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The purpose of this Appendix is to discuss the conclusion of the foliation index

theorem in the context of foliations whose leaves are two-dimensional. Such

foliations provide a class of reasonably concrete examples; while they are cer-

tainly not completely representative of the wide range of foliations to which the

theorem applies, they are sufficiently complicated to warrant special attention,

and possess the smallest leaf dimension for which the leaves have interesting

topology. There is another, more fundamental reason for studying these folia-

tions: given any leafwise C 1-Riemannian metric on a two-dimensional folia-

tion !, there is a corresponding complex-analytic structure on leaves making

! into a leafwise complex analytic foliation. Thus, two-dimensional foliations

automatically possess a Teichmüller space, and for each point in this space of

complex structures, there is an associated Dirac operator along the leaves. The

foliation index theorem then assumes the role of a Riemann–Roch Theorem for

these complex structures.

We begin in Section A1 with a discussion of the average Euler characteristic

of Phillips–Sullivan, which is the prototype for the topological index character

of the foliation index theorems for surfaces. In Section A2, the index theorem

is reformulated for the N@-operator along the leaves of a leafwise-complex foli-

ation. The Teichmüller spaces for two-dimensional foliations are discussed in

Section A3, and a few remarks about their properties are given. In Section A4,

some homotopy questions concerning the K-theory of the symbols of leafwise

elliptic operators are discussed, with regard to the determination of all possible
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226 A. THE N@-OPERATOR

topological indices for a fixed foliation. Finally Section A5 describes some

of the “standard” foliations by surfaces, especially of three-manifolds, and the

calculation of the foliation indices for them.

The reader will observe that this Appendix concentrates upon topological

aspects of the foliation index theorem and serves as an elaboration upon Connes’

example of a foliation by complex lines on the four-manifold !=!1 ! !=!2

described in Section A3. A key point of this example is that the meaning of

the analytic index along the leaves can also be explicitly described in terms

of functions with prescribed zeros-and-poles and a growth condition. For the

foliations we consider, such an explicit description of the analytic index is much

harder to describe, and would take us too far afield, but must be considered an

interesting open problem, especially with regards to the Riemann–Roch nature

of the foliation index theorem.

A1. Average Euler Characteristic

The index theorem for the de Rham complex of a compact even-dimensional

manifold, M , yields the Chern–Gauss–Bonnet formula for its Euler character-

istic, which is equal to the alternating sum of the Betti numbers of M . In a

likewise fashion, it was shown in Chapter VIII that the foliation index theorem

for the tangential de Rham complex of a foliated space yields an alternating

sum of “Betti measures”. When the transverse measure " has a special form,

i.e., it is defined by an averaging sequence, the d-foliation index can also be

interpreted as the "-average Euler characteristic of the leaves. We examine this

latter concept more closely, for it provides a prototype for the calculation of

the topological index in the general foliation index theorem. First, recall the

integrated form of Theorem 8.7 for the Euler characteristic:

Theorem A1.1 (d-Foliation Index Theorem). Let " be a transverse invariant

measure for a foliation ! of a foliated space X , with C! 2H "
p .X / the associated

Ruelle–Sullivan homology class of ". Let d be the de Rham operator on the

tangential de Rham complex of !. Assume the tangent bundle FX is oriented,

with associated Euler form e" .X /. Then

(A1.2) #.!; "/"

Z

X
$d # d" D

Z

X
e" .X / d" Dhe" .X /; C!i:

The left-hand side of (A1.2) is interpreted in Chapter VIII as the alternating sum

of the "-dimensions of the L2-harmonic forms on the leaves of !. To give a

geometric interpretation of the right-hand side of (A1.2), we require that " be

the limit of discrete regular measures:



A1. AVERAGE EULER CHARACTERISTIC 227

Definition A1.3. An averaging sequence [Goodman and Plante 1979] for ! is

a sequence of compact subsets fLj j j D 1; 2; : : : g, where each Lj is a subman-

ifold with boundary of some leaf of !, and

vol @Lj

vol Lj
! 0:

(The sets fLj g may belong to differing leaves as j varies, and we are assuming

a Riemannian metric on FX has been chosen and fixed.)

The sequence fLj g is regular if the submanifolds @Lj of X have bounded

geometry, meaning that there is a uniform bound on the sectional curvatures,

the injectivity radii and the second fundamental forms of the @Lj .

For X compact, the measure "L associated to an averaging sequence is de-

fined, on a tangential measure %, by the rule
Z

X
% d"L D limj!1

1

vol Lj

Z

Lj

%;

where, if necessary, we pass to a subsequence of the fLj g for which the integrals

converge in a weak-$ topology. The closed current associated to "L determines

an asymptotic homology class denoted by CL 2 Hp.X I "/.
We say a transverse invariant measure " is regular if " D "L for some regular

averaging sequence fLj j j D 1; 2; : : : g.

Not all invariant transverse measures arise from averaging sequences, but

there are many examples where they do, the primary case being foliations with

growth restrictions on the leaves. Choose a Riemannian metric on FX . Its

restriction to a leaf L%X of ! defines a distance function and volume form on

L. Pick a base point x 2 L and let g.r; x/ be the volume of the ball of radius r
centered at x. We say L has

polynomial growth of degree & n if lim sup
r!1

g.r; x/

rn
< 1I

subexponential growth if lim sup
r!1

1

r
log g.r; x/ D 0I

nonexponential growth if lim inf
r!1

1

r
log g.r; x/ D 0I

exponential growth if lim inf
r!1

1

r
log g.r; x/ > 0:

For X compact, the growth type of L is independent of the choice of metric

on FX and the basepoint x.

For a leaf L with nonexponential growth, there is a sequence of radii rj ! 1
for which the balls Lj of radius rj centered at X form an averaging sequence

[Plante 1975]. In this case, all of the sets Lj are contained in the same leaf L.
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For X compact and the foliation of class C 2, these sets Lj can be modified to

make them regular as well.

For a foliation ! with even-dimensional leaves and a regular measure ", the

d-Index Theorem becomes

#.!; "/ D limj!1
1

vol Lj

Z

Lj

e" .X /:

By the Gauss–Bonnet theorem,
Z

Lj

e" .X / D e.Lj / C

Z

@Lj

&j ;

where e.Lj / is the Euler characteristic of Lj and &j is a correction term depend-

ing on the Riemannian geometry of @Lj . The assumption that the submanifolds

f@Lj g have uniformly bounded geometry implies there is a uniform estimate
ˇ̌
ˇ̌
ˇ

Z

@Lj

&j

ˇ̌
ˇ̌
ˇ&K # vol @Lj :

Therefore, in the limit we have

(A1.4) #.!; "/ D limj!1
e.Lj /

vol Lj

and the right side of (A1.4) is called the average Euler characteristic of the

averaging sequence fLj g. Phillips and Sullivan [1981] and Cantwell and Conlon

[1977] use this invariant of a noncompact Riemannian manifold to give exam-

ples of quasi-isometry types of manifolds which cannot be realized as leaves of

foliations of a manifold X with Hp.X; "/ D 0.

