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HOMOTOPY CHARACTERISTIC CLASSES
OF FOLIATIONS

BY

S. HUrRDER! AND D. LEHMANN?

1. Introduction

The main point of this paper is to use minimal model theory to define new,
higher order cohomology invariants of concordance classes of foliations, and
then to apply these to establish the existence of uncountable families of
distinct foliations on a much wider class of manifolds than previously had
been shown. In some sense, this work can be considered as a sequel to the
earlier paper [H2] of the first author.

Let & be a smooth (i.e., C*) foliation on a manifold V' without boundary.
Let fg: WO, » Qpp(V) denote the characteristic homomorphism of &
(e.g., see [B] or [KT]), where we define the differential graded commutative
R-algebra (dgca)

W, = A(hy, hy,... k) ® Rlcy, ¢y, ,¢,]/(deg > 2q)
(deg h; = 2i — 1, deg ¢; = 2i, dh; = c;), and WO, denotes the subalgebra
WO, = A(hy, hs,...,h,) ® Rlcy,cy,...,¢,]/(deg > 2q)

with ¢’ the largest odd integer < g. The construction of fs depends upon
the choice of a Bott connection and of a connection preserving some metric
on the normal bundle O to %. The induced map in cohomology is easily
shown to be independent of this choice, and to even depend only on the
concordance class of %. When the bundle Q admits a framing, or paralleliza-
tion, denoted by s, then there is also defined a map of dgca’s, fg
W, = Qp(V), which induces a map in cohomology f& ; depending only on
the concordance class of % and the homotopy class [s] of s. Note that the

map f& . will, in general, vary with the choice of [s] (which was a key point
in the paper [H3).
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This paper is based on the following remark, which is a strong refinement
of the above discussion: the homotopy class of f is a well-defined invariant
of the concordance class of %. More precisely, let p,: #0, — WO, denote a
quasi-isomorphism of a minimal model for WO,. Similarly, let p,: .#, = W,
denote the minimal model for W,.

LemMma 1. (a) The homotopy class of fg° p,: #O, = Qpp(V) in the set
of dgca-morphisms from .#0, to Qp z(V) is well defined, and depends only on
the concordance class of & in the set of smooth foliations of codimension q.

(b) If & admits a framing, s, on the normal bundle Q, then the homotopy
class of fg ;o p,: My — Qpp(V) is similarly well defined and depends only on
the framed concordance class of F in the set of smooth foliations of codimen-
sion q with framed normal bundle.

In this paper, we assume that V' is a connected manifold, and all algebras,
A, are connected; that is H%( A4) = R.

The proof of Lemma 1 is elementary, and exactly parallel to that of
Theorem 2.11 of [H1]. (For completeness, we give a proof in §2 below.) A key
point in the first author’s Thesis [H4] was that one should regard the
homotopy class [fg°p,] in [.£0,, Qpe(V)] as a fundamental differential
invariant of a foliation. The difficulty with this invariant is that its calculation
may be extremely laborious, and so one considers approximations derived
from it. For example, the morphism f& is obtained by considering the
induced map on cohomology. The dual homotopy invariants for & are
obtained by considering the induced map between the indecomposable
elements of .#0, and those of a minimal model .#,, for Qpr(V). As these
invariants play a key role in our examples, we elaborate upon this remark. By
Theorem C of §2 below, there is a one-to-one correspondence between
[.#0,, #,] and [.£0,, Q,(V)], with suitable hypothesis on V. Let

Mfg: MOy > Ay

denote a lift of fgp,. Let A*= Ker(e: 4 — R) denote the augmentation
ideal. Let Q denote the functor which associates to a connected dgca A its

space of indecomposables: Q4 = 4 /(A*)?. Then the dual homotopy map is
by definition

hy= Q(Afy): m(WO,) = (V).

The justification for introducing the notation =*(WO,) = Q.#0, and
w*(V) = Q.#,, follows from Theorem A of §2.

In this paper we will construct a third approximation to the invariant
[f& ° p,] by considering the induced maps on the Postnikov k-invariants of
the model .#0,. This third approximation has the advantage that it produces
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cohomology classes which can be nontrivial in degrees greater than 2q + q2,
unlike the map f&, and takes advantage of the enormous number of
invariants in the dual homotopy spaces 7?(WO,). As is usual for higher
order homotopy operations, our tertiary invariants are only well defined for
foliations satisfying an additional hypothesis on their primary and secondary
characteristic classes, but these restrictions are stable under concordance, so
that we obtain new cohomology concordance invariants for foliations.

The construction of the tertiary invariants is given in §§3 and 4, while §2
contains preliminary material. Then in §§5, 6, 7 and 8 we apply our invariants
to the study of existence of foliations. For example, we show that the 9-torus,
T?, has uncountably many distinct concordance classes of foliations, all of
whose primary, secondary and dual homotopy classes are trivial, but which
are distinguished by their tertiary classes. More generally, we give simple
conditions on the homotopy type of a manifold V' which are sufficient to
guarantee that if I/ has at least one codimension-g foliation, then V' has
many-parameter families of non-concordant foliations, detected only by the
tertiary invariants. These examples greatly extend the examples constructed
in §4 of [H2].

This work was begun during a visit by the first author to the Université de
Lille, I, in May 1986. Their hospitality and the partial support from the
C.N.R.S. is gratefully acknowledged.

