason for focusing on the actions on the ideals of A x a S, or,
more precisely, on the G-quasi-orbits in Prim (A xaS), is that the structure of this
crossed product is much simpler than that of the crossed product by the entire group
G. In the ensuing section we shall see how the machinery developed in [PR2], [R],
and [RR] to study such 'small' corssed products can be used to good advantage.

3. Realization of cocycles by group actions on C*-algebras
We saw in the previous sections that if a (second-countable) locally compact abelian
group G acts on a (separable) continuous-trace algebra A with A = X, and if G
acts minimally on X (i.e. A is G-simple), then the ideal structure of the crossed
product A x G is determined by the topological dynamics of the action of G on
(A x S) . As above, we denote by H the common isotropy group in G of all points
x e X, and by S the smallest closed subgroup of H such that the Mackey obstruction
is trivial on S and totally skew on H/S. Our aim now is to construct examples
where A ^ G i s primitive but not simple, and more generally, to study the possibilities
for the crossed product and their relation to the Connes spectrum T(a). To do this,
we use the above theory to reduce the problem to a topological one. But to know
that topological counterexamples will give C*-algebraic counterexamples, we need
some 'cocycle realization theorems.' These are the subject of the present section.

We begin by recalling some of the theory developed in [PR1], [PR2], [R] and
[RR]. For simplicity we take A= C0(X, 3V), where X is a second-countable locally
compact space and 3K is the algebra of compact operators on an infinite-dimensional
separable Hilbert space, though much of the theory applies to more general con-
tinuous-trace algebras. Then

Aut A = (AutCo(x) A) x Homeo (X)

is the semidirect product of the spectrum-fixing automorphisms by the homeomorph-
ism group of X, and there is an exact sequence

1 -* Inn A -* Autco(x)A -* H2{X, Z) -> 1

which is topological if the Cech group H2{X, Z) is countable (in particular, if X
is compact) ([PR1]; see also [RR, theorems 0.5 and 0.8]). Suppose G is a second-
countable locally compact group (for the moment, it need not be abelian) and r is
an action of G on X by homeomorphisms, identified with an action of G on C0(X).
Then we obtain an action r®id of G on C0(X)®3V= A, and if a is any other
action of G on A inducing T on X, then
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is a continuous 1-cocycle

p C o ( X ) A

If G is connected and H2(X, Z) is countable, or if H2(X, Z) = 0, then <p must take
values in Inn A and defines via the exact sequence

H\G, U(M(A)))^H\G, Inn A) 4.H2(G, C(X,J))

a class

c(a) = d([<p])eH2(G,C(X,T)),

the vanishing of which is the unique obstruction to exterior equivalence of a with
r®id [RR, corollary 0.13]. (Here we use C. C. Moore's cohomology theory based
on Borel cochains [M] and C(X, T) is given the Polish topology of uniform
convergence on compacta in X.) Since the isomorphism class of the crossed product
A » a G (even as a G-algebra, if G is abelian) only depends on the exterior
equivalence class of a (see e.g. [P2, p. 277] and [RR, theorem 0.10] for more precise
statements), the cohomology class c(a) is an important invariant of the crossed
product, and we need to see which classes in H2(G, C(X, T)) can arise. Our first
realization theorem says that all classes arise.

PROPOSITION 3.1. Let X be a second-countable locally compact Hausdorff space with
H2(X,Z) countable and T: G-> Aut C0(X) = Homeo (X) a continuous action of
a second-countable locally compact group on C0(X). Then for every class
|> ] e H2(G, C(X, ¥)), there is an action

a:G^> Aut A,

where A = C0(X)®3f{, differing from r®id bv a cocycle with values in Inn A, and
such that c(a) = [co].

Proof. Suppose G is infinite and take X = 3fC(L2(G)), where we use right Haar
measure. (If G is finite, first construct a on a suitable C0(X)®Mn and then stabilize.)
Choose a Borel cocycle weZ2(G, C(X, T)) and for xeX, teG, define u,(x)e
U(L2(G)) by

(st), teL2(G),

Then u is Borel in both variables and

(«„(*))(£)(s) = a(s, rt)(s • x)£(srt)

= to(r, t)(x)w(s, r)(s- x)aj(sr, t)(s • x)g(srt)

(by the cocycle identity)

so that f >-» Ad u, is a Borel 1-cocycle G-» Inn A for the action given by r®id. Thus
Ad M, is automatically continuous in / and we may define a: G -»Aut A by
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Then by construction, a is a continuous homomorphism from G to Aut A, and
c(a) = [w] since

ur,{x) = (i)(r, t)(x)ur(x)u,(r~lx). •

Our second realization theorem, which is slightly more convenient for our main
applications, refers specifically to the case where G splits as a product G = S x K,
with S abelian and acting trivially on X.