Consider three examples of open two-manifolds [Phillips and Sullivan 1981]

whose metric is defined by the given embedding in E3. Each of the following,

with their quasi-isometry class of metrics, can be realized as leaves of some

foliation of some three-manifold, but the first two cannot be realized (with the

given quasi-isometry class of metrics) as leaves in S3.

(A1.5) L'

Jacob’s ladder:

H H H

The growth type of L is linear, and the average Euler characteristic of L is

1=vol H .
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(A1.6) L'

Infinite Jail Cell Window:

A A A

The growth of L is quadratic, and the average Euler characteristic of L is

2=vol A.

(A1.7) L'

Infinite Loch Ness Monster:

The growth of L is quadratic, but the average Euler characteristic is zero.

The construction of the average Euler characteristic for surfaces suggests

that a similar geometric interpretation can be given for the topological index

of other differential operators. For the N@-operator of complex line foliations,

this is indeed true, as discussed further in Section A3.

A2. The N@-Index Theorem and Riemann–Roch

We next examine in detail the meaning of the foliation index theorem for the

tangential N@-operator. Let ! be a foliation of a foliated space X and assume the

leaves of ! are complex manifolds whose complex structure varies continuously

in X . That is, in Definition 2.1 (page 32), we assume that foliation charts f'xg
can be chosen for which the composition ty ı '!1

x . # ; n/ is holomorphic for all

n, and n 7! ty ı '!1
x . # ; n/ is continuous in the space of holomorphic maps.

Let k be such that the dimension of the leaves of ! is p D 2k.

A continuous vector bundle E ! X is holomorphic if for each leaf L % X
with given complex structure, the restriction EjL(!L is a holomorphic bundle.

As before, FX is the tangent bundle to the leaves of !, and this is holomorphic

in the above sense. Let Ar;s ! X be the bundle of smooth tensors of type .r; s/:
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Ar;s D !r;s.F!X "/:

Given a holomorphic bundle E, let Ar;s ˝ E denote the .r; s/-forms with coef-

ficients in E. Assume that E has an Hermitian inner product, and then set

L2.!; E/ D
M

x2X

L2.Lx; EjLx
/;

where Lx is the leaf of ! through x, EjLx
is the restriction of the Hermitian

bundle E to Lx , and we then take the L2-sections of E over Lx with respect to

a Lebesgue measure on Lx inherited from a Riemannian metric on FX . Note

that L2.!; E/ is in general neither a subspace nor a quotient of L2.X; E/, the

global L2-sections of E over X .

For E a leafwise-holomorphic bundle, the leafwise N@-operator for ! has a

densely defined extension to

N@ ˝ E W L2.!; Ar;s ˝ E/ ! L2.!; Ar;sC1 ˝ E/

which is tangentially elliptic. Let Kers.N@ ˝ E/ denote the kernel of

N@ ˝ E W L2.!; A0;s ˝ E/ ! L2.!; A0;sC1 ˝ E/:

An element ! 2 Kers.N@ ˝ E/ is a form whose restriction to each leaf L is a

smooth form of type .0; s/ satisfying N@.!jL/ D 0. Furthermore, for each s ) 0,

Kers.N@ ˝ E/ is a locally finite-dimensional space over X (see Chapter I). For

an invariant transverse measure ", the total "-density of the .0; s/-solutions !
to the equation N@ ˝ E.!/ D 0 is dim! kers.N@ ˝ E/, and we set

dim! Ker.N@ ˝ E/ D
kX

sD0

dim! Kers.N@ ˝ E/:

Similar arguments apply to the adjoint N@", and with the notation of Chapter IV

we have
Z

X
$N@˝E d" D dim! Ker.N@ ˝ E/( dim! Ker.N@" ˝ E/:

Theorem A2.1 (N@-Index Theorem). Let " be an invariant transverse measure

for a complex foliation ! of X , C! 2 H "
2#.X I "/ the associated Ruelle–Sullivan

homology class, and Td" .X / D Td.FX ˝ !/ the tangential Todd class for !.

Then

(A2.2)

Z

X
$N@˝E d" D

˝
ch.N@ ˝ E/ Td" .X /; C!

˛
:
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The left-hand side of (A2.2) is identified with the arithmetic genus of ! with

coefficients in E,

#.N@ ˝ E; "/ D
#X

iD0

.(1/i dim! H i.!I E/;

where

H i.!; E/" Keri.N@ ˝ E/= Keri.N@" ˝ E/

is a locally finite-dimensional space over X . The number dim! H i.!I E/ mea-

sures the density of this cohomology group in the support of ", and generalizes

the "-Betti numbers of the operator d .

On the right-hand side of (A2.2), the term ch.N@ ˝ E/ is the Chern character

of the K-theory class determined by the complex

A0;" ˝ E:

There is a standard simplification of the cup product

ch.N@ ˝ E/ Td.FX ˝ !/;

which yields:

Corollary A2.3. #.N@ ˝ E; "/ D
˝

ch.E/ Td" .FX /; C!

˛
:

Proof. Use the splitting principle and the multiplicativity of the Chern and Todd

characters. For details, see [Shanahan 1978]. ˜

Corollary A2.3 is exactly the classical Riemann–Roch Theorem in the context

of foliations. The arithmetical genus #.N@ ˝ E; "/ is the "-density of the alter-

nating sum of the dimensions of the N@-closed L2-forms on the leaves of !. The

right-hand side is a topological invariant of E, FX and C! . For a given measure

", one can hope to choose the bundle E so that #.N@ ˝ E; "/ ¤ 0, guaranteeing

the existence for "-a.e. leaf L of ! of N@-closed L2-forms on L with coefficients

in E.

A3. Foliations by Surfaces (Complex Lines or k D 1)

Let X be a compact foliated space with foliation ! having leaves of dimen-

sion p D 2. For example, we may take X D M to be a smooth manifold and

assume TM admits a 2-plane subbundle F . Then by [Thurston 1976], F is

homotopic to a bundle FM which is tangent to a smooth foliation of M by

surfaces.

Lemma A3.1. Let ! be a two-dimensional foliation of X with FX orientable.