2. Homotopy between dgca-morphisms

Let (.#, d_,) denote a minimal algebra over R in the sense of Sullivan [S1],
so that .#= AX is a free graded commutative algebra on a space X of
homogeneous elements. Let X” denote the subspace of elements of degree
n. We write d = d_, when there is no danger of confusion. Moreover, d
satisfies the minimality condition

d: X" - (#(n)" )2

where .#(n) = A ,,.,X™ is the subalgebra generated by elements of degree
strictly less® than n. We will always assume that a dgc-algebra, (A4, d ),
satisfies H%(A4,d,) = R.

Let (R(¢#,dt),dg) denote the acyclic dgc-algebra, with ¢ a polynomial
variable of degree 0, dt an exterior variable of degree 1, and d(¢) = dt.

*This convention disagrees with the usual one in Sullivan’s theory (where .#(n) denotes
A <, X™) but will agree with the definition of the nth stage Y, of the Postnikov tower
according to Spanier, if we want .#(n) to be the model of Y, (see Theorem B below).
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Let (.#,d ,) and (A, d,) be dgc-algebras, and f,, f;: .#— A dgca-mor-
phisms. Then f,, and f, are homotopic if there exists a dgca-morphism F:
A — A ®R(t,dt) so that ijo F = f, and i, F = f,, where i,: R(¢,dt) - R
is evaluation at ¢ = z, and 4 ® R(¢, dt) has the differential d, ® 1 £ 1 ® dy.
Note that this tensor algebra also has an R(¢, dt)-linear “differential”, d, ® 1,
which by abuse of notation will again be denoted by d 4.

For a minimal dgc-algebra (.#, d_,), homotopy is an equivalence relation
on the set of dgc-morphisms {.#, A} from .# into a dgc-algebra (A, d,) (cf.
Corollary 10.7, [GM]). Let [.#, A] denote the set of homotopy classes.

For a dgc-algebra (A4, d ), define a linear map of degree —1 by setting:

[1: A®R(t,dt) > A,
0

flb®t"=0,

0

1 i1 _ (_1\bl_b -
fﬂb@zdt-( )rg, i20

where |b| indicates the degree of a homogeneous element b € 4. A homo-
topy F: .#— A ® R(¢,dt) induces a cochain contraction operator

ﬁsfoloF:./aA.

The basic feature of F is then (cf. 10.3 of [GMY)):
Lemma 2. F is a linear map of degree —1 such that
doF+Fod=f —f,.

The above constructions can also be done for dgc algebras over the
rationals Q, and with this algebraic notion of homotopy, there is a one-to-one
correspondence between the homotopy theory of 1-connected dgc-algebras of
finite type over Q and the rational homotopy types of 1-connected CW-com-
plexes of finite type (cf. [L], [S1], and also Chapters X, XI of [GM]). We will
need three results from this theory. Let Y denote a 1-connected topological
space. A Postnikov tower for Y is a sequence of CW-complexes {Y,|n > 1}

and maps

pn:Yn_)),n—l’ n>1’ fn:Y_)Y;l

such that p,° f, = f,_,, f, is an n-equivalence (i.e., it induces an isomor-
phism of homotopy groups, (f,),: m,(Y) — m,(Y,) for p < n), m,(Y,) = 0 for
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p=n,and p,.;: Y, , =Y, is a principal fibration of type (II,, n) for the
abelian group II, = m,(Y). We explain this third condition in more detail.
Let K(I1,,, n + 1) denote the Eilenberg-Maclane space for II,, then for each
n there is a characteristic map 6,: Y, - K(II,,n + 1) so that Y, , is
weak-homotopy equivalent to the homotopy fiber of 6,. The characteristic
element of the fibration is the class

k"tl=0%(i,) € H™(Y,,11,),

where i, € H"*(K(Il,, n + 1);I1,) is the canonical generator as a I1,-mod-
ule (cf. Chapter 8, [Sp).
We return to a minimal algebra .#, and recall that X" denotes a choice of

a spanning space for the indecomposable elements of degree ». That is, X"
defines a section of the surjection

A" (MM = (OM)"

and so can be identified with (QM)". The basic theorems of Sullivan’s
rational homotopy theory are then:

TueOREM A. Let Y be a 1-connected CW-complex of finite type, and # a
minimal model for a rational deRham model Ay of Y. Then there is a natural
isomorphism

(Q#)" = Hom(m,(Y), Q).
Thus, each element of X" naturally defines a group homomorphism on ,(Y).

THeoreM B. For Y and .# as above:

(@) #(n) is a minimal model for the n-th stage, Y,, of the Postnikov tower
of Y.

(b) The Hirsch extension corresponds to the localization over Q of the
principal fibration

K(Wn’n) - Y;n+1 flﬂ) Y,

Thus, H*(Y,; Q) = H*(#(n),d ,).
(c) The (n + 1)-st k-invariant k"*' € H"*'(Y,; m,) is identified with the
map d: X" — H"*'(.#(n)) via the isomorphisms
H"*(Y,;m,(Y) ® Q) = m,(Y) ® H"*!(4(n))
= Hom(X", H"*'(.#(n))).

