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Abstract

We introduce the leafwise geodesic flow of a foliation, a flow on the unit tangent
bundle to the leaves which preserves the natural foliation on this manifold, and use
it to study the ergodic theory of foliations. The topological entropy of a foliation is
defined to be the topological entropy of this flow relative to the invariant foliation,
and the corresponding relative metric entropies are the metric entropies of the foli-
ation. The topological entropy dominates the metric entropies, and the supremum
of the metric entropies yields the foliation topological entropy. Upper estimates of
foliation metric entropies via transverse Lyapunov exponents are given, from which
we deduce a generalization of a theorem of Sacksteder concerning the existence of

linearly contracting holonomy along resilient leaves in codimension-one.
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Introduction. The dynamical theory of foliations has three milestones from the
period 1956 to 1965, and all for codimension one (cf. [L1}): Haefliger's Theorem
on the non-existence of analytic foliations on 3-manifolds with finite fundamental
group; Novikov's Theorem on the existence of toral leaves in foliations of $*; and
Sacksteder’s Theorem that a C?-foliation on a compact manifold with an exceptional
minimal set must have a resilient leaf with linearly contracting holonomy. The
theorems of Haefliger and Novikov are proved with techniques from the study of
singular flows on surfaces. Sacksteder’s Theorem is a result about the behavior
of pseudo-groups of C?-diffeomorphisms of the line, and its proof resembles more
closely the approach developed in smooth dynamical systems, especially the study
of stable manifolds for partially hyperbolic systems in Pesin Theory. The work
described in this paper originated, in part, from our attempt to better understand
this similarity and to prove extensions of the Sacksteder Theorem.

Let us recall the theorem of Sacksteder: Let G be a pseudo-group of orientation-
preserving, C?-diffeomorphisms of the real line R, with a finite generating set
{g1,92,...,9n}. We denote the doma'n of ¢; by U(g;), an open connected sub-

set of R. A nowhere dense, perfect compact set ' C R is called an exceptional
N

mintmal set if K C U U(gi), each ¢g; : KNU(g;) = K, and K is a minimal, non-
el
empty set with resp:ect to these properties. A gap in K is a closed interval J of R

such that K NJ = {z,y} consists of the endpoints of J, and z or y will be called
the endpoints of a gap.

Theorem. (Sacksteder [S]). Suppose G is a finitely generated pseudo-group of ori-
entation preserving C?-diffeomorphisms of the line with an exceptional minimal set
K. Then for each endpoint z € K of a gap, there is a sequence of points {z,} C K
tending to z and elements {y,} C G so that y,(x,) = zp and 0 < y,(2p) < 1. O

An important application of this result is to the qualitative dynamics of C?-
foliations of codimension-one on compact manifolds. Such a foliation F on M
defines for each open transversal T C M a finitely generated pseudo-group G(T, 7).
A compact subset KX C T is an exceptional minimal set for G(T,F) if there is a

compact set I{g C M so that K = KgN T, with Ky a union of leaves, Ky nowhere



dense and perfect and K is minimal with respect to these properties. We say that
K is an exceptional minimal set for F. A leaf L C M is resilient if there is a
transversal T C M and z € TN L so that x is a limit point of TN L and there is
a closed loop in L, based at z, which generates a local holonomy map + that is a
contradiction in a neighborhood of z in T. If 0 < 4'(z) < 1, then we say L is a

linearly contracting resilient leaf.

Theorem’. (Sacksteder). Let F be a C?-foliation of codimension-one on a compact
manifold M. If F has an exceptional minimal set K; then for every endpoint of a
gap of K = KyNT, there is a sequence of linearly contracting resilient leaves in K,
containing the endpoint in their closure. O

The proof of the Sacksteder Theorem uses the linear geometry of the one-
dimensional Cantor set I and the hypothesis that the local diffeomorphisms are
C? to establish uniform estimates on the rates of contraction for certain elements
of G, from which the existence of hyperbolic fixed-points follows. In compari-
son with Pesin Theory, it is this uniformity of the contractions which yields a
proof that avoids the complexity of the methods associated with stable manifold
theory of Pesin. Recent expositions of the proof of the Sacksteder Theorem by
Cantwell-Conlon {C4] and Godbillon [G] make this comparison more evident. For
the case when the pseudo-group is generated by diffeomorphisms which are only
Ce, 0 < a < 1, the uniform estimates no longer hold, and in fact, there are
counter examples to the conclusion of the theorem. M. Herman has studied the
modulous of continuity for Denjoy examples in (Chapter 10, [Her 2]) and shows, in
particular, that for 0 < a < 1, there is a C'1*-diffeomorphism of 5! with an excep-
tional minimal set. An exceptional minimal set of a diffeomorphism cannot contain
a resilient leaf. Therefore, for C!T* we must add an additional hypopthesis on the
dynamics of an exceptional minimal set in order to obtain hyperbolic contractions;
i.e., resilient orbits. Investigating this question leads naturally to the ideas of topo-
logical and metric entropies for foliations, and to introduce the extremely powerful
tools of Lyapunov Exponents and Pesin Theory into foliation dynamics. We ob-

tain the following extension of Sacksteder’s Theorem to foliations of class C*'*¢, for



O<a<l

Theorem 7.4. Let F be a codimension-one, C'!'*%-foliation of a compact manifold
M, for 0 < a < 1. Let Ky be an exceptional minimal set for F, and suppose
gr(Dh,K) > 0. Then K, contains a linearly contracting resilient leaf which is
dense in Kj. 0

The extra hypothesis gr(Dh, K') > 0 asserts that the linear holonomy cocycle
for 7 on K has some hyperbolicity, but with no uniformity implied. The idea
behind Theorem 7.4 is that with the condition gr(Dh, K) and the compactness of
M, there will be sequences of points in K and elements of the holonomy pseudo-
group of F on K so that the points converge, and the derivatives of these elements
at these points grow exponentially, Compactness implies again the existence of a
transversally hyperbolic geodesic in K, generic with respect to the hyperbolicity, so
that a Pesin stable manifold exists along it. From this, one deduces the existence
of hyperbolic fixed-points of holonomy in K. Note that in this approach, we have
replaced the uniform estimates of Sacksteder’s theorem with genericity used in Pesin
Theory, but the rest of the proof is quite similar.

A second application of foliation Pesin Theory is to obtain a result first proved
by Ghys-Langevin-Walczak using the Poincaré-Bendixson Theory of codimension-
one C*-foliations [GLW]:

Theorem 6.5. Let F be a C't*foliation of codimension-one of a compact mani-
fold M, for some 0 < & < 1. If the foliation topological entropy satisfies h(M/F; f;) >
0, then F has a linearly contracting resilient leaf. O

The converse of this result is easily shown: for F a C!-foliation, if F has a
resilient leaf, then the topological entropy is positive. This is because a resilient
leaf represents the foliation version of homoclinic orbits for flows.

The above discussion concerns one of the applications of the theory we will
outline in this paper. Other applications are given in {H7] and [HS§], along with
proofs. For the rest of the Introduction, we discuss the nature of our program.
First, note that definitions of topological and metric entropies for Z™-actions on

compact Hausdorff spaces have been previously given (cf. Introduction to [E]).



The fact that the topological entropy is the supremum of the metric entropies was
observed to hold, also. However, these entropies have the unfortunate property that
they yield always zero for groups of diffeomorphisms of a compact manifold, unless

m = 1 when they agree with the usual definition of entropy for a diffeomorphism.

The reason for this vanishing is that the usual term “InH ( V T"U) ” is divided

lal<r
by the number of elements in a ball of radius r. However, elementary geometry and

compactness imply that this term grows at most linearly in r. Therefore, one should
divide not by the volume of a ball, but by its radius to get the topological entropy
of a group of diffeomorphisms. This definition then makes sense for any finitely
generated group acting by diffeomorphisms on a compact manifold. The entropy
depends a priori on a choice of generating set, but for an amenable group one can
show the entropy is independent of this choice. In the approach below, we always
work with a foliated manifold with a given leafwise metric, and the normalization
used 1s the radius of a geodesic ball in the leaves. For foliations obtained via the
suspension of a group action, one can easily see that the above definition agrees with
the foliation entropy when the Riemannian metric is chosen so that the generators

correspond to geodesics of length one.

A second advantage of using the normalization given by the radius of the ball, is
that the entropy of the group action then corresponds to the relative entropy of the
geodesic flow on leaves, taken with respect to the natural invariant foliation. The
geodesic flow always admits invariant probability measures, so that even for non-
amenable group actions, one can obtain the Theorem that the topological entropy
is the supremum of the appropriate metric entropies. One next asks whether these
metric entropies can be estimated via appropriate Lyapunov exponents, as is the
case for diffeomorphisms by the Margulis Theorem, The answer to this is positive,
but one must first understand what form the Lyapunov exponents for a foliation or

group action should take.