Then every Riemannian metric g on FX canonically determines a continuous

complex structure on the leaves of !. That is, the pair .!; g/ determines a

complex foliation of X .
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Proof. Define a J -operator Jg on FX to be rotation by C'=2 with respect

to the given metric g and the orientation. For each leaf L, the structure JgjL
is integrable as the leaf is two-dimensional hence uniquely defines a complex

structure on L. Furthermore, by the parametrized Riemann mapping theorem

[Ahlfors 1966], there exist foliation charts for ! with each t 0 ı 'x. # ; n/ holo-

morphic and continuous in the variable ". ˜

We remark that if ! has a given complex structure, J , then a metric g can

be defined on FX for which Jg D J . Thus, the construction of Lemma A3.1

yields all possible complex structures on !. This suggests the definition of the

Teichmüller space of a two-dimensional foliation ! of a space X . We say two

metrics g and g0 on FX are holomorphically equivalent if there is a homeo-

morphism ( W X ! X mapping the leaves of ! smoothly onto themselves, and

("g0 is conformally equivalent to g. We say that g and g0 are measurably holo-

morphically equivalent if there is a measurable automorphism ( of X mapping

leaves of ! smoothly onto leaves of !, and (".g0/ is conformally equivalent to

g by a measurable conformal factor on X .

Definition A3.2. Teichmüller space T .X; !/ is the set of holomorphic equiva-

lence classes of metrics on FX . The measurable Teichmüller space Tm.X; !/
is the subset of T .X; !/ consisting of measurably holomorphic equivalence

classes.

When ! consists of one leaf, this reduces to the usual Teichmüller space of

a surface. When ! is defined by a fibration X ! Y with fibre a surface ˙ , let

T .˙/ be the Teichmüller space of ˙ , then

T .X; !/ D C 0.Y; T .˙//

is infinite-dimensional. The more interesting question is to study T .X; !/ for

an ergodic foliation !. There are constructions of foliated manifolds, due to

E. Ghys, which show that T .X; !/ can be infinite-dimensional, even for !

ergodic [Ghys 1997; 1999].

Related to this is a problem first posed by J. Cantwell and L. Conlon: when

does there exist a metric on FX for which every leaf has constant negative

curvature? A complete solution is given for codimension-one, proper foliations

[Cantwell and Conlon 1989], as well as for leaves in Markov exceptional min-

imal sets [Cantwell and Conlon 1991]. There is also a more general problem,

which is to “uniformize” ! — that is, to find a metric on the leaves such that

the curvature is constant. This problem was solved by Alberto Candel [1993]

in the case all leaves are hyperbolic, or in the case they are spherical. Ghys

[1997; 1999] gives a discussion and survey of the more general case of leaves

of mixed type. As an analogue of the Phillips–Sullivan Theorem in Section

A1, one can ask if given a surface ˙ with complex structure J˙ , and given a
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compact manifold X , does there exist a foliation ! of X and Œg) 2 T .X; !/
with ˙ a leaf of ! so that the complex structure induced on ˙ by Œg) coincides

with J˙ ? The average Euler characteristic of ˙ still provides an obstruction

to solving this problem, when ˙ has nonexponential growth type, but the ad-

ditional requirement that ˙ have a prescribed complex structure should force

other obstructions to arise. This would be especially interesting to understand

for ˙ of exponential growth-type, where no obstructions are presently known.

We now turn to consideration of the N@-Index Theorem for a foliation by com-

plex lines, and derive an analogue of the average Euler characteristic.

Lemma A3.3. Let ! be a complex line foliation of X . Then

(A3.4) #.N@ ˝ E; "/ Dhc1.E/; C!iC 1
2 #.!; "/:

Proof. The degree-two component of ch" .E/ Td" .X / is

c1.E/ C 1
2 c1.FX /: ˜

Our goal is to give a geometric interpretation of the term hc1.E/; C!i in

(A3.4) similar to the average Euler characteristic.

Let * ! !PN be the canonical bundle over the complex projective N -space.

For large N , there exists a tangentially smooth map

fE W X ! !PN with f "
E* D E:

(We say that fE classifies E.) Let H % !PN be a hypersurface dual to the

first Chern class c1 2 H 2.!PN / of *. For convenience, we now assume X
is a C 1 manifold and ! is also C 1. The complex structure on ! orients its

leaves, and the complex structure on !P N orients the normal bundle to H . A

connection on * ! !PN pulls back under the fE to a connection on E ! X , so

f "
E.c1/ D c1.E/ holds both for cohomology classes and on the level of forms.

Furthermore, a C 1-perturbation of fE results in a C 0-perturbation of the form

c1.E/.
Given a regular averaging sequence fLj g, for each j ) 1 choose a C 1-

perturbation fj of fE so that fj .Lj / is transverse to H , and f "
j .c1/ converges

uniformly to c1.E/. We say a point x 2 Lj \ f !1
j .H / is a zero of E if fj .Lj /

is positively oriented at fj .x/, and a pole if the orientation is reversed. Let

Z.Lj / and P .Lj / denote the corresponding set of zeros and poles in Lj . Then

elementary geometry shows that
Z

Lj

c1.E/ D #Z.Lj /( #P .Lj / C &j ;

where the error term &j is proportional to vol @Lj . This uses that f@Lj g has

uniformly bounded geometry. Combined with Lemma A3.3, we obtain:
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Proposition A3.5. Let X be a C 1 manifold and assume ! is a C 1-holomorphic

foliation by surfaces. For " D "L given by a regular averaging sequence fLj g,

#.N@ ˝ E; "/ D limj!1
#Z.Lj /

vol Lj
( limj!1

#P .Lj /

vol Lj
C

1

2
#.!; +/

D .average density of zeros of E/

(.average density of poles of E/ C 1
2 .average Euler char/:

Consider the case of a foliation of a 3-manifold X by surfaces. Let f,1; : : : ; ,dg
be a collection of d embedded closed curves in X which are transverse to !,

and fn1; : : : ; nd g a collection of nonzero integers. This data defines a complex

line bundle E ! X , and for a leaf L the restriction EjL is associated to the

divisor
dX

iD1

ni # .,i \ L/:

Let " be an invariant transverse measure. Then Proposition A3.5 takes on the

more precise form:

Proposition A3.6.

dim! H 0.!I E/( dim! H 1.!I E/ D
dX

iD1

ni # ".,i/ C
1

2
#.!; "/:

Proof. c1.E/ is dual to the 1-cycle
Pd

iD1 ni # ,i . ˜

If " D "L is defined by an averaging sequence fLj g, then ".,i/ is precisely

the limit density of .,i \Lj / in Lj , so Proposition A3.6 relates the "-dimension

of L2-harmonic forms on the leaves of ! with the average density of the zeros

and poles of E. This is exactly what a Riemann–Roch Theorem should do.

The latitude in choosing E for a given ! means one can often ensure that either

H 0.!I E/, the L2-meromorphic functions on the leaves of ! with order at leastP
ni # ,i , or the corresponding space of meromorphic 1-forms H 1.!I E/ has

positive "-density. This type of result is of greatest interest when the complex

structures of the leaves of ! can be prescribed in advance, as in Example A3.7

below.