Tueorem C. Let .# be a minimal dgc-algebra, and let ¢: A — B be a
dgca-morphism which induces isomorphisms on cohomology. Then the induced
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map of mapping spaces,
Py {/’A} - {#’B}’

induces a bijection of homotopy classes,

For proofs of these results, see either [L] or Chapters X, XI of [GM]. By
tensoring the above Q-vector spaces with R, we get corresponding statements
for real algebras. Let us conclude this section with a proof of Lemma 1. For a
manifold V, the natural inclusion

Qpr(V) @ R(t,dt) - Qpp(V X R)
R

is evidently an isomorphism on cohomology. It is a standard result of
characteristic class theory (cf. [B]) that for concordant foliations %, and %,
and any choice of Bott connections on their normal bundles, there is a Bott
connection on the normal bundle to the concordance foliation & on
V' X R extending the two. Thus, one obtains a homomorphism F": WO, —
Q (V' X R) whose restrictions to the slices V7 X {0} and V' X {1} satisfy

By Theorem C, fs °op, and fgop, determine the same class in
[.#0,, Qpr(V)], as was to be shown. For framed foliations, obviously the
same method works again for the algebra .#,.

3. Obstruction to the existence of a homotopy

In this section, we develop a characteristic class for the obstruction to
extending a partial homotopy between two dgca-morphisms. Our main result
gives a criterion for the vanishing of the indetermancy ideal for this obstruc-
tion, which will be used for the applications to foliation theory, developed in
the next section.

Let (.#, d_,) denote a minimal dgc-algebra over R, and f, f: # — & two
dgca-morphisms. A partial n-homotopy from f, to f, is a dgca-morphism F,:
A(n) > o/® R(t,dt) such that i, o F, = f,|.#(n) for z = 0, 1. From such, we
construct a degree 0, linear map

(3.1) Y=y X" >
y"(x) = fi(x) = fo(x) — E,(dx).
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An algebra .# is r-connected if .#(r + 1) = R, and one then has
d: X" > (M(n - r)+)2.

Thus, for .# r-connected, the map y” can be defined using a partial

(n — r)-homotopy from f, to f;. The basic properties of y” are given by the
next two results.

ProrosiTioN 1. (a) " takes values in the cocycles of degree n.

(b) " is functorial in .

(¢) Given a partial n-homotopy F,, it is both necessary and sufficient for the
existence of a partial (n + 1)-homotopy F, ., extending F, that the
cohomology classes [y™(x)] € H" (/) vanish for all x € X".

Proof. (a)
dy"(x) = df\(x) = dfy(x) — d(E,(dx))
=f1(dx) ‘fo(dx) - d(FAn(d’C))
= £,(d(dx)) =0
by Lemma 2.

(b) Let g: &/ — Z be a dgca-morphism. Then
g*(v"(x)) = g = filx) ~ g folx) = 8(F,(av))
=g fi(x) —g°fo(x) — (g ® 1o F,)" (dx),

where the last equality follows from the rule

1 1
®t"dt| = a) ® t™dt.
oo rma] - o

But this last expression above is clearly the obstruction associated to the
partial n-homotopy g < F,.

(©) If F,,, extending F, exists, then by Lemma 2, y"(x) is exact, and

more precisely y"(x) = d_,F,, (x). The converse is proved in proposition
104 of [GM]. O

Let (y")*: X" —» H"(&/) be the linear map obtained by setting
(vy)*(x) = [vy" (9],

its cohomology class. Via adjunction, (y”)* can also be viewed as an element
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of H"(«/; Hom(X"; R)) where it clearly corresponds to the desuspension of
the Postnikov k" *!-invariant for the lifting of the relative n-homotopy F,. By
part (c) above, (y")* is the obstruction to extending F,; but to show (y")*
obstructs the existence of any homotopy from f;, to f;, one must determine
to what extent (y")* depends upon the data F,. This is the customary
problem with applying Postnikov theory to obtain characteristic classes. For a
related discussion in the context of foliations, see [Shull. Our next result
enables us to overcome this problem.

A minimal algebra (.#,d_,) is said to be N-spherical if d_, vanishes on
#(N + 1). Equivalently, for some choice of the spaces {X"|1 <n < N},
each x € X" is closed. The rational Hurewicz Theorem states that an
r-connected minimal algebra is 2r-spherical. Another important example is
provided by the minimal model .#0, for WO,, which is 2g-spherical. The
algebra .#, is 4g-spherical.

Let £ be a subalgebra generated by closed homogeneous indecomposable
elements in a minimal algebra .#Z. Then define a subspace of .#,

P ={uec#d, uec P}.
For example, if .# is r-connected, then .#(3r) c .#(2r).

THEOREM 1. Let @ and @' be as above. Let f,, f,: A — o/ be given
dgca-morphisms.

(a) Suppose that a partial homotopy F: 9 — o/® R(t,dt) from f,|2 to
fil@ is given. Then there is a well-defined obstruction morphism y*:
Q' = H*(&Z). For u € Q' of degree N, the value of y*(u) in the quotient
space

(32)  HY¥()/(Image{fi*: 2(N) - H*(/)} A H*())

is independent of the choice of F. Moreover, for u € @' with du = 0, then
y*w) = @) — fgw).