The Lyvapunov exponent theory for foliations developed using the leafwise
geodesic flow is a natural continuation of the methods of [HI1] where a key technical

point was to use Lyapunov adapted metrics to study the regularity (or tempering)



of G-cocycles over a foliation. Given the possibility of forming adapted metrics,
the logical next step, when G C GL(N,R) for some N, is to produce Lyapunov
exponents for the cocycle and show these yield asymptotic approximations to the
cocycle. However, an immediate difficulty is that producing the exponents for a
group action requires the existence of “exponent homomorphisms” of the group
into the real numbers, and for foliations we require the more general idea of a ho-
momorphism of the foliation groupoid into the real numbers. There is no reason
why such homomorphisms should exist, and for interesting, “large” groups, one
knows that they cannot. The solution we propose here for foliations is based on an
observation about the methods of proof in foliation theory: a common technique is
to “choose two points on a leaf and a path (or holonomy element) between them”,
then look at value of the linear holonomy along the path. The leaves of a foliation on
a compact manifold are complete, so every such path can be replaced by a leafwise
geodesic segment. It becomes clear that the fundamental object for cocycle theory
is the collection of all such leafwise geodesic segments, which form a groupoid, the
geodesic flow along the leaves. Let V' denote the (2m + n — 1)}-manifold of unit
tangent vectors to the leaves of F, where F has dimension m and codimension n.
A typical point (z,v) € V consists of z € M, and a unit vector v tangent to the
leaf L, through x. We denote the flow by f; : V — V. The natural fibration
#(z,v) =2z, n:V — M lifts F to a foliation SF on V, again of codimension n, and
invariant under {f;}. The study of the ergodic theory and dynamics of this flow
vields a direct approach to the study of foliation dynamics and cocycles over F. In
support of this view, we observe that: the cocycles over F lift to cocycles over the
flow; the flow {f;} always has invariant probability measures when M is compact;
with respect to an ergodic probability measure v* for {f;}, one can use the usual
Lyapunov Theory for the lifted cocycle over the flow to obtain exponents, which are
functions of »*. When applied to the linear holonomy cocylce of a C*t*-foliation,
one obtains exponents for the infinitesimal transverse behavior of F along generic
leafwise geodesics, and when these exponents are not all zero there will also exist

transverse stable and unstable manifolds along the geodesic. The existence of such



hyperbolic behavior is a strong statement about the dynamics of a foliation, and
can be deduced simply from the asymptotic behavior of the linear holonomy of F.
Since the linear holonomy cocycle is the data used to construct secondary classes
for a foliation, this begins to yield a direct method of converting cohomological
invariants of a foliation into dynamical properties. In the present paper, we restrict
our attention to showing how the Lyapunov Exponent Theory can be applied to

obtain the two theorems cited above, and other related results.

We remark that the introduction of the leafwise geodesic flow solves the “ho-
momorphism problem” for Lyapunov Exponents over a foliation by “unramifying”
the problem over the unit tangent bundle. For each tangent vector (z,v) € V, we
get exponents of F, which can be thought of as maps R — R sending 1 to the
exponent, and depending upon (z,v). More precisely, the homomorphism (i.e., ex-
ponents) depend upon the choice of an ergodic invariant measure #* supported in
the w-limit set of the geodesic segment {f;(x,v)|t > 0}. The solution leaves unan-
swered the question of how these exponents depend upon the invariant measures v*
for a given F. Even more basic is how the set of such invariant measures depend
upon the geometry of F. It is clear that every transverse invariant measure p for
F gives rise to an invariant »* for {f;}, but the converse is false. The f;-invariant
measures are more properly thought of as the atoms of the F-harmonic measures on
M (cf. [H 10]). A good understanding of the set of measures v* for F, and how the
exponents depend upon them are very important aspects of the study of foliation
dynamics. A second related problem is that the above procedure gives a method of
approximating the lift of a cocycle to {f;} by the exponents along the orbits, but
the speed of the approximation will be a measurable function of (z,v) € V. One can
ask for some regularity in the speed of approximation with respect to (z,v) € V,
or the choice of measure v*. Such results would have applications to developing a

metric classification theory for amenable foliations, for example.

The last section of this paper, §8, lists ten problems which develop in the course

of the exposition, and are collected together with some additional remarks.

There is an Appendix in which a brief history of the development of the “hy-



perbolic” theory of foliations of dimension m > 1 is outlined, especially those topics
relevant to the task of developing relations between cohomological invariants of a
foliation (secondary classes) and its transverse dynamics. The viewpoint is strictly
that of the author, but the Appendix offers the reader some of the essential mo-
tivation for our approach to foliation ergodic theory, so seemed to have sufficient
usefulness to include it. It is impossible to be comprehensive in such a short af-
fair, and the author apologizes in advance for omissions or undue biases, and will

welcome comments of suggested inclusions.

We note here that of the many topics not included, some very important ones
where hyperbolicity is an (indirect) key factor, are: the rigidity theory of Lie group
actions developed by Zimmer (cf. [Z]); the theory of transverse G-structures for
foliations and their ergodic theory; the extensive literature on measurable folia-
tions and measurable groupoid theory, especially the works inspired by the Mackey
program [M]; the von Neuman algebras approach to classification developed by
Feldman-Moore, on which Moore has written an extensive survey [Mo 2]; and the
relations between zeta functions for flows and the topology of the ambient manifold,
especially the work developed by Franks and Ruelle, and recent works of Fried and
Pollicott.

These notes are an expanded treatment of a talk given at the Conference on
Smooth Ergodic Theory at College Park, MD during March 9-15, 1987, and of a
sequence of lectures given during April and May, 1987 at the Mathematical Institute,
Oxford. Complete proofs of the theorems stated here will appear in the papers {H7),
[H8]. Also, there are applications of the leafwise geodesic flow and the methods
developed here to the study of the spectral theory and cyclic cocycle theory of

leafwise elliptic differential operators on foliations. This is discussed in [H9].

Thanks are due to J. Heitsch, A. Katok and ¥. Ledrappier for helpful comments
and discussions during the developement of this work. The Mathematical Institute
at Oxford and the I. H. E. S. provided excellent environment for the development

of this work, and their hospitality is gratefully acknowledged.



§1. The leafwise geodesic flow*

Let M be a smooth (C°) manifold without boundary and let F be a codi-
mension r foliation of M, whose leaves are at least C%-submanifolds of M. Let m
denote the dimension of the leaves. Choose a Riemannian metric ¢ on T'M such
that ¢ has bounded geometry, and for each leaf L of F, the restriction g|L on T'L
defines a complete metric Dy : L x L — R*. For M compact, both hypotheses are
automatically satisfied for every g.

Let V C TF denote the bundle of unit vectors tangent to leaves of F, with
7 :V — M the natural fibration having fiber S™~!. The foliation F on M lifts to
a foliation denoted SF on V, where a typical leaf of SF is T1L, the unit tangent
bundle to a leaf L of F. Note that for each leaf L of F, ¢ restricts to a Riemannian
metric g|L on TL. Define the leafwise geodesic flow for (F,g), f: RxV — V, by

d
fto (Ia ’U) - (expz tov, Et' €XP; tvltzto)

where exp, : Ty L — L 1s the geodesic flow of L for g|L. Note that a typical orbit
{fi(z,v)]t € R} of this flow will be a geodesic in the leaf through z, but need not
be a geodesic for the metric g on TM.

§2. The contact structure of f,

Given a Riemannian manifold (L, ¢|L), L C M, the cotangent bundle 7*L has a
natural symplectic form §2; with associated contact from wy, such that dywp = Q.
The energy functional Hy, : T*L — R induces a Hamiltonian flow {f7 ,} on T*L
which leaves invariant the energy level sets Hi!(c), ¢ > 0. The contact form wy,
restricts to a contact form on each Hy!(c), so that wy A (dpwr)™ ! = Vol is a
volume form invariant under the flow {f; ,}. Moreover, the duality induced by the
metric g|L defines a natural diffeomorphism T?'L=H7!(1) and conjugates f;|L to

f1.+, conjugates wy, to a contact form denoted §z on T!L, and the volume form Vol

*Added in Proof: After this was written, the author received a preprint from
P. Walczak, “Dynamics of the geodesic flow for foliations”, which also introduces
the leafwise geodesic flow, then uses it to study metric properties of the leaves of
F, discussing problems complementary to the work in this paper.



to the Liouville measure, also denoted by Voly, on T*L. All of these statements
are completely standard for a Riemannian manifold (cf. [We]).

The leafwise geodesic flow {f;} defines a foliated contact flow, a notion which
we now make precise. A 1-form @ on V is a Leafwise contact form for F if for each
leaf L, the restriction & A (d8)™~1|T! is the volume form for the natural metric on
T'L. A flow {f;} on V is a foliated contact flow if { f,} preserves the leaves of F and
leaves invariant some leafwise contact form 6. In our case above, for each T'L C V,
we obtain a 1-form 8 from H*(1). Then using the metric on TV obtained from
g on TM, we extend the leafwise forms 8; to a 1-form on V by declaring € to
vanish on vectors perpendicular to SF. Similarly, the volume forms Voly extend

to a global (2m — 1)-form dv on V which satisfied

fi(dv|L) = dvlg.
dv|L = 0 A (d8)™|L = Voly.

Associated to the triple (V, f,8), one can define “foliated” symplectic geometry.
This allows the construction of the prequantization machinery of Kostant-Sorieau

in a foliated context, which for Riemannian foliations can be quantized [H9].

§3. Spectral theory of foliations

The ergodic theory and analysis of a foliation can be divided into two parts —
the unitary and the hyperbolic. We discuss here briefly the unitary aspects and some
notions of the specfrum of a foliation. The rest of this paper will then be concerned
with the hyperbolic aspects, leaving the development of the unitary theory to [H9].

The flow {f;} defines an action of R on several Banach algebras naturally
associated to F, and each of these actions can be used to define a spectrum. First,
consider the continuous functions on V', C(V'), equipped with the sup norm. For V
non-compact, one can also consider the algebra Co(V') of functions which vanish at
infinity. Then C(V) and Co(V') are complete Banach algebras, and the flow {f;}

induces a norm-preserving action

Cfe: C(V) = C(V).