For a complex line foliation ! of an n-manifold X , given closed oriented

submanifolds fV1; : : : ; Vd g of codimension 2 in X transverse to !, and integers

fn1; : : : ; ndg, there is a holomorphic line bundle E ! X corresponding to the

divisor
Pd

iD1 ni # Vi . The existence of such closed transversals Vi to !, and

more generally of holomorphic vector bundles E ! X , is usually hard to ascer-

tain. However, there is one geometric context in which such Vi always exists in

multitude, the foliations given as in (2.2) of Chapter II. We briefly recall their

construction.
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Let Y be a compact oriented manifold of dimension n ( 2,
P

g a surface

of genus g, and - W .g ! Diff.Y / a representation of the fundamental group

.g D *1.˙g/. The quotient manifold

M D . Q̇ !Y /=.g

has a natural 2-dimensional foliation transverse to the fibres of

* W M ! ˙g:

The leaves of ! are coverings of ˙g associated to the isotropy groups of -, and

inherit complex structures from ˙g. The d-index theorem for ! can be deduced

from Atiyah’s L2-index theorem for coverings [Atiyah 1976]. For the N@-index

theorem, this is no longer the case. Also, note that the Teichmüller spaces of this

class of foliations always has dimension at least that of ˙g, as every metric on

T ˙g lifts to a metric on FM . However, they need not have the same dimension,

and T .M; !/ or Tm.M; !/ provide a very interesting geometric “invariant” of

the representation - of .g on Y .

For each point x 2˙g, the fibre '!1.x/%M is a closed orientable transversal

to !. To obtain further transversals, we assume the fibration M ! ˙g is trivial,

so there is a commutative diagram

M
Š ! ˙g !Y

˙g

"
'

!

Note that the foliation Q! on ˙g ! Y induced from its identification with M
will not, in general, be the product foliation. A transversal to ! corresponds to

a transversal to Q!, and the latter can often be found explicitly.

Example A3.7. Consider the example described in [Connes 1982]. Here, ˙1 D
!=.1 is a complex torus, as is Y D !=.2, for lattices .1 and .2 in !. Let .1

act by translations on !=.2, and form

M D .!!!=.2/=.1 Š .!=.1/! .!=.2/

!=.1

*
#

Connes takes V1 D 0!!=.2 and V2 D !=.1!0 as the transversals in ˙1!Y .

Neither V1 nor V2 is homotopic to a fibre *!1.x/ so the N@-index theorem for E
associated to the divisor V1(V2 is not derivable from the L2-index theorem for

coverings. For " the Euclidean volume on !=.2, Connes remarks that

#.N@ ˝ E; "/ D density .2 ( density .1;
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so the dimension of the space of L2-harmonic functions on almost every leaf

! % M with divisor ! \ .V1 ( V2/ is governed by the density of the lattices

.1 and .2. Again, this is exactly the role of a Riemann–Roch Theorem, where

for foliations the degree of a divisor is replaced with the average density of the

divisor.

A4. Geometric K-Theories

The examples described at the end of Section A3 for the N@-operator suggest

that to obtain analytical results from the foliation index theorem, it is useful

to understand the possible topological indices of leafwise elliptic operators. In

the examples above, the "-topological indices are varied by making choices of

“divisors” which pair nontrivially with the foliation cycle C! . As a consequence,

various spaces of meromorphic forms are shown to be nontrivial. To obtain

similar results for a general foliation, !, it is useful to determine the range

of topological indices of leafwise elliptic operators for !. In this section, we

briefly describe the formal “calculation” of these indices in terms of K-groups

of foliation groupoids. In some cases, these abstract results can be explicitly

calculated, giving very useful information. The reader is referred to the literature

for more detailed discussions. One other point is that the foliation index theorem

equates the analytic index with the evaluation of a foliation cycle on a K-theory

class; these evaluations can be much easier to make, than to fully determine the

topological K-theory of the foliation. In this section, and in Section A5, we

will examine more carefully the values of the topological index paired with a

foliation current for some classes of foliations.

Recall from Definition 2.20 of Chapter II the holonomy groupoid, or graph,

G.X / associated to the foliated space X . A point in G.X / is an equivalence

class Œ,xy ) of paths , W Œ0; 1) ! X with , .0/ D x, , .1/ D y and , remains on

the same leaf for all t . Two paths are identified if they have the same holonomy.

G.X / is a topological groupoid with the multiplication defined by concatenation

of paths.

Also associated to the foliated manifold .X; !/ is a groupoid . .X /, con-

structed in [Haefliger 1984]. The groupoid . .X / coincides with one of the

restricted groupoids GN
N .X / of Chapter II. Let fU˛g be a locally finite open

cover of X by foliation charts such that U˛ \ Uˇ is contractible if nonempty.

For each ˛, there is given a diffeomorphism

(˛ W U˛ ! "
p !"

q

sending the leaves of !jU˛
to "p !pt . Define a transversal

T˛ D (!1
˛ .f0g!"

q/% U˛
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for each ˛. By a judicious choice of the fU˛g, we can assume the fT˛g are

pairwise disjoint; see [Hilsum and Skandalis 1983]. Then set N D
S

T˛, an

embedded open q-submanifold of X . It is an easy exercise to show GN
N .X / co-

incides with the Haefliger groupoid . .X / constructed from the foliation charts

f(˛ W U˛ ! "pCqg.

The inclusion N !N %X !X induces an inclusion of topological groupoids

. .X /% G.X /. The cofibre of the inclusion is modeled on the trivial groupoid

Rp !Rp , where all pairs .x; y/ are morphisms. One thus expects the above

inclusion to be an equivalence, and Haefliger [1984] shows that this is indeed

so:

Theorem A4.1 (Haefliger). The inclusion . .X / % G.X / is a Morita equiva-

lence of categories.

For any topological groupoid ", there is a classifying space B" of " struc-

tures, which is constructed using a modification of the Milnor join construction

[Haefliger 1971; Milnor 1956]. Applying this to G.X / yields the space BG.X /
which is fundamental for foliation K-theory; see [Connes 1982, Chapter 9].

Applying the B-construction to . .X /, we obtain a space B. .X / which is

fundamental for the characteristic class theory of !.

Corollary. Let .X; !/ be a foliated space. The inclusion . .X /%G.X / induces

a homotopy equivalence B. .X / ' BG.X /.

Thus, the topological invariants of B. .X / and BG.X / agree. Note the open

contractible covering fU˛g of X defines a natural continuous map X ! B. .X /.
If all leaves of ! are contractible, this inclusion is a homotopy equivalence, so

that the topological type of BG.X / is the same as X . By placing weaker re-

strictions on the topological types of the leaves of !, one can more generally de-

duce that the inclusion is an N -equivalence on homotopy groups; see [Haefliger

1984]. For the generic foliation, however, one expects that the space BG.X /
will have a distinct topological type from X , probably more complicated.