Proof. The last conclusion is evident from the definition of y*(u). We
need a standard device from simplicial DeRahm theory for the proof of the
first statement. Let .#” denote a minimal dgc-algebra, and F, F": 4 —
A ® R(t,dt) denote two homotopies from f, to f,. Then there exists a
dgca-morphism

J: N —> @ R(r,dr) ® R(s,ds)
such that

Heo=co=F and Jlg oo0n=F"
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The map J is constructed via obstruction theory of minimal models, or can

sometimes be written down explicitly. Then let F” denote the restriction of J
to the opposite face, r + s = 1:

F'=1J|, 521t N = L@ R(t,dt).

t=gs

Define an operator, integration on the 2-simplex A,, by

j : o/® R(r,dr) ® R(s,ds) > o
A,

o (_1)|“|
fAz" resTdrds = T Ty ¢

and let it be zero for other monomials. Then let J = Ja,°J: A —> o7, alinear
map of degree —2.

LemmMa 3 (Simplicial Stokes’ Theorem). Let x € A be closed. Then
dJ(x) = F(x) — F'(x) + F"(x).
Proof. See §10 of [B]. O

We apply Lemma 3 to the maps F and F' to obtain for u € 2', y'(u) -
y(w) = F"(du) — d_,J(du), where F" is a partial homotopy restricted to

A= 3 from f; to f,. The theorem now follows from the next lemma by
taking .#'= @ and F = F"

Lemma 4. Let 4" be a minimal dgc-algebra with trivial differential, and F:

A = Z® R(t,dt) a homotopy from f: N — o to itself. Then for x € N of
degree n and decomposable,

(33) F(x)e Image{f*: @ Hi(N) - H*(M)} -H*(Z).

i<n

Proof. Write x = L,a;x,, where each x, is a product of closed indecom-
posable elements of .. It suffices to establish (3.3) for each F(x,). Let

X;=xy N Ax;, with x, of degree n, and indecomposable. Define
Uy, Uy € M@ R[t] by the rule

F(x) =f(x) +u + (=1)" v, dr.
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It follows from dF(x,) = 0 that

d
(34) @l = d oy Vs u(0) = u,(1) =0,

where u(z) represents evaluation at ¢ = z. Define an (n, — 1)-form w, € &/
by setting w, = [ v, dt and observe that d_ ,w, = 0 by (3.4). Define for each
X, an element of &/® R(r, dr) ® R(s, ds) by setting

J(xk) =f(xk) + d(s N frvk dt),
0
and observe that

(3.5) J(x)(1,8) = f(x;) +ds A wy,
J(x)(8,1) = f(xi) + uy + v, dt,
J(x)(0,5) =J(x,)(£,0) = 0.

Then let J(x;) =J(x)) A -+ AJ(x,), and observe that integration over r
and s yields

N 1,1
J = J € W
() = [ [ T ()
with degree n — 2. By Stokes’ Theorem, we have
A 1 1
do J(x)) = [T0xe)(8,1) = [T(x)(1,5)
0 0
s
=H(x;) = X £f(x) - Awe Ao flxy)
k=1

by (3.5). This last expression lies in the ideal of (3.3) as each w, is closed, so
the proof of Lemma 4 is complete. O

We draw an important Corollary of Theorem 1:

CoroLLARY 1. Let @ be a subalgebra generated by closed homogeneous
indecomposable elements of a minimal algebra .#, and let ' be as above. If F:
P - o/ ® R(t,dt) is a partial homotopy between two dgca-morphisms f, f;:
A — 2f such that the obstruction class [y] with values in the quotient in (3.2) is
non-zero, then there does not exist a homotopy defined on .# between f,, and f;.
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Proof. If a homotopy F: .#— o/® R(t, dt) exists between f, and f,, then
by restricting F to §, we obtain a characteristic map ¥* which is identically
zero by Proposition 1(c). However, the quotient classes [y] and [y] agree by
Theorem 1, implying [y] = 0 which contradicts our hypothesis. O

4. Tertiary classes for foliations

For the remainder of this paper, V' will denote a connected smooth
manifold without boundary and having the homotopy type of a finite CW
complex. Let Fol (V') denote the set of concordance classes of smooth (i.e.,
C*) codimension ¢ foliations on V, and Fol;“(V) the subset of foliations with
orientable normal bundle. In this section we introduce the subsets of Fol (V)
on which the tertiary homotopy invariants are defined. Our basic tools are
the Postnikov obstruction classes of §3, and the theory of Haefliger-
Gromov-Phillips-Thurston relating concordance classes of foliations on V' to
sets of homotopy classes of maps into classifying spaces.

Let BT, denote the Haefliger classifying space for smooth codimension-g
foliations [Hae]. A foliation % on V' determines a well-defined homotopy
class of maps cg: V' — BT, such that if two foliations are concordant, then
their classifying maps are homotopic. There is a natural map v: BI, - BO,
such that

vecg:V — BO,

classifies the normal bundle to %. One says that v classifies the universal
normal bundle on BT,. Given a map 7: V' - BO,, let {V, BT}, denote the
set of continuous maps c: V' — BT, for which v o ¢ is homotopic to 7, and
topologize the set with the usual function space topology. Similarly, let
Fol (V), denote the concordance classes of foliations whose normal bundles
are classified by a map homotopic to 7. Then the above discussion implies
there is a well-defined map Fol (V), — [V, BT ]..