The nature of the action {Cf:} is exactly tied-in with both the global dynamics
of {f:} transverse to the leaves of F, and the dynamics of the flows {f,|L} in the
leaves.

There is a second class of actions induced by {f:} which more closely reflects
the transverse dynamics of the flow and of F. Basic to defining these actions is
to introduce the convolution algebra C(V/F) of smooth, compactly supported
kernels on the leaves of SF. This algebra was introduced by A. Connes in his study
{Col}, [Co2] of the index theory of elliptic operators along the leaves of a foliation.
Let us recall how to define this algebra in an elementary way.

For U C V an open set and ¢ : U — (=1,1)2™*""1 3 coordinate system, we

say (U, ¢) is a foliation chart if for each y € (—1,1)™, the set (the plague for y)

Py(y) = 71 (-1, 1™ x {y})

is the connected component of the leaf of /U containing the point #~1(0,y). A
basic element k € C°(V/F) will be a kernel that has support in the “amalganated
product” (U, o) X # (U1, ¢1) of two foliation charts. More precisely, suppose points
29,21 € V are given which lie in a common leaf L of SF. Let (Up, ¢o) be a foliation
chart about 2, and (Uy,¢;) a chart about z;. In addition, suppose that there is

given a family of paths

v:[0,1] x(-1,1)* = V

satisfying:
(3.1) for each y € (—1,1)", v, : [0,1] — V is contained in the leaf of SF through
¢51(0,y) and 74(1) € 677({0} x (=1,1)").

(3.2) Yo(t) = 2: fort=0,1.
Then
(Uﬂa ‘160) XsF (UI:QSI) = {(r,x',y)|(:c, y) € Uo,:l?, € P¢‘1 (7!)(1))}'

Then a basic kernel £ is a complex-valued smooth function with compact support

in the variables (z,z’,y). Every element of C®(V/F) can then be, by definition,



written as a finite sum

for some N, where each k; is a basic kernel. Given two basic kernels ¥ and k' with
domains (U, ¢o) x 7 (Ur,¢1) and (Ug, ¢) xx (U1, 1), such that Uy N Uy # §, we

define their convolution to be

kxk'(z,2',y) ==/ k(z,z,y) X k(z,z',y) x Vol (2). z € Py(y). (3.3)

U, NU§ #£ D, then we set k*x k' = 0. The x-operation on k is defined by

k"‘(a:,:z:',y) = k(x’,:c,yj. (3.4)
Proposition 3.1. The flow {f:} induces a *-automorphism of the *-algebra C°(V/F).

Proof. The flow {f;} induces a product flow on V x V, which respects the equiv-
alence relation on V x V defined by F. It therefore maps basic kernels onto basic

kernels, where we define

Cfulk)(z,z,y) = k(fi(z), fu(2"), fly)).

The flow leaves Vol invariant, so the convolution product is invariant under C f;.
It is clear that Cf:(k*) = C fi(k)*. 0

The C*-algebra of the foliation SF is the algebra C*(V/F) obtained by com-
pleting C$°(V.F) with respect to the norm induced by the representations of the
smooth kernels on the leaves of . The von Neuman algebra of SF, W*(V/F), is
obtained by considering the weak-closure of C*(V/F) with respect to the standard
Lebesgue measure on V. For details, see [Col], [FS].

Corollary 3.2. The geodesic flow induces isometric *-automorphisms:

C*fo : CH(VF) = C*(V/F)
W* fy s WH(V/F) = W*(V/F).



The flow on C°(V/F) contains possibly more information than the induced
automorphisms of C*(V/F). The spectrum o(F) of C*(V/F) detects the “points”
of the “space” V/SF, which for an ergodic foliation will often reduce to a singleton
[F'S]. But for the algebra C'S°(V/F), its cyclic cohomology H*(C(V/F)) represents
the “de Rham cohomology” of M/F, and this can be highly non-trivial for all
foliations. The continuous family of automorphisms HY(C f;) will be constant in
t, so C'f, induces the identity on cyclic cohomology. None-the-less, the action of
the flow on cyclic cocycles will be highly non-trivial, and can be used to produce
local (cyclic) indices along periodic orbits of {f;}. These indices are related via a

Lefschetz formula to zeta functions for the foliation geodesic flow [H11], (cf, [Fr] )

§4. Topological and metric entropies

for foliations

In this section, we will describe the definitions and give some of the properties
of the various “entropies” associated to a foliation F on a (possibly non-compact)
manifold M without boundary. The key to defining these entropies is to use the
leafwise geodesic flow {f;} on V. The resulting toplogoical entropy A(M/F, f;) and
metric entropies h,(M/F, fi) will depend only upon F and f; up to homeomor-
phism, and the choice of a measure v, but not upon other choices. Moreover, the
topological entropy dominates the metric entropies (corresponding to Goodwyn’s
theorem for the case of flows), and the supremum of the metric entropies equals the
topological entropy (the foliation version of the Dinaberg-Goodman theorem for
flows). We can draw a number of conclusions about h(M/F, f;) from these basic
results.

A definition of topological entropy for a foliation F was given by Ghys-Langevin-
Walczak for compact manifolds M in [GLW]. We denote that entropy by hgrw(M/F).
Parts of the present work was motivated by discussions with J. Heitsch about this
entropy, and attempts to gain a better understanding of it. These authors use the
Bowen approach via (n, €)-separated sets, applied to a compact transversal space

to F. Here, “n” represents the distance between two points z and y on the same



leaf, measured by counting the least number of flow boxes crossed by a leafwise
path from z to y. This definition of entropy depends strongly upon the choice of
an open cover for M by foliation charts. In order to eliminate this ambiguity, we
define the distance between z and y to be the length of the shortest geodesic (in a
given homotopy class) from = to y. The resulting entropy is precisely h(M/F, f:),
where one can show the answer only depends upon the flow f; and the topological
structure of F. It follows that h(M/F, f:) and hgrw(M/F) either simultaneously
vanish or are positive. Thus, the results stated in this section solve a number of the
questions posed in [GLW].

Let h(V, f;) denote the ususal topological entropy for the flow {f,}. For M
compact, and hence V' compact, this is defined using either the open cover definition
of Adler-Konheim-McAndrew, or the Bowen-Dinaberg definition; but for M open

we use the latter definition.

Theorem 4.1. Let F be a C''-foliation on a smooth manifold without boundary
M, such that the leaves of F are C*-submanifolds of M. Let {f;} be a flow on
the sphere bundle V over M, where f; corresponds to the leafwise geodesic flow
for some Riemannian metric on TM and V is homeomorphic to the unit leafwise
tangent bundle T F. For M open, we also assume as given data, a quasi-isometry
class [g] of Riemannian metrics on TM. Then

(4.1.1) For each closed, F-saturated subset ) C M, there is a well-defined toplogical
entropy for F/Q, denoted by h(Q2/F, f), or R{(Q/F, g, [g]) for £ not compact.
(4.1.2) Let ¢ : V — V' be a homeomorphism such that ¢ maps the leaves of SF onto
the leaves of a foliation SF' lifted from F’ on M’, ¢ conjugates the flow {f;} into
the corresponding flow {f,}, and ¢ is a quasi-isometry with respect to the metrics
induced on V and V' by g and ¢'. Then h(M/F, fi) = H(M'/F', fi).

(4.1.3) For each closed F-satuared set  C M, define

h('}-/ﬂ) = h(Tlﬂsft) - h(ﬂ/}-, ft)

Then A{F /) is non-negative, and is called the leaf entropy for F in Q. 0



As described above, given a compact transversal I C M to F, we define the
topological entropy of F relative to K, a non-negative number h(M/F, fy,[g]; K),
using Bowen-Dinaberg approach and geodesic distance along leaves, and some choice
of quasi-isometry class of metric [¢] on a family of complete transversals to F. For
M compact, one can give a corresponding definition A({(M/F, fi; K) where K is a
complete transversal to F, using the minimum number of open sets needed for an
e-cover in the d,-metrics of Bowen, again measuring the transverse distortion of the
given metric ¢ in a geodesic distance n along leaves, Note that for M compact, the

choice of [g] does not effect the resulting entropy. We then set

h(M/F, fulg]) = sup h(M/F, fi, (g} K). (4.2)

As natural as the above definition of foliation entropy appears, there is a much
more flexible definition which is also quite natural. For the flow {f,} on V, one
can choose a complete set of transversals, denoted by {S;} which lie in flowboxes
both for the flow {f;} and the foliation SF, and each transversal S;, of dimension
(2m + n — 2}, has a codimension n foliation F; = SF|S;, with the quotient S;/F;
diffeomorphic to one of the transversals for 7 on M. The discrete groupoid of
{f¢} induced on the transversal spaces {S;} preserves this foliation, and thus one
can repeat the constructions of Adler-Konheim-McAndrew and Bowen-Dinaberg to
define entropy for {f;} which are relative to the foliations to the S;. That is, the
transversal distances between points will be measured by projecting them to the
T; and measuring there. One can show this yields precisely the same entropies as
defined on M. This definition, using {f,} “acting” on the quotients {S;/F;}, makes
the inequality, for M compact,

h(V, f) 2 h(M/F, fi)

obvious, so that the leaf entropy h(F, f;) is always non-negative. For M open, a
similar estimate holds once a choice [g] has been made.
The standard result for flows, that the supremum in (4.2) can be taken using

arbitrarily small compact transversals, also holds for foliations. Thus, the entropy



R(MJF, fi;[g]) measures the largest transverse exponential growth of F that can
be implemented in a transversal of some arbitrarily small size. In contrast, the
transvese linear holonomy cocylce of F measures the infinitesimal transverse ex-
ponential growth of F, which should be clearly related to the entropy by a mean-
value-tlhieorem, but this requires a transverse invariant measure to obtain “generic”
points. We discuss next the existence of such measures.