The space B. .X / can be studied from a “universal viewpoint” by introducing

the Haefliger classifying spaces. For the class of transversally C r -differentiable

foliations of codimension q, Haefliger defines a space B.
.r/

q , and there is a

universal map

iX W B. .X / ! B. .r/
q :

The cohomology groups of B.
.r/

q then define universal classes which pull back

to B. .X / via .iX /". The nontriviality of .iX /" is then a statement about both

the topology of B. .X / and the inclusion iX . A short digression will describe

the situation for C 1 foliations.

Let B.q be the universal classifying space of codimension q C 1-foliations.

(It is important to specify the transverse differentiability of !, as the topology
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of B.q depends strongly on how much differentiability is required.) The com-

position

f! W X ! B. .X / ! B.q;

or more precisely its homotopy class, was introduced by Haefliger in order to

“classify” the C 1-foliations on a given X . The classification is modulo an

equivalence relation which turns out to be concordance for X compact, and

integrable homotopy for X open; see [Haefliger 1971].

For B. .X /, the principal invariants are the characteristic classes. Recall the

definition of the differential graded algebra

WOq D !.h1; h3; : : : ; hq0/ ˝ "Œc1; c2; : : : ; cq )2q;

where the subscript 2q indicates that this is a truncated polynomial algebra, trun-

cated in degrees greater than 2q, and q0 is the greatest odd integer not exceeding

q. The differential is determined by d.hi ˝ 1/ D 1 ˝ ci and d.1 ˝ ci/ D 0. The

monomials ^cJ D h11
^ # # #^ hi`

^ c
j1

1 # # # c
jq
q , where

(A4.2) 11 < # # #< i`; jJ j D j1 C 2j2 C # # #C qjq & q; i1 C jJ j > q

are closed, and they span the cohomology H ".WOq/ in degrees greater than

2q. The Vey basis is a subset of these [Bott and Haefliger 1972; Kamber and

Tondeur 1974; 1975; Lawson 1974].

A foliation ! on M determines a map of differential algebras into the de Rham

complex of M , /!W WOq ! ˝".M /. The induced map in cohomology,

/"
!W H ".WOq/ ! H ".M /;

depends only the integrable homotopy class of !. The secondary classes of !

are spanned by the images /"
!

.hI ^ cJ / for hI ^ cJ satisfying (A4.2).

The construction of the map /! is functorial, so there exists a universal map

Q/" W H ".WOq/ ! H ".B.q/

(see [Lawson 1977]), and for given ! on X we obtain its secondary classes via

/" D f "
! ı Q/" W H ".WOq/ ! H ".X /:

We next describe how the topology of BG.X / is related to the topological

indices of leafwise elliptic operators of !. For ! a C 1-foliation of a manifold

X , the groupoid G.X / has a natural map to GL.q; "/ obtained by taking the

Jacobian matrix of the holonomy along a path Œ,xy ). This induces a map

BG.X / ! B GL.q; "/;

which defines a rank q vector bundle 0 ! BG.X / whose pullback to X under

X ! B. .X / ! BG.X / is the normal bundle to !. The 0-twisted K-theory of
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BG.X / is defined as

K
$
".BG.X //"K".B.0/; S.0//;

where B.0/ is the unit disc subbundle of 0 ! BG.X /, and S.0/ is the unit

sphere bundle.

Connes and Skandalis [1984] construct a map

Indt W K
$
".BG.X // ! K".C "

r .X //;

which they call the topological index map, via an essentially topological proce-

dure that converts a vector bundle or unitary over BG.X / into an idempotent

or invertible element over C "
r .X /. Let F"

1 X denote the unit cotangent bundle

to ! over X . Then there is a natural map of K-theories,

b W K1.F"
1 X / ! K

$
0.BG.X //;

obtained from the exact sequence for the pair .B.0/; S.0//. If ! admits a

transverse invariant measure ", there is a linear functional (! on K0.C "
r .X //

(Proposition 6.23), and the composition (! ı Indt ıb D Indt
! , the topologi-

cal measured index. That is, for D a leafwise operator with symbol class

u D Œ1D ) 2 K1.F"
1 X /.

(! ı Indt ıb.u/ D
˝

ch.D/ Td" .X /; C!

˛
:

Connes and Skandalis also construct a direct map,

Inda W K1.F"
1 X / ! K0.C "

r .X //;

which they call the analytic index homomorphism, by associating to an invertible

u the index projection operator over C "
r .X / of a zero-order leafwise elliptic

operator whose symbol class is u. Also,

Inda
! " (! ı Inda.u/

is the analytic index of this operator, calculated using the dimension function

associated to ". They then proved in [Connes and Skandalis 1984]:

Theorem A4.3 (Connes–Skandalis General Foliation Index Theorem). For any

foliation !, there is an equality of maps

Inda D Indt ıb W K1.F"
1 X / ! K0.C "

r .X //:

Note that Theorem A4.3 makes sense even when ! possesses no invariant

measures. If there is an invariant measure, ", then by the above remarks, the

theorem implies the "-measured foliation index theorem proved in Chapters 7

and 8. Note also that this formulation of the index theorem shows that the

possible range of the analytic traces of leafwise operators, with respect to a

given invariant measure ", are contained in the image of the map

(! ı Indt W K
$
0.BG.X // ! ":
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This is the meaning of the earlier statement that the topology of BG.X / dictates

the possible analytic indices of leafwise operators, and motivates the study of

BG.X /. In fact, Connes has conjectured that this space has K-theory isomor-

phic to that of C "
r .X /.

Conjecture A4.4. Suppose that all holonomy groups of ! are torsion-free. Then

Indt is an isomorphism.1

It is known that Conjecture A4.4 is true if ! is defined by a free action of a

simply connected solvable Lie group on X ; see [Connes 1982]. Also, for flows

on the 2-torus and for certain “Reeb foliations” of three-manifolds, the work of

Torpe [1985] and Penington [1983] shows that conjecture A4.4 holds.

Given a foliated manifold X with both FX and TX orientable, a natural

problem, related to Conjecture A4.4, is to determine to what extent the compo-

sition

K".X /
Thom

Š
! K

$
".X / ! K

$
".BG.X //

Indt! K".C "
r .X //

is an isomorphism. We describe three quite general results on this, and then show

that the N@-Index Theorem also sheds some light on this problem in particular

cases.

Let G be a connected Lie group. A locally free action of G on X is almost

free if given g 2 G with fixed point x 2 X , either g D id or the germ of the

action of g near x is nontrivial. If ! is defined by an almost free action of G
on X , then G.X / Š X !G. If G is also contractible, then X ! BG.X / is a

homotopy equivalence.

Theorem A4.5 [Connes 1982]. Let ! be defined by an almost free action of a

simply connected solvable Lie group G on X . Then there is a natural isomor-

phism K".X /ŠK".C "
r .X //.