PROPOSITION 3.2. Let G = S x K be a second-countable locally compact group which
splits as a direct product, with S abelian. Let q: E -> X be a principal S-bundle (with
E and X second-countable and locally compact), and assume E is equipped with an
action of K that commutes with the action ofS {and so induces an action ofKonX).
Then there is an action a of G on A = C0(X, "X) such that a\s is locally unitary, and
such that there is an isomorphism of principal S-bundles (A »aS) =E intertwining
the actions of K = G/S.

Proof. Once again, we assume S is infinite; it is easy to make modifications to cover
the case of a finite group. Since 5 acts freely and properly on E, we know by [Grl,
corollary 15] that B=C0(E)>iS is C0(X)-isomorphic to A The corresponding
homeomorphism of X = E/S onto B is given by

ip'.G- £•-» ir( = Indfe} evalj, £ 6 E,

(cf. [PR2, lemma 3.3]). Since we were given commuting actions of S and K on E,
we obtain an action of K on B commuting with the dual action of 5, and thus an
action a of G on B (or on A). By [PR2, theorem 3.1], a\s is locally unitary, and
(B xiaS)*-» X is S-equivariantly isomorphic to q:E-*X, via the map

where U is the obvious representation of S. A simple calculation shows that

commutes and intertwines the actions of K on E and on (BxiaS) . Using a
Co(X)-isomorphism B = C0(X, 3V), we may now transport everything to A. D

Remark 3.3. Despite the great differences in appearance between propositions 3.1
and 3.2, many cases of the latter may be deduced from the former. For example,
suppose in the situation of proposition (3.2) that H2(X, Z) is countable and S is
connected. By [R, theorem 2.15], the pointwise trivial part of H2(S, C(X, T)) is
naturally isomorphic to Hl(X, S), which classifies principal S-bundles over X - here
S is the sheaf of germs of continuous S-valued functions. This isomorphism is such
that if a is a locally unitary action of S on A = C0(X, 3if), then the class which we
called c(a)eH2(X, C(X,J)) maps to the class of the S-bundle (AxaSf^X.
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Suppose now that we are given q:E-*X as in proposition (3.2), that H2(X,Z)
is countable, and that q is a trivial bundle. Then the action of K on E =X x S must
be of the form

k- (x, y) = (k- x, <p(k, x) + y),

where

tp e Z\K, C(X, §)) = Z\K, Horn (S, C(X, T))).

But

H\K, Horn (S, C(X, T))) = H\K, H\S, C(X, T)))

~>H2(KxS, C(X,J))

via the spectral sequence of [M, theorem 9] (which collapses since we are dealing
with a direct product). It is easy to see that if one applies proposition 3.1 to the
image of [cp] in H2(K x S, C(X, T)), then the effect will be to prove proposition
3.2 in this case.

Similarly, if S is compact, so that <p is a covering map (though not necessarily
trivial), and if K and X are connected, then an action of K on X will have at most
one lifting to an action of K on E. Thus if one applies proposition 3.1 to any class
in H2(Sx K, C(X, T)) which restricts in the pointwise trivial part of
H2(S, C(X, T)) s H\X, S) to the class of q, the effect will be to produce an action
of G = Sx K on A such that a|s is locally unitary and (A *!aS) s £ (as a X-space,
since £ can have only one X-action consistent with the G-action on X). Hence we
have proved (3.2) for this case as well.

4. Application of the theory to some specific situations
Once again we consider the situation of § 2. That is, A is a separable continuous-trace
algebra with spectrum X, and a is an action of a second-countable locally compact
abelian group G on A, with the isotropy groups Gx = H (x e X) and the Mackey
obstructions in H2(H, T) independent of x. (Recall we are mostly interested in the
case where A is G-simple, in which case this is automatic.) S denotes the smallest
closed subgroup of H such that the Mackey cocycle is trivial on S and totally skew
on H/S. We wish to relate the Connes spectrum F(a) to the structure of A xiaG.