Recall that a transverse measure u for a foliation F on M assigns to each
compact transverse submanifold T C M to F a non-negative real number u{T). The
measure 1s F-invariant if given two compact transversals T and T related by the
property that each can be decomposed into disjoint, measurable pieces so that the
pleces of each related by “sliding” them along the leaves of F”, then u(T) = p(T").
A general foliation need not possess any transverse F-invariant measure, except the
trivial one i = 0. Observe that the transverse space for SF on V is equivalent, as
a groupoid under leaf holonony, with the transverse space of F on M, and thus
both either have non-trivial F-invariant measures, or both do not. However, for
M compact the foliation SF elways admits transverse {f;}-invariant measures; for
given a transverse measure y, the pull-back ff(n) is again transverse to SF, and
by the choice of a complete transversal to SF, one can suitably renormalize each
fi(p) so that the new measures {1;} have a convergent mean in ¢, which converges
to a transverse measure, v, invariant under {f,;}. If g is F-invariant, then v will

simply be a scalar multiple of y. We thus have:

Proposition 4.2. Let M be a compact manifold. Each transverse measure pu for
SF on V and choice of complete transversal T C V yields a transverse measure v
for SF which is {f:}-invariant, and assigns mass one to the transversal 7' O

Given the existence of { f; }-invariant measures for SF, it is then straightforward
to modify the definition of topological entropy for F, in terms of the flow {f;}, to

obtain definitions of metric entropy.

Theorem 4.3. Let M be a compact manifold, with foliation F. For each {f;}-

invariant transverse measure v for SF, there is a well-defined metric entropy



hu(M]F, fo). O

Ledrappier and Young have previously defined the metric entropy of a diffeo-
morphism relative to an invariant partition (§9, [LY] and remarked that this could
possibly have other applications. By extending their construction to flows, one
obtains an entropy on leaves complementary to the result above, giving a metric
entropy model of the foliation leafwise topological entropy.

Fix a complete transversal T C V to SF, then introduce the cone M(f;,T)
of {f;}-invariant transverse measures for SF such that T has total mass one. Let
Me(fi,T) denote the subset of ergodic measures. Both sets are non-empty by
Proposition 4.2. The following extensions of the upper estimation of metric entropy

by Goodwyn and the supremum theorem of Dinaberg-Goodman hold:

Theorem 4.4. Let M be a compact manifold and F a C*-foliation of M with C?
leaves. For each romplete transversal T C M to F and v € M( f;,T),

ho(MJF, f) S h(M/F, fi). (4.3)
Moreover,
supremum h,(M/F, fi) = h(M/F, fi). (4.4)
vEM(f,T)
a

The proof of {4.3) uses the “open-covers” definition of topological entropy, and
follows the method of proof given in §7.3 of Walters [Walt] for this estimate with
flows. The proof of (4.4) uses the Bowen-Dinaberg definition of topological entropy
and the construction of elements of M( f;, T) from long pieces of orbits of f;, and
again the proof of (4.4) for flows given by Walters adapts easily to foliations.

The supremum principle (4.4) can be used to prove a number of qualitative
properties of the topological entropy. For example, we say a leaf L of is non-
wandering if for each point z € L and each open ball B{z,¢) about z in M, the
intersection L N B(x,€) contains an infinite number of connected components. The
union of the wandering leaves of F is denoted by Q(F), and its complement consists

of the proper leaves, The set of proper leaves is Lebesgue measurable, so the same



holds for Q(F). Note that Q(SF) = #7(Q(F)). A transverse measure v for SF
is non-wandering if v(QF)NT) = v(T) for all transversals T to SF. Denote by
M fr, T) the subset of M( f,, T) of non-wandering measures. One then deduces
from (4.4) the

Corollary 4.5. Let M be compact. Then

hM/F, fi) = supremum h,(M/F, fi).
UE-Vlnw(fz.T)

If every leaf of F is proper, then we have Q(SF) = 1, so in particular:

Corollary 4.6. Let M be compact and suppose that every leaf of F is a proper.
Then for all leafiise geodesic flows { f,}. the topological entropy h(M/F, f,) is zero.
a

We conclude this discussion with a remark on other definttions of metric en-
tropy. As mentioned in the Introduction, Statistical Mechanics provides physically-
motivated definitions of metric entropy for amenable group actions, but these vanish
for C'-diffeomorphisms acting on a compact manifold, and detect fundamentally
different aspects of the dynamic system than the entropies of this section. For
an R-action on a C™-algebra or W*-algebra, equipped with an invariant weight,
Connes [Co3] has defined a metric entropy. Applying his construction to the flow
{C*f:} on C*(V/F) in §3, when F has a transverse invariant measure, we obtain a
metric entropy for 7. The relation between this entropy and ours is not clear, but

the Connes entropy seems to agree rather with the entropy to Statistical Mechanics
(cf. [CS)]).
§5. Lyapunov theory for foliations

Let T be a finitely generated group, (X, v) a probability space and p: I'x X —
X an ergodic action which preserves the measure v. A cocyle ¢ over p into a Lie

eroup G is a “homomorphism” ¢: ' x X — G i.e., ¢ satisfies

é(Aflam)";é(VQaﬂflm):é(A.(?OA/I,w)' (51)



For ¢ a measurable function and G C GL{N,R) a linear group, the problem of
constructing Lyapunov exponents for ¢ is to show there is an actual homomorphism
p1 2 I' — G so that for all € > 0 and generating sets I'g C T, there is a coboundary
F: X — G such that for all v € T'g,

In|é(v,z)  F(ya)™ - pi(v)~" - F(@)|lorvpy <6 ae z € X,

ForT = Z and G = GL(N,R), the Oseledec Theorem asserts that such a p; always
exists; but for other groups I’ the existence of such p; is often unknown (cf. [H5)).

For a foliation 7 on M, a cocycle ¢ over F will be a homomorphism
$:T(F)—= G

where I'{F) is the universal topological groupoid of F. An element consists of two
points a,y £ M on the same leaf and a homotopy class of paths from z to y in the

leaf of z. Composition is given by

(@ [a]) * (v, 2, [ee]) = (2,2, [e1 * c2]).

For a foliation, the problem of defining Lyapunov exponents for a given cocycle
¢ looks even more hopeless than in the group action case. However, if one views the
data p; : I' = GL(N,R) above as simply giving a sequence of elements in GL(N,R)
as one goes off to infinity in I', then the geodesic flow for F can be used to provide
a very satisfactory solution. Moreover, this solution can be applied to any group
action via the suspension construction, whenever I' is given as the fundamental
group of a compact manifold, B. If B has, moreover, a “canonical” Riemannian
metric and hence geodesic flow, then the resulting exponents will also be canonical.

We begin with an elementary observation.

Proposition 5.1. Let F be a foliation on M and ¢ : I'(F) — G a cocycle over
F. Then there is a canonical lift of ¢ to a cocycle S¢ over SF, and this induces a

cocycle over the flow {f:}:

Fo:RxV =G.



If ¢; and ¢2 are cohomologous, then F'¢; and F'¢g will also be cohomologous. O

For G = GL(N,R) and for each ergodic probability measure v* for {f;} acting
on V, we can apply the usual Oseledec Theorem (cf. [R}) to obtain the Lyapunov
exponents for the cocycle F'¢ over the flow {f;} with respect to the measure v*.

The flow f; is by diffeomorphisms, so we obtain:

Theorem 5.2. Let ¢ : I'(F) —» GL(N,R) be a measurable cocycle over F and
v € M(fe;T) an ergodic {f;}-invariant transverse measure on SF. Then for some
1 < 5 € N, there exists exponents A; < A2 < ... < A, and a filtration of RV,

depending measurably on z,
Ei(2)®...® E,(z)=R"Y
so that for v-a.e. z € V,
lim % In{|Fé(z, )] = A forall 0 v e E(z). (5.2)

0

The exponents {1, A2,...,As} and the measurable partition {E;(z)} will de-
pend upon the choice of v, in general, so a precise notation would better be {\;(v)}
and {E}(z)}; we adopt this notation only when it is necessary to emphasize the
dependence on v,

There is little necessary to say for the proof of this theorem, except that given
the measure v, one uses the invariant Liouville measure on leaves to obtain an
invariant measure, v*, on V for {f;}, and one applies the usual Oseledec Theorem
to an ergodic summand of v*.

For the case of a group action I'x X' — X, where X is a compact manifold and
' acts via C'-actions, F will be the foliation on the quotient (§ x X)/T obtained
from the foliation of B x X with leaves {§ x pt}. A leafwise geodesic in F then
corresponds precisely to a path in the universal cover ﬁ, so can truly be thought
of as geometrically going to infinity in I'. The exponents {Ay,..., Ay} are then the
“principal values” of the sought after homomorphism p, restricted to this path, and

these exist even when p; cannot.