For Bp D . nG=K a locally symmetric space of rank one with negative

sectional curvatures, there is a natural action of the lattice . on the sphere at

infinity .Š Sp!1/ of the universal cover G=K. The manifold

M D .G=K !Sp!1/=.

can be identified with the unit tangent bundle T 1B. The foliation of M of

codimension q D p(1 defined in Chapter II corresponds here with the Anosov

( D weak stable) foliation of T 1B.

Theorem A4.6 [Takai 1986]. The index yields an isomorphism

K".M /ŠK".C "
r .M //:

1We have been told that this conjecture is still open as of 2004.
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For B a surface of genus ) 2, this result is due to Connes [1982, Chapter 12].

The third result deals with the characteristic classes of C 1-foliations. Recall

from above that each class Œz) 2 H ".WOq/ defines a linear functional /"Œz) on

H".X /. Connes [1986] has shown that Œz) also defines a linear functional on

K".C "
r .X //, and these functionals are natural with respect to the map

H".X / ! K".C "
r .X //:

From this one concludes:

Theorem A4.7 [Connes 1986]. Suppose there exist

Œz) 2 H ".WOn/ and Œu) 2 H".X /

such that /"Œz).Œu)/ does not vanish. Then Œu) is mapped to a nontrivial class in

K".C "
r .X //.

Theorem A4.7 shows that the characteristic classes of ! can be used to prove

certain classes in H".X / inject into K".C "
r .X //.

After these generalities, we consider foliations of three-manifolds with an

invariant measure " given, and study the "-topological index, Indt
!.u/, for u 2

K1.X /, which calculates the composition

K1.X / ! K
$
0.X /ŠK1.F"

1 X /
Inda

!
! ":

First, here is a general statement for such foliations. Recall that a simple closed

curve in , in X transverse to ! determines a complex line bundle E% over !

with divisor Œ, ). Take N@ along leaves and form N@ ˝ E% ; this gives a map

H1.X I Z/ ! K1.F"
1 X /

Œ, ) 7! ŒN@ ˝ E% )

and composing with Inda yields a map

Ind W H1.X I Z/ ! K0.C "
r .X //:

Proposition A4.8. Let ! be a codimension-one C 1-foliation of a compact three-

manifold X . Assume both TX and FX are orientable.

(a) Suppose " is an invariant transverse measure with C! ¤ 0 in H2.X I "/,
and the support of " does not consist of isolated toral leaves. .A toral

leaf L is isolated if no closed transverse curve to ! intersects L./ Then

there exists a holomorphic line bundle E ! X such that Ind!.N@ ˝ E/,
and thus Ind.N@ ˝ E/ 2 K0.C "

r .X //, are nonzero.

(b) Let f"1; : : : ; "dg be a collection of invariant transverse measures such

that the associated currents fC1; : : : ; Cdg % H2.X I "/ are linearly in-

dependent when evaluated on closed transversals to !. Then there exist
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holomorphic line bundles E1; : : : ; Ed over X such that the elements
˚
Ind.N@ ˝ Ei/ j i D 1; : : : ; d

!
%K0.C "

r .X //

are linearly independent.

For example, it is not hard to show that if ! has a dense leaf and the currents

fC1; : : : ; Cd g%H2.X I "/ of part (b) are independent, then they are independent

on closed transversals. Define H.!/ % H2.X I "/ to be the subspace spanned

by the currents associated to the invariant measures for !.

Corollary A4.9. If ! has a dense leaf , there is an inclusion

H.!/%K0.C "
r .X // ˝ ":

Proof of Proposition A4.8. First assume there is a closed transverse curve , to

! which intersects the support of ". Then "., / ¤ 0, and we define E D En$%

and use (A3.4) to calculate

Ind!.N@ ˝ En$% / ¤ 0

for all but at most one value of n. If no such curve , exists, then the support

of " must consist of compact leaves. One can show these leaves must be tori

which are isolated and this contradicts the hypothesis that there is a nonisolated

toral leaf in the support of ". This proves (a). The proof of (b) is similar. ˜

A5. Examples of Complex Foliations of Three-Manifolds

The geometry of foliations on three-manifolds has been intensively studied.

In this section, we select four classes of these foliations for study, and consider

the N@-index theorem for each. Let M be a compact oriented Riemannian three-

manifold. Then M admits a nonvanishing vector field, and this vector field is ho-

motopic to the normal field of some codimension one foliation of M . Moreover,

M even has uncountably many codimension one foliations which are distinct

up to diffeomorphism and concordance; see [Thurston 1974]. This abundance

of foliations on three-manifolds makes their study especially appealing.

There are exactly two simply connected solvable Lie groups of dimension

two, the abelian group R2 and the solvable affine group on the line.

A2 D

"#
x y
0 x!1

$ ˇ̌
ˇ x > 0

%
% SL.2; "/:

A locally free action of R2 or A2 on a three-manifold M defines a codimension

one foliation with very special properties. The foliations defined by an action of

R2 have been completely classified: see the next two pages. For '1M solvable,

the locally free actions of A2 on M have been classified in [Ghys and Sergiescu

1980] and [Plante 1975]; see pages 245–247. For '1M not solvable, some

restrictions on the possible A2-actions are known.
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Note that Connes’ Theorem A4.5 applies only when ! is defined by an almost

free action of R2 or A2. This assumption does not always hold in the following

examples, so we must use the geometry of ! to help calculate the image of the

index map.

Throughout, M will denote a closed, oriented Riemannian three-manifold

and ! an oriented two-dimensional foliation of M .

Locally free "2-actions. Let a 2 SL.2; #/, which defines a diffeomorphism

(a W T 2 ! T 2, and a torus bundle over S1 by setting

Ma D T 2 !"=.x; t/' .(a.x/; t C 1/:

Theorem A5.1 [Rosenberg et al. 1970]. Suppose M admits a locally free ac-

tion of R2. Then M is diffeomorphic to Ma for some a 2 SL.2; #/.

For ! defined by an R2-action. '1M is solvable by Theorem A5.1 and ! has

no Reeb components. The foliated three-manifolds with '1M solvable and no

Reeb components have been completely classified by Plante [1979, 4.1]: note

that only his cases II, III or V are possible for an R2-action).

For '1M solvable, there is also a classification of the invariant measures for

any ! on M :

Theorem A5.2 (Plante–Thurston). If '1M is solvable and ! is transversally

oriented, the space H.!/%H2.M / of foliation cycles has real dimension 1.

For ! defined by an R2-action, this implies there is a unique nontrivial pro-

jective class of cycles in H2.M / which arise from invariant transverse measures.

Fix such an invariant measure ".