Deep theorems of Gromov-Phillips (for V' open) and Thurston (for V
compact) provide a converse to the above discussion (cf. Chapter 4 of [La 1]).
We recall the precise result. Let T: V — BO,, classify the tangent bundle to
V, and suppose that T factors:

TX1

VvV — BO, X BO,,_, — BO,,

so that 7 determines a rank g-sub-bundle of TV. The main theorem is that if
there is a lifting c: V' — BT, so that v e ¢ = 7, then there is a foliation &, of
codimension g on V for which cg = c. Moreover, homotopic lifts yield

concordant foliations. Thus, for 7 determining a sub-bundle of TV, there is a
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bijection

(4.1) Fol (V). ~ [V, BT,] .
From (4.1) it follows that the task of (abstractly) constructing foliations on a
manifold V' can be broken into two steps:

(a) Produce a splitting (7, 1): V - BO, X BO,, _,

(b) Characterize the lifts c: V' — BT, of r.
The first step is a relatively easy problem about the differential topology of
V. The second step is traditionally solved via Postnikov tower constructions
(see the next section).

There is a special case of (4.1) worth noting. Suppose that TV contains a
rank-q trivial bundle &7 c TV; then we can take 7: V' — BO, to be the

constant map onto a basepoint * € BO,. In this case we use the notation
for (4.1)

(4.1) Fol (V) « = [V, BT,] «.

Let & be a subalgebra of .#0, generated by closed indecomposable
homogeneous elements. For ¢ € [V, BT[], let f.: WO, » (V') denote the
characteristic homomorphism for the foliation #. (This works even when

T = voc is not a sub-bundle of TV (cf. Chapter 3, [La 1]).) Then define the
subset

(42) [V,BT,9], = {ce[V,BL,], suwhthat (f,op,)*I2=0}.

and also let

[v,BT,|WO,] ={ce[V,BT,], suchthat f*=0}.

THEOREM 2. Let @ be as above, and let u € §'. That is, u is an indecom-

posable element of #0, with du € 3. Then there is a well-defined tertiary
characteristic class

y*(u): [V, BL,12] > H*(V:R)

which is functorial in V. If u is homogeneous of degree p, then y*(u) takes
values in H?(V; R). Moreover, y* induces a universal map

y: [V, BT,|2] » H*(V;Hom(Z';R)).
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Next, let 7 define a sub-bundle of TV. For ¢ € [V, BT,|2],, let y*(u)
denote the corresponding tertiary class in H*(J;R) and

v*: @ = H*(V;R)
the tertiary characteristic homomorphism for ¢ and 2'.

CoROLLARY 2. Let @ be as above and u € @'. Suppose that c,,c, €
[V, BT,| 2] satisfy yX(u) # y*(u). Then & and F, are not concordant.

Proof of Theorem 2. Given c: V — BT, with characteristic map f.-p,:
A0, - QUV), we define y*(w)lc] to be the Postnikov obstruction class
yZ(u) obtained from a homotopy, F, between f > p |2 and the zero map.
The homotopy F exists because @ is itself a minimal dgc-algebra (with trivial
differential) and (f.°p )*|2 is identically zero, so that a choice for each
indecomposable generator z; € 2 of a form w; € Q(V) with dw; = f, > p (z;)
determines a homotopy F from f;° p, to 0.

By Theorem 1 and our definition (4.2), the value of y*(u) does not depend
on the choice of F, for u homogeneous. Extend y* by linearity to all of 9’
to obtain the tertiary characteristic map y,. O

We next discuss how the Postnikov invariants yield tertiary classes for
framed codimension-g foliations. It is slightly more convenient to work with
BT, the classifying space of foliations with orientable normal bundles. Let
BT, denote the pr1n01pal SO,-fibration over BT associated to the universal
map v: BT — BSO,. It is well known that BI‘ is weak homotopy equivalent
to the homotopy fiber of » (cf. [H3]. For p: #€ [V, BT[], classifying a
foliation &, then a lift Cg: V — BI‘ classifies & with a ch01ce of framing of
the normal bundle Q.

There is a Puppe sequence of fibrations

(4.3) So, - BT, —» BT} — BSO,
inducing an exact sequence of sets
(4.4) [v.s0,] - [V,BT,] - [V,BT; ]« - *

Note that [V, SO, ] has a natural group structure, and acts on the next term in
the sequence. The exactness of (4.4) at [V, Bl" ] is the statement that the
orbits of this group action are precisely the 1nverse images of elements of
[V, BT ], . This is the homotopic formulation of the principle that [V, BT, 1,
counts concordance classes of foliations with trivial normal bundles, while
[V,qu] counts the homotopy classes of normally framed foliations, which are
parametrized by the homotopy gauge group [V, SO,]l. Thus, invariants for
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framed foliations may separate into distinct classes maps ¢: V — BI_'q, which
coalesce in [V, BT ¥],, but the coalescing is precisely determined by the
group [V, SO, ] and (4.4). These points are just elaborations on the meaning
of (4.4), but it is useful to make these “well known” facts precise, as they are
applied in §§7 and 8 below.