Every C'-foliation F of codimension n has a natural cocycle Dh : T'(F) —
GL(n,R), called the linear holonomy cocycle, obtained by expression the natural
linear parallelism along leaves in terms of an orthonormal measurable framing of
the normal bundle @ of F. Applying Theorem 5.2 with ¢ = Dh, we conclude that
for each v € M (f:,T), there exists a canomnical set of exponents reflecting the
infinitesimal hyperbolic transverse behavior of F along v-a.e. leafwise geodesic in
the essential support of v. These exponents yield very strong qualitative behaviour
about F. For example, there is a foliation version of the Margulis upper estimate

for metric entropy:

Theorem 5.3. Let M be a compact manifold and F a C?-foliation of codimen-
sion n. For each ergodic fi-invariant measure v € M{f,,T), there are Lyapunov
exponents {A;(v),...,A;(v)} for s < n and
h(MIF, f)< Y Aw). (5.3)
A (1)>0
O
Strelcyn first proved a version of this type of result, and Theorem 5.3 can be thought
of as a specialization of the results in Appendix, Chapter V of (KS]. We thank
I, Ledrappier for pointing this out.

Corollary 5.4. Let F be a C'-foliation of a compact manifold M. If R(M/F, f;) >
0, then there exists an ergodic, non-wandering measure v € M(f,, T) such that some
Ai(v) > 0. a

Let G be a normed group, and F a foliation equipped with a Riemannian

metric on leaves. Then the growth rate of a cocycle ¢ over F is defined by:
gr(¢) = lim sup |[ Tk llé(z, v, [eD] (5.4)
lICII#D
where |[c]| is the infimum of the lengths of all C'! curves in the homotopy class [c].
For K C M a saturated subset, we also define

1
gr{¢, )= lim sup —
waes el

In|[é(z,y, [])|- (5.4')



Corollary 5.5. Let F be a C''-foliation of a compact manifold M. If A(M/F, fi) >
0, then gr(Dh) > 0. O

One of the standard problems in the ergodic theory for flows is to obtain
a converse to Corollary 5.5. That is, what hypotheses on an invariant measure
v and the Lyapunov exponents {A1(v),...,A,(v)} for Dh are sufficient to imply
hy(M/F, fi) > 07 To require that the exponents all be non-zero is certainly not
sufficient (cf. Introduction to [K]). However, with some extra hypotheses on the
measure, v, for example, converses do exist and this brings us to the role of Sackst-
eder’s Theorem in this paper, as discussed in the next section. We close this section
with a result that can be easily shown using the subadditivity of the norm In|f - ||

and weak * compactness of transverse measures.

Proposition 5.6. Let F be a C?-foliation of a compact manifold M. Assume that
the growth type of the linear holonomy is positive, gr(Dh) > 0. Then there exists
an ergodic ¥ € M(fi,T) for which \;(v) > 0 for some i. |

In the conclusion of this proposition, there is nothing to a priori prevent the
support of the measure v from being a closed orbit of the flow { f;}, or more generally

to be wandering.

§6. Application of Lyapunov exponents

We give some applications now of the Lyapunov exponent theory to the study
of foliation dynamics, which are based upon the following notion and subsequent
theorem. For (x,v) € V, denote by 4% (z,v) = {n{ fi(z,v))|0 < ¢ < oo} the geodesic
ray in the leaf L, through z, starting at = with velocity v. Then a stable transverse
manifold along y+(z,v) for the flow {f,} is an immersion of a strip, for some ¢ > 0

and 1 € p € n, with uniform subexponential estimates on the derivatives:
Tewi[0,00) X (—€ € =V (6.1)

such that

T'; . is uniformly transverse to SF (6.1.1)



7ol »(t,0) ==(fi(z,v)), 0<t< oo (6.1.2)

Fi(Tou(s,2) =T (s 4+t + e(s,t,2), Gz, 1, 2)) (6.1.3)

where €(s,¢,0) = 0, and G : [0,c0) % [0,00) X (—¢,€)? — (—¢,€)P are functions
defined by (6.1.3). Finally, there exist constants ¢o > 0 and ¢; < 0 so that

|Gz, t,2)ll £ ecp-exp(t-cp) (6.1.4)

The stable manifold theorem of Pesin [Pe], [R], [FHY] along with standard

methods of transversality combine to yield:

Theorem 6.2. Let F be a C'**-foliation of codimension n, for some 0 < a < 1.
Suppose {f;} admits an ergodic measure v € M( f;, T') for which A;(v) < 0. Then
for v-a.e. point (z,v) € V, there is a stable transverse manifold along % (z,v),
where p = dim E1(z,v) and for all § > 0, we can take ¢; = A (v) + 6. O

Combining Theorem 6.2 with Corollary 5.4, the observation that the flow {f}
is reversible and that v-a.e. the exponents for the reverse flow are the opposites of

those for {f:}, we obtain:

Theorem 6.3. Let F be a C't2-foliation of codimension n on a compact manifold
M. If h(M/F,f;) > 0, then there exists a non-wandering ergodic measure v €
M(fe, T) so that for v-a.e. {z,v) € V, there is a stable transverse manifold along
T {(x,v). O

A foliation F is said to be distal if for all transversals T to F and pairs z,y € T,
there is a constant ¢ = ¢(z,y) > 0so that if & : U — V is an element of the holonomy
of F restricted to T', for U,V C T with z,y € U, then distr(h(z), h(y)) =2 ¢. That
is, along any path in a leaf of F,the holonomy along this path does not attract any
nearby leaves. For example, if ' x X — X is a C'-action of a fundamental group
I’ = 7,(B) on a manifold X, then the suspension foliation F on M = (B x X)/T is
distal precisely when I' acts distally on X i.e., for all z,y € X, there is ¢(z,y} > 0
so that dist(y.z,v.y) > ¢(x,y) for all v € I'. It is an unseitled question whether a
distal foliation must have all secondary characteristic classes zero (cf. [HG6], [H4]).

However, by the above theorem, it is obvious that:



Corollary 6.4. Let F be a C'T?-foliation on a compact manifold M. If F is
distal, then A(M/F, fi) = 0 for all geodesic flows {f,}. Consequently, for every
ve M(fi,T), hy(M/F, f) =0 also. O

Our second application of Lyapunov exponents is to prove a result relating
entropy with resilient leaves for C'1*“-foliations of codimension one. The following
result was first proved in [GLW] for C®-foliations, using the structure theory of
codimension one foliations. On the other hand, the proof given below is very natural,
as it is the specialization to codimension one of a more general result described in

the next section.

Theorem 6.5. Let F be a C'T%-foliation of codimension one on a compact man-
ifold M, for some 0 < a < 1. If R(M/F, ft) > 0, then F has a resilient leaf with
linearly contracting holonomy. _ O

The proof of this involves one new notion, that of sliding a non-closed geodesic
arc along a leaf to produce elements of holonomy for a given fixed transversal. To
wit, by the hypothesis, there is a non-wandering ergodic v and a stable transverse
manifold T'(; .y for v-a.e. {z,v) € V. As n =1, we must have p = n so that I'; , is
a full transversal to SF. Because the measure v is non-wandering, there must exist
such an {xg,vg) for which 4§ = 4% (=, vo) intersects some flow box (U, ¢) infinitely
often, with an accumulation point in the interior of U. For ¢y sufficiently large, we
then set yo = m(fi,(20,v)), choose the transversal Ty = {I'4(0,2)| —¢ < z < €} and
by (6.1.4) we can assume that yy is on some plaque Py(y), for y = T'o(0, z), some
|z] < €/2 and that ¢o - exp(to - ¢1) is much smaller than e. This gives the situation of
figure 6.1. The leaves of FNU can be thought of as horizontal slices in the figure, so
that by sliding v along the plaque Py(y), we obtain hy : Ty —» T which is a linear
contraction. The map o will have a fixed-point zy € T with linearly contracting
holonomy, and thus the leaf L' through zg will have a holonomy loop with the
same property. However, nothing so far prevents L' from being a wandering leaf,
even compact, and so the positivity of h,(M/F, fi) enters. The map T'; , depends

measurably on the choice of (z,v) € V, so there is a set of positive v-measure, say



Figure 6.1

X(8), for which every (z,v) € X(§) has the image of I'y (0, (—¢, €)) a transverse arc
of length at least § > 0. Choose a point (z;,v1) € X(6) which is generic for v, and
thus the segment 77 (xy,v;) = 77 is not proper; i.e. is recurrent. Then construct
hi as above for this v, where ¢; is chosen large enough that z; is within §/10 of
z1. Choose a second generic point (29,ve) within §/2 distance of (x;,v1), and let
ho be the holonomy about z3. Then z; will be in the domain of h;, and z; will
be in the domain of hy. It follows that the pseudogroup on a common transversal
T3 containing both domains of h; and ks will generate an exceptional minimal set
with the orbits of z; and 2, being resilient. In fact, as the conjugates of hy or h,
are dense in the exceptional minimal set, there will be infinite number of periodic
orbits for the holonomy, and they grow exponentially fast in number as a function

of their word length. 0

The proof of Theorem 6.5 is of course very similar to standard arguments of
the dynamics of hyperbolic flows (cf. [K]). In the above, the leaves of the foliation
F are being used in place of a strong unstable foliation for {f:}. If {f;} were also
hyperbolic in the leaves of F (e.g., there was a metric of negative curvature on the
leaves) then the orbits of {f;} could be closed up to give closed leafwise geodesics
with transverse hyperbolicity. As this is not so important to us, we can close up
the orbits using only the slide-along-leaves method, which produces non-geodesic

closed loops.