For the d-index theorem, evaluation on C! yields the average Euler charac-

teristic of the leaves in the support of ". These leaves are covered by R2, hence

have average Euler characteristics zero, and T! annihilates the class Ind.d/.
For the operator N@, we use formula (A3.4) to construct holomorphic bundles

over M for which T!ıInd.N@˝E/¤0. The number of such bundles is controlled

by the period mapping of ". This is a homomorphism P! W H1.M I #/ ! "

defined as P!.˛/ D "., /, where , is a simple closed curve representing the

homology class ˛. The rank of its image is called the rank of .!; "/, denoted

by r.!/. Note that 1& r.!/& 3.

Proposition A5.3. The elements Ind.N@˝E/ 2 K0.C "
r .X //, for E ! M a holo-

morphic line bundle, generate a subgroup with rank at least r.!/.

Proof. For each ˛ 2 '1M with P!.˛/ ¤ 0, choose a simple closed curve , in M
representing ˛ and transverse to !. This is possible by Theorem A5.1 and the

known structure of R2-actions. Then take E D E% as in Section A3 to obtain

T! ı Ind.N@ ˝ E/ Dhch.E/; C!i D "., / D P!., /:

This shows the map T! is onto the image of P! . ˜
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It is easy to see that r.!/ D 3 if and only if ! is a foliation by planes. This

coincides with the R2-action being free, and then one knows by Theorem A4.5

that

˛ 7! Ind.N@ ˝ E% /

is an isomorphism from H2.M I Z/ onto the summand of K0.C "
r .M // corre-

sponding to the image of H2.M I #/%K0.M /ŠK0.C "
r .M //.

An "2-action on a nilmanifold. Let N3 be the nilpotent group of strictly tri-

angular matrices in GL.3; "/:

N3 D

8
<

:

0

@
1 a b
0 1 c
0 0 1

1

A such that a; b; c 2 "

9
=

; :

For each integer n > 0, define a lattice subgroup

.n D

8
<

:

0

@
1 p r=n
0 1 q
0 0 1

1

A such that p; q; r 2 #

9
=

; :

Then M D N3=.n is a compact oriented three-manifold, and the subgroup

R2 D

8
<

:

0

@
1 a b
0 1 0
0 0 1

1

A

9
=

;

acts almost freely on M via left translations. Also note M is a circle bundle over

T 2, and H2.M I "/Š"2. By Theorem A4.5, the index map is an isomorphism,

so K0.C "
r .M //Š #3. The curve representing the homology class of

˛ D

0

@
1 0 0
0 1 1
0 0 1

1

A 2 '1M

is transverse to ! and P!.˛/ ¤ 0 for a transverse measure " with C! ¤ 0.

However, Ind.N@ ˝ E% / cannot detect the contribution to K0.C "
r .M // from the

curve defined by a fibre of M ! T 2.

Foliations without holonomy. If for every leaf L of a foliation, !, the holo-

nomy along each closed loop in L is trivial, then we say ! is without holonomy.

In codimension-one, such foliations can be effectively classified up to topolog-

ical equivalence. We discuss this for the case of C 2-foliations. By Sacksteder’s

Theorem [Lawson 1977], a codimension-one, C 2-foliation without holonomy

of a compact manifold admits a transverse invariant measure " whose support

is all of M . Moreover, there is foliation-preserving homeomorphism between

M and a model foliated space,

X D . zB !S1/=.;
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where . is the fundamental group of a compact manifold B, zB is its universal

cover with . acting via deck translations, and . acts on S1 via a representation

exp.2' i-/ W . ! SO.2/;

for - W . ! ". The foliation of X by sheets zB ! f2g has a canonical invariant

measure, d2 , and " corresponds to d2 under the homeomorphism. Since the

index invariants are topological, in this case we can assume that M is one of

these models. For a three-manifold this implies B D ˙g for ˙g a surface of

genus g ) 1. The case g D 1 is a special case of examples (A5.1) above.

Let ! denote the abelian subgroup of " which is the image of -. Denote by

r.!/ the rank of !. It is an easy geometrical exercise to see that the group !
agrees with the image of the evaluation map

Œd2) W H1.M I Z/ ! ":

Moreover, there exists simple closed curves f,1; : : : ; ,r g in M transverse to !

for which fP!.,i/g yields a #-basis for . . Form the holomorphic bundles fEig
corresponding to the f,ig, then the set fInd.N@ ˝ Ei/g generates a free subgroup

of rank r in K0.C "
r .M //. Since H2.BG.M /I "/ has rank r , this implies

Proposition A5.4. The index map

K"
0.BG.M // ! K0.C "

r .M //

is a monomorphism.

These foliations have been analyzed in further detail by Natsume [1985],

where he shows that this map is also a surjection.

Solvable group actions. The locally free actions of A2 on three-manifolds has

been studied by many authors; see in particular [Ghys and Sergiescu 1980; Ghys

1984; 1985; 1993]:

Theorem A5.5. Let '1M be solvable and suppose A2 acts on M . Then M
is diffeomorphic to a torus bundle Ma over S1, and the monodromy map a 2
SL.2; "/ has two distinct real eigenvalues.

Theorem A5.6 [Ghys 1985]. Suppose that A2 acts locally free on M and pre-

serves a smooth volume form. Then M is diffeomorphic to SL.2; "/=. for some

cocompact lattice in the universal covering group

CSL.2; "/;

and the action of A2 on M is via left translations.

Proposition A5.7. Suppose H1.M / D 0 and A2 acts locally freely on M . Then

the action preserves a smooth volume form on M .
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Let us describe the foliation on M0 DT 2!"=(a. Let Nv 2 "2 be an eigenvalue

with eigenvalue % > 0. The foliation of "3 by planes parallel to the span of

f. Nv ! 0/; .N0! 1/g is invariant under the covering transformations of "3 ! Ma,

so descends to a foliation !& on Ma. When % D 1, the R2-action on "3 defining

the foliation there descends to an "2 action on Ma, defining !&. When % ¤ 1,

the leaves of !& are defined by an action of A2 on Ma.

For A2-actions on M with '1M not solvable, it seems reasonable to conjec-

ture they must have this form given in Theorem A5.6.

If the action of A2 preserves a volume form on M 3, then ! is transversally

affine [Ghys and Sergiescu 1980], so there can be no invariant measures for

!. In this case Theorem 8.7 of Chapter VIII reveals no information about

K0.C "
r .M //. However, one has Connes’ Theorem A4.5 since the A2-action

is almost free. To give an illustration, let . % SL.2; "/ be a cocompact lattice,

and set M D SL.2; "/=. . The group A2 acts via left translations and preserves

a smooth volume form on M . Then

G.M /ŠM !A2;

K"
0.BG.M //ŠK0.M /;

and

Ind W K"
0.BG.M // ! K0.C "

r .M //

is an isomorphism. Note the foliation on M admits 2g closed transversals

f,1; : : : ; ,2gg which span H1.M /. Form the corresponding bundles Ei ! M ,

and consider the classes fInd.N@ ˝ Ei/g % K0.C "
r .M //. It is natural to ask

whether these classes are linearly independent, and for a geometric proof if so.