Recall that ¢: V — Bl_“q determines a dgca-morphism f.: W, - Q(V), and
we can apply the Postnikov invariants to the morphism

feopg: Hy = QV).
The same method of proof as used for Theorem 2 now yields:

THeOREM 3. Let 9 C . #, be a subalgebra generated by closed indecompos-
able homogeneous elements, and let u € §'. Then there is a well-defined tertiary
characteristic map for framed foliations

y*(u): [V, BT,|2] - H*(V;R)
which induces a universal map

y: [V, BT,|@] = H*(V;Hom(Z';R)). =

The algebra W, is 2g-connected, so we can take 2= .#,(4q + 1) and then
#,(6q + 1) € @'. Recall that 7?(W,) denotes the space of indecomposables
for .#, in degree p. With the obvious notation for maps vanishing on
H*(W,) and H?(W,), we obtain:

CoRrOLLARY 3. (a) Forall p < 6q, there is a well-defined tertiary map
y?: [V, BT, |H*(W,)| » H?(V; m?(W,))
(b) Forp = 4q + 1, there is a well-defined tertiary map
yratl, [V, qu|H2q+1(qu)] N H4q+1(V; 174"“(%)).
Corollaries 2 and 3 just indicate some of the possible choices for the

subalgebra §. Other choices will also be used in §7 below for which u has
degree p greater than the range of degrees for which H*(W,) is non-trivial.

5. Applications of tertiary classes-universal constructions

In this section, we give some abstract constructions of elements in [V, BT, ]..
For a manifold V' possessing a codimension-g foliation % with normal
bundle 7, sufficient conditions on V' are described which imply the existence
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of a map (to be defined below)
é,: m,(BT,) - [V,BT,] .

A key point is that the evaluation of the tertiary classes on the image of ¢,
can be reduced to a calculation of dual homotopy invariants, yielding the two
main results, Theorems 4 and 5, of this section.

First, consider the case when TV admits a rank-g trivial sub-bundle, so
that the constant map *: V' — BT, induces a codimension-q foliation %, on
V. Let I1?(V) = [V, §7] be the p-th cohomotopy group.

ProrosiTiON 2. Let V have the homotopy type of a finite CW complex X.
For p odd, the cohomology Hurewicz homomorphism

n°(V) - H?(V;Z)

is onto a subgroup of finite index. For p even and X of dimension less than 2p,
the same conclusion holds.

Proof. Let a € H?(V;Z). There is a classifying map g,: V — K(Z, p)
such that g}*(i,) = a, where i, is the canonical general of H?(K(Z, p),Z).
The inclusion of the p-cell, S — K(Z, p), induces a rational homotopy
equivalence for p odd, and is a (2p — 1)-equivalence for p even. We can
assume that g, is the trivial map on the (p — 1)-skeleton of X. The map g,
on the p-skeleton X7 lifts to a map g,: X? — S”. Since X has only finitely
many cells, and 7,(S?) is a finite torsion group for r > p, p odd, (and
2p — 1 > r > p for p even) a sufficiently high power of g,: X? — S7 lifts to
amap g, X - S? (cf. the proof of Lemma 1.2 of [H2].) Thus, each element
a € H?(V;Z) has a power in the image of the Hurewicz map, and the
proposition follows. O

We say a map o: V — S? is non-torsion if the class o*(i,) € H?(V;Z) is
not torsion.
For each o € I17(V), define

%, :m,(BT,) - [V, BT ] .
by setting, for a € m,(BT)),

2,(a): V5 s» 5 BT, 5 BTy
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This extends to a pairing
$:117(V) x m,(BT,) - [V, BT, ] «

For p odd and H?(V;Q) # 0, one knows that non-torsion o exist by
Proposition 2, and this becomes a very effective method of constructing
elements of [V, B[ 1,.

For the case when = is not homotopic to a constant, we must first assume
the existence of a map ¢ € [V, BT ]..

We say that V' has a p-splitting, o, if there exists o: V>V Vv S§?
satisfying:
(5.1a) o*(i,) € H?(V; Q) is non-trivial, where i, € H?(V Vv §7;Q) is the

non-zero integral class arising from the S?-summand.
(5.1b) The composition

D1°o:V-oVVSP>VVpt=V
is homotopic to the identity.
Given ¢ and a p-splitting, o, as above, there is a well-defined map
¢,: m,(BT,) - [V, BT]] ,
defined for.a € 'n-p(qu) to be the composition

(5.2) ¢(a): V- v v s? &Y% priv BT, Y Br.

q

It is only necessary to check that v o é (a) = 7, and this follows from (5.1b).

Note that if £ is a subalgebra generated by closed elements of degree less
than p, and ¢ €[V, BT |2],, then the image of ¢, will also lie in this
subset.

Remark 1. The customary abstract approach to calculating [V, BT,], is
to replace the map »: BT, — BSO, with a Postnikov tower approximation
(cf. Chapter 8, [SpD:

BIj—> Y, >Y,_,— Y - BSO,

such that 11m Y, is weak homotopy equivalent to BT, Then there is a

filtration with terms v,v,l. increasing to [V, BT,/ 1,, which is the E; ,-term
of a spectral sequence converging more generally to H*({V, BI‘*}) The
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differentials arise from the boundary maps in the fibrations
H*(V;m,(BT,)) = [V, K(m,(BT,),p)| = [V, Y] = [V.Y,].