The above theorem suggests that the proof of Sacksteder’s Theorem can be



viewed as a two-step process: First, given a C't%-foliation with an exceptional
minimal set K, so that KN7T is a Cantor set for each transversal T, the “geometry”
of the Cantor sets K NT can be used to obtain A(K/F, fr) > 0. Then the above
theorem, using Lyapunov exponents and Pesin stable manifold theory, yields the
rich dynamical behavior of F in K expected. These two steps c¢n be seen in all
proofs of the Sacksteder Theorem, but with the C? hypothesis usually imposed, the

uniformity of the estimates makes the geometry much simpler.

§7. Sufficient conditions for positive foliation entropy

In this section, we explore a number of sufficient conditions for a foliation to
have positive entropy. These will, in general, require F to be C'*%, and the linear
holonomy of F to have hyperbolicity on some non-wandering set. We begin with

codimension-one, and first recall a result whose proof is elementary (cf. [GLW]).

Proposition 7.1. Let F be a C*-foliation of codimension-one on a compact man-

ifold M. Suppose F has a resilient leaf, L (not necessarily linearly contracting).

Then h(K/F, fi) > 0, where K is the closure of L in M. o

Corollary 7.2, Let F be a C'T*-foliation of codimension-one on a compact man-
ifold M. If F has a resilient leaf L, then F also has a linearly contracting resilient

leaf L'. ]

Next, from the proof of Theorem 6.5 we can extract the following result.

Proposition 7.3. Let F be codimension-one, C1**-foliation on compact manifold
M. Suppose there exists a non-wandering ergodic measure v € M(f;,T) with
AM(v) < 0, and there exists a point (z,v) € V which is generic for v and the cocycle
FDh, and such that the closure y*(z,v) C Q(F). Then F has a linearly contracting
resilient leaf, and in particular, R(M/F, f;) > 0. O

Let K C M be an exceptional minimal set for F. Then each L C K has closure
all of K, hence K C §(F) and given a measure v € M(f;,T) supported on K, for
every generic point (z,v) of v, we have y*(z,v) C K C Q(F). This is the geometric

basis for our main result in codimension-one;



Theorem 7.4. Let F be a codimension-one, C!*®-foliation of a compact M.
Let K be an exceptional minimal set for F, and suppose gr(Dh,K) > 0. Then
MIJF, fi) >0, and F has a linearly contracting resilient leaf in K.

Proof. The norm Inj| || is additive on GL(1,R). The hypothesis gr(Dh,K) > 0
implies there are arbitrarily long geodesic arcs in K along which Dh grows at an
exponential rate. For a complete transversal T to F, the cocycle Dh restricted
to T is (cohomologous to a) continuous cocycle, so by the weak-* compactness of
probability measures on T and the Birkhoff Ergodic Theorem, there is a limit ergodic
measure v € M(f;,T) supported on I with A;(») > 0. By the remark preceding
the proposition, we can now apply Proposition 7.3 to conclude A(I/F, fi) > 0. O

The above theorem can be considered as an extension of Sacksteder’s Theorem
from C2- to C'*t*-foliations. For any exceptional minimal set K, the geometry of the
Cantor set K NT and the Mean-Value-Theorem imply that Dh is unbounded on K.
For the Denjoy counterexample, Dh has subexponential growth on the exceptional
set K, so the question becomes what additional geometric hypotheses will suffice
to force Dh to have some (non-uniform) exponential growth: i.e., when does there
exist C' < 0, sequences {z;} C K NT and holonomy elements {v; : U; = V;} where
x; € U; € T such that the derivatives satisfy

lvi(z;)] < exp.C - 7

where |v;| is the length of the leafwise geodesic from z; to v;(z;). Given such a
sequence of partial geometric contractions in X, the compactness of K, continuity
of the cocycle Dh, ergodicity and the Pesin regularity theory for stable manifolds
force K to be “geometric”; i.e., to be the closure of a leaf with linearly contracting
holonomy. It is exactly this sequence of ideas that this paper formalizes, both
to help gain insight into the meaning of the Sacksteder Theorem, and to explore
possible extensions to higher codimension, which we turn to now.

There are basically two types of hypotheses which are sufficient to guarantee

R(M/F, fi) is positive for F of codimension greater than one. The first involves



the notion of completely (transversally} hyperbolic measures and is a direct gener-
alization of Proposition 7.3, and extends to foliations the ideas of Katok for flows
from [K]. The second approach, and one which is uniquely applicable to the folia-
tion context, is to require the linear holonomy cocycle Dh be essentially hyperbolic.
This condition replaces the hypothesis that F'Dh have hyperbolic behavior on a
measure which is well-distributed with respect to the hyperbolicity, as seen in codi-
mension one above, with enough generators of the infinitesimal holonomy of F to
force the partially hyperbolic measures to have intersecting stable manifolds, and
hence again to generate homoclinic orbits and positive entropy. These ideas are
discussed in [H8].

An ergodic measure v € (f,T) is transversally hyperbolic if all exponents
Ai(v) # 0. Following Katok, we say an invariant measure v* for {f;} is hyperbolic if
all of the exponents for the flow {f;} on V are distinct from 0. The following result
is the foliated version of a result in [K]:

Theroem 7.5. Let F be C1*T%-foliation of codimension n. Suppose there exists
a non-wandering, transversally hyperbolic ergodic measure v € M(f;,T). Then
h(M/F, f1) > 0. Moreover, there exists a collection of closed loops {7} in the
leaves of F such that for each i, the holonomy h; along +; has hyperbolic linear

part, and the closure of the saturations of the v; contains support v:
support(v) C U;Sat sg(i)-

c

A foliation F is an SL(n,R)-foliation if there is a closed n-form dy on M

whose kernel is precisely the tangent distribution to F. For an SL{n, R)-foliation,
the cocycle Dh can be chosen to take values in SL(n,R).

Corollary 7.6. Let F be a C'**, SL(2, R)-foliation on a compact manifold M. If
there exists a non-wandering, ergodic measure v € M(f;, T) with Ai(v) < 0, then
the conclusions of Theorem 7.7 hold for F and v. O

The algebraic hull of the cocyle Dh is the smallest algebraicly closed subgroup
H C GL{n,R) for which Dh is cohomologous to a cocycle with values in H. As



we can allow cohomologies which are either measurable or continuous, there are
two possible algebraic hulls which result, denoted by H,, and H,, respectively. It
is a theorem of Zimmer that the algebraic hull exists [Z]. Note that H, C H,
and the equality can be strict. A subgroup H C GL(n,R) is amenable if, when
equipped with the induced topology, it is amenable as a topological group. The
maximal amenable subgroups of G L(n, R) have been classified by Moore [Mol] (see
also section 4 in [HK1]). We say that Dh is (measurably) essentially hyperbolic if
the algebraic hull H; (or H,,) is not amenable.

Recall that for a point z € M, the fundamental group of the leaf L, through
z can be identified with m1(L;,z) ~ {(z,x,[c]) € T(F)}. The restriction of Dh to
this subgroup is called the linear holonomy homomorphism for L, based at z. We

say L, has hyperbolic linear holonomy if the algebraic hull of the image of
Dh:m(Lg,z) = GL(n,R)

is not amenable. Our last theorem is then an extension Theorem 1 of [H2] to this

context.

Theorem 7.7, Let F be a C'**-foliatiion of a (possibly open) manifold M. If F
has a leaf with hyperbolic linear holonomy, then h(M/F, fi) > 0. O

§8. Problems, questions and final comments

We gather here some of the problems, questions or conjectures which arose from
the text. These fall naturally into two classes: Those asking whether some property
or area of research for flows can be extended to the context of the geodesic flow of
a foliation (and of which we give only a small sampling of the possible questions),
and those problems based on relating the ergodic theory of the geodesic flow with
other areas in the study of foliations, especially the continuation of the program
developed in [D}, [CC35], [H1], [HH], [H1], [H2], [H4], [HK1].

For a classical dynamical system, a basic problem is to find sufficient conditions
for the flow to be ergodic. As discussed in the talks by Katok and also Burns-Gerber

at this conference, this was one of the original motivations for the development of



the Pesin Theory, to be applied to the Billiards Problem. For foliations, we can

pose the more modest:

Problem 8.1. Given an ergodic, F-invariant transverse measure g for 7 on M,
find conditions on the linear holonomy cocycle Dk which are sufficient to imply u
is absolutely continuous with respect to Lebesgue measure on transversals. What
hypotheses on Dh are sufficient to imply that M has a countable decomposition
into ergodic, F-saturated measurable sets?

The Smale program for the study of differentiable dynamics [Sm] focused atten-
tion on the non-wandering set Q of a flow, and especially on transversally hyperbolic

behavior along orbits in Q.

Problem 8.2. Carry over to (F) the ideas associated to the non-wandering set
of a flow. Can sufficient hyperbolicity hypotheses on Dh near Q(F) be formulated
to deduce a structure theory for foliations, parallel to the theory for Axiom A flows?

The tests for positive entropy developed in section 7 relied on the construction
of hyperbolic closed loops in the leaf holonomy. The Bowen-Dinaburg definition of
topological entropy of F suggests that the entropy can be estimated by counting
the growth of closed elements in holonomy, and for hyperbolic measures, a more

precise estimate along the lines found by Katok [K] may be possible:

Problem 8.3. Find a formula estimating h, (M /F, f;) with the growth rate in the
number of closed loops with hyperbolic holonomy, for v 2 hyperbolic non-wandering
measure.