Foliations with all leaves proper. A leaf L%M is proper if it is locally closed

in M . ! is proper if every leaf is proper. The geometric theory of codimension-

one proper foliations is highly developed [Cantwell and Conlon 1981; Hector

and Hirsch 1986]. We recall a few general facts relevant to our discussion.

Theorem A5.8. Let ! be a proper foliation of arbitrary codimension. Then the

quotient measure space M=!, endowed with the Lebesgue measure from M , is

a standard Borel space.

Corollary A5.9. Let ! be a proper foliation of arbitrary codimension. Then any

ergodic invariant transverse measure for ! with finite total mass is supported

on a compact leaf .

Theorem A5.10. For a codimension one proper foliation !, all leaves of ! have

polynomial growth, and the closure of each leaf of ! contains a compact leaf .

Let ! be a proper codimension-one foliation of M 3. Given a transverse

invariant measure ", we can assume without loss of generality that the support

of " is a compact leaf L. If L has genus at least 2, then there exists a closed
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transversal , which intersects L, so T! ı Ind.N@ ˝ En$% / ¤ 0 for all but at most

one value of n. Thus, the class

ŒL) 2 H2.M I Z/

corresponds to a nontrivial class

Ind.N@ ˝ En$% / 2 K0.C "
r .M //:

If L is a 2-torus, then it is difficult to tell whether the homology class of L is

nonzero, and if so, whether it generates a nonzero class in K0.C "
r .M //. There

is a geometric criterion which yields an answer.

Theorem A5.11 (Rummler–Sullivan). Suppose M admits a metric for which

each leaf of ! is a minimal surface. Then every compact leaf of ! has a closed

transversal which intersects it.

Corollary A5.12. Suppose ! is a proper and minimal foliation. For each er-

godic invariant transverse measure ", there is a holomorphic bundle E! ! M
such that Ind.N@ ˝ E!/ 2 K0.C "

r .M // is nonzero, and Ind!.N@ ˝ E!/ ¤ 0.

We cannot conclude from Corollary A5.12 that the elements

fInd.N@ ˝ E!/ j " ergodicg

are independent. (Consider the product foliation ˙g ! S1.) However, if M
has a metric for which every leaf is geodesic submanifold, then there are as

many independent classes in K0.C "
r .M // as there are independent currents

C! 2 H2.M I "/.
The Reeb foliation of S3 is another relevant example of a proper foliation. It

is not minimal, and K0.C "
r .M //Š # so the toral leaf does not contribute; see

[Penington 1983; Torpe 1985].

Foliations with nonzero Godbillon–Vey class. There is exactly one character-

istic class for codimension-one foliations (of differentiability at least C 2), the

Godbillon–Vey class GV 2H 3.M I "/. Recall from Section A4 that GV defines

linear functionals, also denoted by GV , on K".M / and (noncanonically) on

K".C "
r .M //,2 and these functionals agree under the map

K".M / ! K".C "
r .M //:

If GV ¤ 0 in H 3.M /, then there is a class Œu) 2 K".C "
r .M // on which GV is

nontrivial. From this we conclude that the composition

H3.M I Z/ ! K
$
1.BG.M // ! K0.C "

r .M //

is injective.

2The map GV W K".C "
r .M // ! " depends upon the choice of a smooth dense subalgebra of

C "
r .M /.
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The information on K1.C "
r .M // obtained from GV is about all one knows

for these foliations !˛ on M , which underlines the need for better understand-

ing of how the geometry of a foliation is related to the analytic invariants in

K0.C "
r .M //.

Update 2004

Since the first edition of this book, there have been great advances in un-

derstanding the relationship between the foliation indices and the geometry of

!. We mention in particular the works of Hitoshi Moriyoshi, who has given a

very explicit description of the Godbillon–Vey invariant as an analytic invariant

[Moriyoshi 1994a; 1994b; 2002, Moriyoshi and Natsume 1996].
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pellier, 1995), edited by C. Albert et al., Progr. Math. 145, Birkhäuser, Boston, 1997.
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feuilletages à connexion transverse projetable”, Topology 12 (1973), 317–325.

[Boutet de Monvel 1976] L. Boutet de Monvel, A course on pseudo differential oper-

ators and their applications, Mathematics Department, Duke University, Durham,
NC, 1976.

[Moore 1977] C. C. Moore, “Square integrable primary representations”, Pacific J.

Math. 70:2 (1977), 413–427.

[Moore 1982] C. C. Moore, “Ergodic theory and von Neumann algebras”, pp. 179–226
in Operator algebras and applications (Kingston, Ont., 1980), vol. 2, edited by R. V.
Kadison, Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, 1982.

[Moriyoshi 1994a] H. Moriyoshi, “The Euler and Godbillon–Vey forms and symplec-
tic structures on Diff1

C .S1/=SO.2/”, pp. 193–203 in Symplectic geometry and quan-

tization (Sanda and Yokohama, 1993), edited by Y. Maeda et al., Contemp. Math.
179, Amer. Math. Soc., Providence, RI, 1994.

[Moriyoshi 1994b] H. Moriyoshi, “On cyclic cocycles associated with the Godbillon–
Vey classes”, pp. 411–423 in Geometric study of foliations (Tokyo, 1993), edited by
T. Mizutani et al., World Sci. Publishing, River Edge, NJ, 1994.

[Moriyoshi 2002] H. Moriyoshi, “Operator algebras and the index theorem on foliated
manifolds”, pp. 127–155 in Foliations: geometry and dynamics (Warsaw, 2000),
edited by P. Walczak et al., World Sci. Publishing, River Edge, NJ, 2002.

[Moriyoshi and Natsume 1996] H. Moriyoshi and T. Natsume, “The Godbillon–Vey
cyclic cocycle and longitudinal Dirac operators”, Pacific J. Math. 172:2 (1996), 483–
539.

[Muhly et al. 1987] P. S. Muhly, J. N. Renault, and D. P. Williams, “Equivalence and
isomorphism for groupoid C !-algebras”, J. Operator Theory 17:1 (1987), 3–22.



REFERENCES 277

[Natsume 1985] T. Natsume, “The C !-algebras of codimension one foliations without
holonomy”, Math. Scand. 56:1 (1985), 96–104.

[Palais 1965] R. S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of
Mathematics Studies 57, Princeton University Press, Princeton, NJ, 1965. With
contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih, and
R. Solovay.

[Paterson 1999] A. L. T. Paterson, Groupoids, inverse semigroups, and their operator

algebras, Progress in Mathematics 170, Birkhäuser, Boston, 1999.
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