Case I: S discrete. In [Gootl, pp. 317-318], an argument was sketched to show that
if S is discrete and A is G-simple, then A xiQG is simple if and only if T(a) = G.
We shall now rederive this result from the theory of § 2.

THEOREM 4.1. With notation as above, suppose A is (G, a)-simple and S is dis-
crete. Then T(a) = f(a) = f(a) is a closed subgroup of G containing S±, and
Prim {A x a G) = G/r(a) . In particular, A xiaG is simple if and only if T(a) = G.

Proof. If A is (G, a)-simple, then A x a G is (G, a)-simple [PI, proposition 7.9.6],
and in particular, G acts minimally on Prim (A x a G) = 5((A xasf/G) (by
proposition 1.2). Since S± acts trivially on (A xi S) and hence acts trivially on
Prim (A x a G), we have a minimal action of the compact group S on Prim (A xia G).
By the proof of [Gr2, lemma 22], this can only happen if Prim (A * a G) is Hausdorff
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s
and 5 acts transitively. Then from the characterizations of F(a), F(a), and F(a) in

A

proposition 2.2, all three spectra coincide with the inverse image in G of the subgroup
of S that acts trivially on Prim (A xaG).

This proves the theorem. One might note as a variant of the proof that F(a) = f (a)
that F(a) is always a closed subsemigroup of T(a), but that in this case, T(a) is

A A A w

the inverse image in G of a closed subsemigroup of S. Since S is compact, F(a) is
then a group [Wr], and it's easy to conclude that F(a) = F(a). •
Case II: G compact. If G is compact and A is liminary, then the Mackey machine
for computing (AxaG) only involves cocycle duals of compact groups, so the
crossed product is necessarily liminary. Then A x „ G is of course only simple when

A A

G acts transitively on A and S is trivial, but nevertheless the topology of (A xaG)
is still of interest and sometimes rather complicated if we drop G- simplicity of A
(cf. [RR, § 2]). Therefore it's interesting to note the following:
PROPOSITION 4.2. Suppose A is a separable continuous-trace algebra and a : G -»Aut A
is a (strongly continuous) action of a compact metrizable abelian group G, with constant
isotropy group H (for the action of G on A) and with constant symmetrizer group S.
Then Y(a) = f (a) = f(a) = Sx, (AKaG)* is Hausdorff and (AxaGf =

A A A

(Ax a 5) IG. (Note (Ax a 5) is a covering space of A and G/H acts freely on
(A x S) in a way commuting with the action of S by covering transformations.)
Proof. Since 5 is compact and a\s is pointwise unitary, a\s is locally unitary by [R,

A A A

corollary 2.2]. Thus (A x 5) -* A is a locally trivial principal S-bundle, i.e. a covering
projection with covering group 5, since S is discrete. In particular, (A xi S) s
(A X) / / )* is Hausdorff, and since G is compact, so is Sl((A xi Sf/G) = (A xi 5)7G.
Since Sx(G/H) acts freely on (A x S)*, S acts freely on (A xi G)*, hence from the
characterization of the various spectra in terms of their action on (A xi G) , we have

F(«) = f(a) = f(a) = S±. •
Case III: 5 compact, G non-compact.

A

PROPOSITION 4.3. Suppose A is a separable continuous-trace algebra with A = X and
a : G-^ Aut A is an action of a second-countable locally compact abelian group G on
A such that A is G-simple. If S and H are as above, S is compact, if a\s is unitary
(this is automatic ifH\X, S) = 0), and if G/H is connected, then Prim (A xia G) = S,
and F(a) = F(a) = F(a) = S±. In particular, AxaG is simple if and only I / S = {1}
(i.e. F(a) = G).
Proof. If G/H is connected and A is G-simple, then X carries a minimal action of

A A A

a connected group and so is connected. Since S is discrete and (Axia5) sXxS
if a\s is unitary, each 'sheet' Xx{y} of (A xi sf (yeS) must be G/H-invariant
and (G/H)-minimal, hence

Prim (A xiaG) = 2.((A x 5)7G) = S.

The last statement follows as in the proof of proposition 4.2 •

Now we shall see that the conclusion of proposition 4.3 fails in general if a\s is
only locally unitary but not unitary (and all other hypotheses are the same).
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THEOREM 4.4. Let X be the unit tangent bundle of a compact Riemann surface M of
genus >2 (i.e. X = PSL (2, R)/ IT for TT some discrete, torsion-free, cocompact subgroup
of PSL (2, R)). 77ie« ffcere are (many) actions a ofG = R x T on A = C(X)®3£, such
that J acts trivially on X and R acts freely and minimally, and such that A>4aG is
primitive but not simple. (In other words, F(a) = G but f (a) ^ F(a).)