The estimate of foliation entropy from above, (5.3) is valid for C'-foliations.
Estimates of flow topological entropy from below by exponents are much more
delicate and require a C1*® hypothesis, along with regularity assumptions on the
invariant measure v*. F. Ledrappier and L.-S. Young have characterized those
measures for which the entropy estimate (5.3) is equality {LY]. In a second paper,

they also established that for any ergodic measure v* with exponents {A;(v*)},



there i1s a very precise formula
hoe(f) = 3 Mi(0™) - 1l*) (8.1)
i=1

where «;(v*) is the “Hausdorff dimension of v* in the direction of the subspace

E’"” sothat 0 < 1;(v*) < dm EY".

Question 8.4. Can the Ledrappier-Young formula (8.1) be generalized to the met-
ric entropies of foliations? That is, given an ergodic v € M(f, T), is there a well-
defined notion of transverse Hausdorff dimension for v, say -;(v), so that (8.1)
holds?

One expects that an affirmative answer to Question 8.4 would give revealing
insight into foliation structure, and that the dimension functions +v; : M (f:,T) —
[0, 0} contain a great deal of information. It is also interesting to note that as the
authors introduce in §9 of [LY,II} an “entropy for a flow conditionec to a foliation”,
a solution to the above question may simply involve “reconditioning” the techniques
used by Ledrappier and Young.

We turn now to questions arising from open problems in foliation theory. First,
we gave in §7 a C1*t®-version of the Sacksteder Theorem, with an hypothesis on the

linear holonomy cocycle on the exceptional set.

Conjecture 8.5. Let F be a C'*®-foliation of codimension one on a compact
manifold. If & is an exceptional minimal set for F, find geometric hypotheses on
the shape of K, or on F (besides being C?), which imply the hypotheses of Theorem
7.4 hold.

Proposition 7.1 was observed by Ghys, Langevin, Walczak who combined it
with Duminy’s Theorem to obtain that R(M/F, f;) = 0 implies GV (F) = 0. This
kind of problem, to show an ergodic hypothesis implies some secondary class van-
ishes, started with subexponential growth implies GV(F) = 0. Using the entropy
invariants, one can formulate a large number of similar questions. The basic idea
is that if some entropy vanishes, then the normal linear holonomy cocycle cannot

be “too hyperbolic”, so the appropriate Weil measure (or Godbillon measure for



codimension-one) must vanish. This will imply corresponding secondary classes

vanish, as discussed in [HH].

Problem 8.6. Suppose F is a C''*“-foliation on a compact manifold. If h(M/F, f,)
0, show that all of the Weil measures of F must vanish.

Problem 8.7. Suppose F is a C'*%-foliation on a compact manifold. Suppose
that Dh is measurably essentially hyperbolic, then show A(M/F, fi) # 0.

Note that by the results of [HK1}, a positive solution to 8.7 would imply a
positive solution to 8.6 while we feel reasonably certain that a result such as that
asked for in Problem 8.7 must hold, the only evidence in codimension greater than
one is Theorem 7.7. There is a related, less concrete problem to mention which
is however much more certain to have positive solutions. Recall that in the paper
[H], the author showed that subexponential growth of the Radon-Nikodyn cocycle
for a foliation of subexponential growth implies the Godbillon measure is zero.
The hypothesis on the cocycle is equivalent to the sum of the Lyapunov exponents

vanishing for a.e. v € M(f,,T).

Problem 8.8. Use the Lyapunov exponent theory of section 5§ and Pesin theory
of section 6 to find a natural class of hyperfinite foliations for which the Godbillon
measure must vanish. This “class” of foliations should contain those with subexpo-
nential growth, but must be considerably larger; for example, can a general criterion
be developed for all amenable foliations?

The original proof that topological entropy dominates metric entropy by Good-
wyn [Go] used a technique of representing the given flow into factor flows on in-
finite product spaces. If V has a covering by N elements, then for X = II*_X;,
X; ~ [0,1]"V thre is a flow on X and a map V — X preserving flows, so that the

entropies are estimated by entropies of an appropriate flow on X. We call such a

factor flow S(F).

Problem 8.9. Given a foliation F on compact A, what dynamical properties of

F can be derived from the Kakutani-equivalence class (the K-class) of the derived



flow S(F)?

Question 8.10. Let W*(V/F) be the von Neumann algebra of SF described in
section 3. How does the Murray-von Neumann type and algebraic structure of this
algebra (as surveyed in Moore [Mo2]) relate to:

(8.10.1) The Hausdorff dimension functions ; on M(f,,T)?

(8.10.2) The K-class of the factor flow S(F)?

(8.10.3) The values of the metric and topological entropies for F?



Appendix

A brief history of secondary classes of foliations and dynamics.

(A.1) The Anosov ancestry and Plante’s work.

The study of dynamics of flows and of foliations have both been profoundly
influenced by the special examples of Anosov flows [A] and their weak (strong)-
stable (unstable) foliations, and in particular those Anosov flows arising as the
geodesic flow for a compact manifold with strictly negative curvature. The strong
stable or unstable foliation of an Anosov flow has polynomial growth, while the
weak stable or unstable foliation has leaves of exponential growth. Plante studied
how the growth types of these foliations were related to the topology of the ambient
manifold in a number of papers (e.g. [P1]). For the geodesic flow on a sutface,
the strong stable foliation is given by the horocycle flow, which is uniquely ergodic
[BM] so that each leaf of this foliation defines an asymptotic measure which is
flow invariant. In related developments, Plante studied the existence of transverse
invariant measures for foliations, showed how subexponential growth of some leaf of
a foliation suffices to construct a transverse invariant measure [P2]. The measures
obtained represent generalized Poincaré Recurrence Cycles {cf. [RS]) but their
geometric description has remained effectively out of reach, except in the case of
codimension-one, C?-foliations (c¢f. [CC], [Hec]). Following the work of Plante, the
existence of subexponential growth leaves for a foliation has been associated with
some form of regular recurrent, non-hyperbolic behavior in the dynamics of the
foliation. An extension of foliation ¢ycles to more general contexts was developed

by Sullivan in [Su].

(A.2) The Codimension-one Theory.

The secondary classes of foliations were introduced by a number of researchers
in the period 1971-72 (cf. the discussion in [L2]) but the work which put the theory
into development was a note by Godbillon and Vey [GV], where they introduced
the class associated to this work, and also gave Roussarie’s calculation that the

Godbillon-Vey class was non-zero for the weak-stable foliation of the geodesic flow



for a compact surface with constant negative curvature. (The necessity that the cur-
vature be constant was removed 15 years later {HK2]). Later examples of Thurston
[T], Heitsch {He] and Rasmussen [Ra] all continued the theme that a foliation with
non-trivial Godbillon-Vey classes was built around an Anosov geodesic flow, or
which otherwise has transversally hyperbolic behavior as in the examples of Kamber
and Tondeur [KT2} and Yamato [Y]. In the period 1974-75, Moussu-Pelletier [MP]
and Sullivan {Sc| formulated a question which these examples all support: Must a
codimension-one C?-foliation on a compact manifold with non-trivial Godbillon-Vey

class have leaves with exponential growth?

Paraphrased, this asks whether the Godbillon-Vey class measures some type of
transverse hyperbolicity in a foliation, and if all leaves have subexponential growth,
then there is not enough of this quality present to give non-trivial classes. Essen-

tially, this paraphrasal can be shown to be true for all codimensions.

The first progress on the M-P-8 Question was obtained by M. Herman as a
consequence of his study of commuting diffeomorphisms of the circle [Her 1]. This
method was extended by Wallet [W], so that one knew that a codimension one,
C?-foliation F on a circle bundle over a surface has GV (F) = 0 if no leaf of F has
holonomy. Equivalently, F is obtained as the suspension of a group of commuting
diffeomorphism of the circle. This result was extended by Morita and Tsuboi [MT]
to show GV (F) = 0 for any foliation whose leaves have no holonomy. Note that it
is exactly here that Sacksteder’s Theorem enters for the first time, for a corollary of
his theorem is that such a foliation has a good transverse invariant measure, and the

vanishing of GV(F) is a consequence of analyzing the “regularity” of this measure
(cf. [Her 1}).

The next progress was made by Mizutani, Morita, Tsuboi [MMT], and also
by Cantwell, Conlon [CC2|, who showed that if F has almost no holonomy (i.e.,
the only leaves with holonomy are compact) then GV(F) = 0. Perhaps surpris-
ingly, it was these two works which represented the “crack in the dam”, for they
observed (implicitly) that the Godbillon-Vey invaraint could be localized to open

foliation-saturated sets. The development of this last idea went through successive,



more explicit elaborations in the works of Cantwell-Conlon [CC3], Nishimori {N],
Tsuchiya [Ts] Duminy-Sergiescu [DS], culminating in Duminy’s unpublished note
(D], where he introduced the Godbillon-Vey measure on B,(F), the Borel algebra
generated by the open saturated sets of a foliation of codimension one. Duminy’s
note was also distinguished for a secohd, crucial factor: he essentially used ergodic
theory techniques to estimate the values of the Godbillon-Vey measure. The closest
analogue, in the ergodic theory of flows, to Duminy’s method is the upper estima-
tion of topological entropy by the Lyapunov exponents. What Duminy established
is the result:

Theorem. (Duminy) Let F be a C?-foliation of codimension-one on a compact
manifold. If GV(F) # 0, then F must have a linearly contracting resilient leaf. O

That the conclusion of Sacksteder’s Theorem should arise here is not surprising,
for the method of proof invokes the Poincaré-Bendixson Theory of Cantwell-Conlon
and Hector. The hypothesis that no resilient leaf exists implies that no exceptional
minimal sets exist, and from this starting point Duminy deduces the result. A very
good recent treatment of the theorem has been published by Cantwell-Conlon [CC5],
who also showed that the theorem holds for M open as well. (The fact that the
methods also can be made to work for M open is analogous to the fact that topo-
logical entropy can be defined for M open by restricting to compact transversals).
A resilient leaf must have exponential growth; in fact, L. Conlon has pointed out
that a linearly contracting resilient leaf in a foliation forces the foliation to have an

open set of leaves with exponential growth. Thus, Duminy settled in a spectacular

way the M-P-S Question.