Thus, one obtains natural candidates for elements in [V, B[], from the
fiber groups H?(V; (BF ). In general it is difficult to determme which
classes in these fiber groups live to E* in the spectral sequence. The idea of
introducing p-splittings is that we identify a family of classes in the fiber
groups which are known to persist to E* by the direct construction (5.2). O

We next study the relation between the classes in the image of (5.2) for a

given c, the tertiary classes for ¢ and the dual homotopy invariants

m*(WO0,) - m*(BT). For u € .#0,, let [u] € w?(WO,) denote its equiv-
alence class.

THEOREM 4. Let $ be as before, with all generators of degree less than p,
and let u € @'. Let c € [V, BT,|2], and suppose that a,B € m,(BIL,) are
given with

RH([u]) (i) # hH([u])(i,B8),
where i. BT, — BT,. Then for all p-splittings o of V,
Yé’:(a)(u) * ’Yét(ﬁ)(“) in HP(V;R).

In particular, ¢,(a) and ¢,(B) are not homotopic in [V, BT ],.

Proof. By the functoriality of the tertiary invariants, it will suffice to show
that yX, () and vX, z(u) € HP(V v SP;R) have distinct values when pro-
jected onto the HP(S?;R) factor. Again by functoriality, this is equivalent to
showing that y}*(«) and y3(u) € HP(S; R) have distinct values. To calculate
these y-invariants, we can assume the partial homotopy is the constant map,
for the minimal model .#,(p) is (p — 1)-connected. Thus, the only term
arising in the definition of y*(u) is [.#a(u)] € HP(S?; R). But this is exactly
h!(w) via the identification wP(SP) = H?(S?; R). Similarly for B8, and so by
hypothesis, y(u) = hl(u) # hj(w) = y3(w). O

Actually, Theorem 4 can be cast in a stronger form, which we give as a
corollary to the above proof. Let 2 C.#0O, be as before, and let {u;, ..., u}
C 2’ be indecomposable elements of degree p.Let i = (uy,...,u,), and let

R¥(@): w,(BT,) - R denote the evaluation of the correspondlng dual homo-
topy mvarlants
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CoroLLaRY 4. Let {uy,...,u,} be as above. Suppose that there exists a
p-splitting o of V, a class ¢ € [V, BT;| 2], and a subset

W(p,q) C wp(BI_‘q)

for which hX@)|W(p, q) is a bijection onto R®. Then the composition

7 (@)

W(p,q) ~ [V, BT,|2]. T H?(V;R°)

is a bijection. In particular, ¢, is injective on W(p, q) and y*(&) is surjective.

We formulate a version of Corollary 4 for maps into the classifying
space BI,.

THEOREM 5. Let 9 C .4, be a subalgebra generated by closed indecompos-
able homogeneous elements of degree less than p. Suppose that HP?(V; Q) is not
trivial, and for p even that in addition, V has the homotopy type of a CW
complex of dimension less than 2p. Let {u,,...,u} C @' be indecomposable
elements such that there exists a set W(p,q) C w,(BI,)) for which h¥@):
W(p, q) — R’ is a bijection. Then, for each o € II”(V) wzth non-trivial image
in H?(V; Q), there is an inclusion

%, :W(p,q) > [V, BT,|2] c [V, BT,].

Moreover, the evaluation of yP(&) on the image of %, in [V,Bf‘ql 21 is

faithful.

6. Examples in codimension one

In this and the next two sections, we give applications of the tertiary classes
to the construction of non-concordant foliations. The case of codimension-one
is most elementary, for all of the y-invariants are secondary classes corre-
sponding to multiples of the Godbillon-Vey class.

THEOREM 6. Let V have zero Euler characteristic, so that there exists a
non-vanishing vector field on V. Then for each class a € H*(V; Q) and real
number A € R, there exists a foliation & on V such that

f#(hic,) =A-a € H¥(V;R).
Proof. There exists an integral class 8 € H*(V; Z) and an integer m such

that a = (l/m) B in H*(V;Q). Let gg: V — K(Z;3) classify B. Then as in
§5, a multiple g,: V — K(Z;3) factors through the inclusion $3 — K(Z;3).
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Let a = p‘l(g"[;"(i3)) in H3(V;Q), then by results of Thurston one can
choose c: §* - BI{ for which f*(h;c) =p - A - [i,], where i; € H¥(S3;Z)
is a generator. Then fg= c° gz determines a codimension-one foliation as
desired. O

The above examples are the best possible using that p, surjects onto R. To
obtain more, for example that f*(h,c,;) € H*(V;R) can be arbitrary, one
must show that the map BT — K(R; 3) classifying the Godbillon-Vey class
admits a cross-section. For a further discussion, see [M].

7. Examples in higher codimension

For codimension two and above, the algebra .#0O, has great complexity
(cf. [HK], [Sh]), and there are many classes for which the tertiary construction
can be applied. Moreover, there are large families of indecomposable classes
in .#0, whose corresponding dual homotopy invariants define surjections of
w*(qu) onto real vector spaces. We first recall the data needed, then
describe examples.

Fact 1 (cf. [H2]). Let z, = h,c?, z, = hyc, denote the Vey basis for
H{WO,). For the vector Z = (z,, z,), let A(Z): H(BT,;Z) —» R? denote
evaluation on 5-cycles. Then composition with the Hurewicz homomorphism
# yields a surjection from 7s(BT,) onto R%:

— i 5
ms(BT,) — ms(BT,) ~2> Hy(BTy;Z) “3 R? - 0.