Proof Let p: M -» M be any infinite cyclic cover of M such that M is connected.
(Since the abelianization of TT= TT^M) is free abelian of rank >4, one may obtain
many such p's by taking various surjections TT -» Z.) Let X be the unit tangent bundle
of the non-compact Riemann surface M. By proposition 3.2 (or by remark 3.3 and
proposition 3.1), we may choose the action a of G on A so that T acts trivially on
X, (A XJ „ T) -» A agrees as a Z-covering with the projection q:X^X, and so that
R acts on X and X by the respective horocycle flows. (If we identify X with
PSL (2, R)/T7, this means R acts by left translation by the lower-triangular subgroup,
and similarly for X = PSL (2, U)/rr.) Then

It is well-known (cf. [Eb2, theorem 4.5]) that the horocycle flow on X is minimal.
By [Ebl, theorem 3.8], the geodesic flow on X is topologically transitive, hence by
[Eb2, theorem 3.3], the non-wandering set of the horocycle flow on X is all of X.
Then by [Eb2, theorem 4.1], the horocycle flow on X has a dense orbit, i.e. A>iaG
is primitive. On the other hand, since M is non-compact, the horocycle flow on X
cannot be minimal, by [Eb2, theorem 4.5]. Note that the analysis in [Eb2] could be
used to obtain a more detailed picture of Prim (A >ia G) - this space is very compli-
cated. •

Note that in this argument, we may replace U x T b y U x T " and Z by Z" (for any
n), provided that we take the genus of M to be >«/2.

Case IV: S non-compact, non-discrete. When S is non-compact and non-discrete,
even when H = S = U, G = U2, and a\s is unitary, it can happen that AxaG is
primitive but not simple. Thus the results above (especially theorem 4.1) are in a
sense sharp.

THEOREM 4.5. There are actions aofG = UxR on A = C(X)®%, with X a compact
metric space, with a\Uy,{0} unitary, and with {0}xR acting freely and minimally on X,
such that A x a G is primitive but not simple, i.e. T(a) = G but T(a) T6 T(a). One may
even choose X to be a compact manifold and the action of G on X to be smooth.

Proof. We take X to be a compact metric space admitting a free minimal R-action
which is not uniquely ergodic. For an example of such a space, note that M. Herman
constructs in [H, § 6] a minimal, non-uniquely ergodic diffeomorphism of T2, and
one may suspend to get a flow on a compact 3-manifold with the right properties.
By theorem 4.8 below, there is a continuous 1-cocycle

<peZ\U,C(X,M))

for this flow, such that if we take the corresponding skew-product flow

s- (x, t) = (s-x, (p(s, x)+t), s, teR, xeX,
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we obtain an action of R on X x R which has a dense orbit but is not minimal, and
which projects to the original R-action on X. By our realization theorems, proposition
3.2 or proposition 3.1 and remark 3.3, we may now construct an action a of R2 on
C{X)®J{ with the desired properties. •

To complete the proof of theorem 4.5, we need a construction of continuous cocycles
for a flow which is not uniquely ergodic. This is done in theorem 4.8, which first
requires two simple lemmas. The first is classical and may be found in [KB, theorem
II, p. 93].

LEMMA 4.6. Let X be a compact metric space equipped with an action of R, and let
JX be an ergodic invariant probability measure. Then there is an U-invariant Borel set
E c X such that /*(£) = 1 and such that for any fe C(X) and xe E,

1 j f(s-x)ds^jfdfM.

Proof. Choose a countable dense subset {/} of C(X). For each i, the Birkhoff
ergodic theorem asserts that there is a /t-null set N, such that

r1 j fl(s-x)ds+]fdp

for xi. Nt. Then clearly E = X\{Jt Nt has the desired property. •

LEMMA 4.7. (a) Let Y be a second-countable locally compact space, and let vQ, vx,
and v2 be probability measures supported on disjoint Borel sets Co, Cx and C2- (In
other words, Ctr\Cj = 0 for i^j and Vj(Ck) = Sjk.) Then v2, viewed as a linear
functional on

has norm 1.
(b) Let Y be as in (a) and let /x0, ^x be probability measures supported on disjoint

Borel sets. Then ixu viewed as a linear functional on

| /eC0(r): j /dM o = oJ
has norm 1.