(A3) Theory in higher codimensions-examples.

The Poincaré-Bendixson Theory for codimension-one foliations depends at many
stages on the well-ordering of the line, so the methods are unapplicable to the study
of dynamics of foliations in higher codimension. Another phenomenon to be ac-
counted for when n > 1 is the super-abundance of examples arising from homotopy

theoretic constructions. Let us briefly describe this new situation. The classification



of foliations up to concordance of foliated microbundles was effected by A. Haefliger
who introduced the classifying spaces BI‘S;P), where r > 0 indicate the degree of
differentiablity (which for r > 1 can include a modulus of continuity) and n is the
codimension. A foliation F on M determines a map hr : M — BFS:). Conversely,
amap h : M — BT determines a foliated microbundle over M. For M open
without boundary, the data h plus an appropriate splitting of the tangent bundle
into TM = F & @ suffices to determine a foliation 7 on M such that Ax and h are
homotopic. This is a consequence of the Gromov-Phillips immersions theory. For
M compact, exactly the same conclusions hold, except now F is constructed using
Thurston’s extremely powerful but totally abstract realization theorems. For a dis-
cussion, see Chapter 4 of Lawson [L2]. Making these constructions concrete, even
for codimension-one foliations of a 3-manifold, is a truly daunting task. One can
view D. Gabai’s constructions of foliations on 3-manifolds as having implemented
some of the Thurston ideas but the topology of the ambient manifold quickly enters,
and the complexity of making the foliation constructed explicit becomes formidable
[G]. None-the-less, the wealth of information that Gabai has shown can be obtained
indicates that Thurstons’ methods are a rich vein.

The theorems cited above reduce the existence of foliations on a compact man-
ifold M to problems about the homotopy classes of maps of M into Br”. For
r > 2, there is a fairly extensive knowledge about non-trivial elements in w,(BFS."'))
(cf. {H3]). These results are all consequences of properties of the secondary charac-

teristic homomorphism
A(F): HY(WO,) — Hj (M)

where the algebra H*(WQ,) consists of Pontragin classes (of Q) up to degree 2n,
and for degrees 2m+1 to (n?+4n) consists of exotic secondary invariants (cf. Lawson
[L2]). For degrees greater than one, there are dual homotopy invariants, and also
tertiary exotic classes which measure non-triviality of homotopy classes of maps
M — BTV (cf. [HL]). The conclusion of these results if that for a given manifold

of dimension n 4+ m, where m > n, if some splitting condition holds on TM, then



the manifold often has uncountably many foliations, all with distinct secondary or
tertiary data, and thus are to be thought of as dynamically fundamentally different.
The problem is then how to quantify this last statement. One of the tests that
a good theorey of dynamics for codimension n > 1 must pass, is that it should
explain dynamically how these abstractly constructed foliations differ. Since one
can not realistically hope to decode the Thurston construction into explicit steps,
the other option which suggests itself is to study how the secondary invariants might
depend upon dynamical quantities, and to let this aspect of the problem guide the

development, hoping that a broad-based theory results.

(A4) Theory in higher codimension — some results.

One of the consequences of Plante’s work on the existence of transverse invari-
ant measures is the existence of a Ruelle-Sullivan current associated to the measure
[RS], or equivalently an asymptotic homology class when there is a leaf of subexpo-
nential growth. The author observed in 1982 that not only was there an asymptotic
homology class from the measure, but there were also exotic asymptotic classes,

given by a map

Xp : H*(g€n,0n) - HI(M;R)

where p denotes the invariant measure, the LHS is the relative Lie algebra co-
homology of the pair and the RHS compactly supported cohomology of M. The
value x,(1) = {cu)* is the Poincaré dual of the asymptotic homology class {c,).
By varying the measure y, one begins to formulate a dependence of x, on the er-
godic structure of F. With the appearance of Duminy’s work, it became clear his
Godbillon measure generzalized into a framework incorporating the maps x, above,
the secondary classes of foliations, the leaf classes of foliations and most other sec-
ondary data for F. This was carried out in the papers [HH], [HK1], [H4], where
the Weil measures were defined and basic properties outlined. The technical idea
for the Weil measures, to isolate in the construction of secondary classes the role
played by the transgression factor, has in fact been implicit in earlier works which

studied secondary classes via a spectral sequence associated to filtrations of WO,,.



This kind of construction was most clearly stated by {amber-Tondeur (Chapter 5,
[KT1]). However, these formal constructions had to wait until Duminy’s observa-
tion that they could be made effective by using two sets of connection data, one to
calculate the Chern data {(and which will be held fixed) and the other to calculate
the transgression data. It was this freedom-of-choice for the second connection that
Duminy used to prove his theorem in codimension-one. The final technical result
in this direction is that the value of the transgression opeartors, i.e. the Weil mea-
sures, 15 a function only of the measurable cohomology class of the linear holonomy
cocycle. For the Godbillon measure, this is shown in [H4]; for general Weil mea-
sures associated to cocycles with values in GL(n,R), this is shown in [HK1]. Thus
these Weil measures are exactly the sort of dynamical invariants of foliations or
pseudogroups envisioned by Mackey [M].

In addition to Duminy’s Theorem, the Weil measure techniques have been
applied to obtain two results which are valid for any codimension. The first is a

solution of the M-P-§ Question for all codimension, found in Spring 1984.

Theorem. [H4]. Let F be a C%-foliation of codimension n on a manifold M without
boundary. Suppose that there is a Riemannian metric on M for which a.e. leaf of
F has subexponential growth. Then the map A(F) is zero in degree {(2n+1). That
is,all Godbillon-Vey classes of F vanish. Moreover, all generalized Godbillon-Vey
classes in degrees > 2n + 1 also vanish (cf. section 2, [HK1]).

The next result is a tremendously broader statement involving not growth of
leaves, but a purely measure-theoretic property of the foliation. We say that F is
amenable if the equivalence relation induced on M by F is amenable. In Fall, 1983,
the author and A. Katok proved the following:

Theorem. [HK1]. Let F be a C?-foliation of codimension n on a manifold M
without boundary. If F is amenable, then the map A(F) vanishes on all residual
secondary classes of degree > 2m + 1.

For the motivation and history of this particular result, the reader is referred

to the Introduction of [HI1].



Both of the above theorems are proved by establishing that the linear holon-
omy cocycle has non-hyperbolic behavior, and then using ideas from geometry and
Lyapunov adapted metric techniques to prove that the behavior is uniform enough
to force the appropriate Weil measures to vanish. As such, they do not begin to
address the question of what ezactly does it mean in terms of the dynamics of F to
have non-trivial secondary classes. To date, we only know that the linear holonomy
cocycle or the leaves of F have some hyperbolicity. In order to begin the quantifica-
tion of this hyperbolicity, we introduce the Lyapunov exponents of a foliation and
the metric entropies. However, the reader will clearly see in problems 8.4 to 8.10
the expressed hope that a more precise theory of dynamics of foliations will result

from the methods of this paper.

This survey will conclude with three further notes, First, as an appplication of
the cyelic cohomology theory of foliations, Connes showed in [Co4] that if the von
Neumann algebra W*(M/F) of a foliation has Murray-von Neumann type II]y and
the flow of weights has no invariant measure, then GV(JF) = 0. This result should
have a direct dynamical systems proof. It also illustrates that the von Neumann
algebra W*(M/F) is a very rich invariant of F, and another test of a good theory of
foliation dynamics would be to illucidate how the internal properties of W*(M/F)
reflect the global dynamics of F.

The second result to mention is the observation by Ghys that Proposition 7.1
combined with Duminy’s theorem implies that if R(M/F, f;) = 0, then GV(F) =0
in codimension-one. Such a result indicates that the topological entropy is measur-
ing some of the same hyperbolicity which goes into making GV (F) # 0. It would be
very interesting to have a direct proof of this remark, which could be generalized to
arbitrary codimension. The implication that GV(F) # 0 forces hA(M/F, f;) > 0 sug-
gests that there may be further dynamical implications of non-vanishing secondary
classes, which the various foliation entropies and Hausdorff dimension functions on
M(ft,T) can begin to quantify.

Finally, the “naive distortion lemma” that is the key to the proof of Sack-

steder’s theorem has a second derivative counterpart based on the Schwartzian



derivative. This “sophisticated distortion lemma” is equally the key for the study
of a number of properties of C?-dimension-one dynamical systems: period doubling
maps, Feigenbaum eigenvalues and the asymptotic behavior of C%-maps (cf. [La)).
Sullivan has suggested that for C?-foliations of codimension-one (equivalently, com-
pactly generated C*-pseudogroups on the line), the Schwartzian distortion lemma,
may have applications to studying the dynamics of the foliation near exceptional
minimal sets and resilient leaves. This is exactly the area where the conventional
Poincare-Bendixson analysis breaks off, so that the ideas used in the study of period-
doubling maps could provide the key to new classification theorems for hyperbolic
C*-foliations in codimension-one, giving another direction in which the Sacksteder

theorem can be extended.
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