Proof, (a) Since v2 is a probability measure, clearly | | J / 2 | V | | < 1 . We need to prove
the reverse inequality. Since v0 and v^ are linearly independent, we may choose g0,

gleC%(Y) with

Let C = max (||go||, ||gi||) and let e>0. For any small 8>0, we may by the density
of O r ) in V choose g£ Co(r) with | |g| |<l such that

jig",



The Connes spectrum 557

Then in particular,

I gdv2>l-S, I gdvo<8, I gdvr<8.

Let

h = g-[ I gdvo)go-[ I gdvAg,.

Then /ie V, ||/j||< 1 + 2CS, and J hdv2> 1 -S-2CS, so

which will be > 1 - e for a suitable choice of 8.
(b) This follows immediately from (a), applied to the disjoint union of Y with

a point, and with v2 = nt, vQ= fj.o, vx = point measure at the added point. •

THEOREM 4.8. Let X be a compact metric space with a free minimal R-action which
is not uniquely ergodic. Then there exists \\i e CR(X) such that for the action of R on
X x R given by

lt-x,r+\ 4>(s-x)ds),
\ Jo I

t(x,r) = lt-x,r +

there is at least one dense orbit, but not all orbits are dense.

Proof. Let /u0 and fit be distinct ergodic probability measures for the R-action on
X, and use lemma 4.6 to find corresponding (necessarily disjoint) Borel sets Eo, £,
with

fo r / eC(X) , xeEy, 7 = 0,1.
Jo J

Fix a point x0 e Eo.
We shall construct ip s CR(X) with \\ip\\ < 1 so that the R-orbit of (x0,0) is dense

in X x R for the action based on the cocycle constructed out of i/>. We will construct
4> as 4* = Z"=o •An, where i/»n's are constructed inductively to satisfy

• , -n - l

(*) i/>n dfj,0 = 0 for all n,

f , . r ,
ip0 d/j,l =4, \ 4>n «Mi = 0 for n > 1,

as well as additional conditions (***) to be specified shortly.
Choose a sequence {z,} dense in X and a sequence {r,} dense in R so that \rt\ < i

and

{(z,, rf)}isdenseinXxR.

We shall choose another sequence {f,} in R inductively; begin by setting to = O. Start
the induction by choosing any ip0 satisfying (*), i.e. with

*o = 0,
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(This is possible by lemma 4.7(b) applied with X in place of Y, which asserts that
Hx restricted to {/e C(X): $fd/j.o = 0} has norm 1.) Suppose n > l and f,, i/*7 have
been chosen for j < n. Choose (neR with

(tn>2tn.u tn>n-2n+i,
dist(tn-x0,zn)<2-",(**)

- ['"
tn Jo

x0) ds <r
This is possible by the denning property of Eo (recall x0 e Eo) together with minimality
of the flow on X. Next, choose t/>n e C(X) satisfying (*), i.e. with

as well as the conditions

( tjjn(s- xo) = O

tn Jo " S " S U tn J o °

To see that this is possible, we apply lemma 4.7(a) with

x0) ds, and/di^2 = —
J 'n 'n -1 J(n_,

= {s- xo: in_,<5< <„}.

Thus f2 has norm 1 on ker/u.or)ker/j.{n C0(Y). Now

+ 2 — 3 2 — 2- ~ T f'" (^0
while for / e Co( ^ ) , extended to be 0 on {s • x0: 0 < s < fn_J,

f f''"/(
'„ J

Since (*„ - tn_l)/ tn> \, we conclude that we can choose i/^eker fion C0(Y) satisfy-
ing ||i/'n||<2""~1 and (***). This completes the inductive step.

Now let i/f = £™=i iAn. By construction,

and

Thus

II II > J MO , J M l 4 ,

JO Jo Jo }>n

distist ( ( tn • x0, I <l/(s • x0) ds j , (zm rn) j = dist ((<„ • x0, rn), (zn, r j )

= dist(fB-x0, zn)<2~",
so the R-orbit of (x0,0) is dense in XxR.
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On the other hand, if xt e Eu then the R-orbit of {xu 0) is not dense, because

so that

j) ds>
Jo

for large (, and thus the closure of the orbit of (x,, 0) in XxR cannot include all
of X x {0}. This completes the proof of the theorem. •
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