Moreover, there is a set W(5,2) C w5(BT,) on which A(Z)e &# o i, induces a
bijection onto R2.

The above result admits a generalization to all codimensions g > 2.
Fact 2 (cf. [H1), [H2]). There is a set
V,={z1,..., 2.y} CH*(WO,)
of linearly independent classes such that:
(@ r(g)=q.

(b) The corresponding vector-valued functional A(Z) on H, . (BT,;Z)
when restricted to the image of

=\ i ES
77'2q+1(qu) - "72q+1(BFq) - H2q+1(BFq;Z)
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is onto R"¥, Moreover, there is a subset
W(2q + 1,q) C m,,.4(BT,)

on which A(2)e 2 i, is a bijection onto R"?. O

The classes {zy, ..., z,;)} from Facts 1 and 2 have the important additional
property that each has the form h,c; where degree c; = 2g. Thus, the
products z;z; in WO, are identically zero. Choose indecomposable cocycles
{x} c.#0, such that p (x,) =z, Then for each 1 <i <j<r(q), there
exists an indecomposable homogeneous class u;; € .#0, of degree 4q + 1

such that

du;; = —x; A x; mod{p;),

where ( p;) denotes the ideal in .#0, generated by the even Chern classes.
Moreover, the terms in du;; containing a factor of the p, have as other
factors secondary classes from H*(WO,) (cf. [HK).

Fact 3 (cf. [H1]). For g = 2, set

1 _
s(q) = 7("((1)2 - "((I)), u= (ulz’u13""’ur(q)—l,r(q))'
Then evaluation of the dual homotopy classes
R () : myq.4(BT,) = R@

yields a surjection. Let W(4g + 1, ) denote a subset on which A*(%) restricts
to a bijection onto.

Before giving the more abstract systematic examples, let us consider the
case for T° from the introduction.

TueOREM 7.  For each trivial rank-2 bundle £* C T(T°®), there is a family of
codimension-2 foliations {Z,|A € R}, all of whose normal bundles are homo-

topic to this embedded subbundle, and for which:
(a) The secondary maps

fi¥: H*(WO,) - H*(T*;R)

are identically zero.
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(b) The dual homotopy classes
b (W0,) - m*(T°)

are identically zero.
(¢) The indecomposable u = u,, defines a tertiary invariant

yg (u) € H(T’;R) =R

which has the value A on ,, and hence the %, are pairwise non-con-
cordant.

Proof. Let a,: §° — BT, satisfy h'(u,,a,) = A € 7°(5°) = R, which
exists by Fact 3. Let o: T° — S° denote the map obtained by collapsing the
8-skeleton of T° to a point. Then clearly each ¢, = a,°0 €
[T°, BT,|H*(WO,)] and we evaluate y%(u) using functoriality and the
Hurewicz identification of y.(u) and A}, ([u]) to obtain (c). DO

In Theorem 7, we can replace T° by any manifold V' satisfying the
following condition: there exists a codimension 2 foliation % on V such that
f%=0 and h'>=0, and V admits a 9-splitting. For example, given any
compact orientable 7-manifold M,, and any other manifold W, then V =
82 X My, X W satisfies the conditions above. We leave it to the reader to
construct further examples in codimension two, and next consider the situa-
tion for codimension g > 2.

THEOREM 8. Suppose that either:
(a) There exists a codimension-q foliation & on V for which

f&: H*(WO,) - H*(V;R)
is zero, and there exists a (4q + 1)-splitting o of V
(b) TV contains a rank-q trivial subbundle and there exists a non-torsion
map o: V — $**1 (that is, H***'(V;Q) # 0). Then for each real vector
A = ();)) € R°D, there exists a codimension-q foliation %, 5 such that
Yy;_x(uij) = Ay 0*(igge1) € H(VR).
In particular, o determines an inclusion of sets

¢,:W(4g + 1,9) = R°@ - [V, BT, | = Fol,(V),

where T = vocg in case a) or T = * in case b).
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Proof. This follows from combining Fact 3 with Corollary 4 of §5. O

Note that in Theorem 8 case b), if we also assume that the map o:
V — §%*1 induces the trivial map on rational homotopy, then the dual
homotopy invariants of all the foliations %, 5 will be zero. If we require that
each aj: S4%! - BFq induces the zero map on secondary classes, then all
seoondary classes of 7, 5 also vanish. Again, it is easy to produce explicit
examples where this holds, the simplest examples are for V' = T? with p >
4q + 1.

For the classifying space Bf‘q of framed foliations, the homotopy perma-
nence principle (Corollary 6.10 of [H1]; see also the treatment of the
cohomology permanence principle in [H3]) yields many more secondary
classes from H*(W,) which detect spherical cycles in H >,<(qu; Z). A rather
complete list of the realizable variable classes is described in Remarks 2.4
and 2.9 of [H2].

We consider here just the case g = 3, and leave the general construction
for g = 3 to the reader. Consider the following elements in a Vey basis
for Wj:

z, = hc} of degree 7
z, = hycic, of degree 7
z3 = hyh,c?  of degree 10
z, = hyh,ycic, of degree 10.
In W;, all of these cocycles have pairwise trivial products, so that for lifts
{x1, x5, X3, x,} to .#;, there are indecomposable classes {u,;|1 <i <j <4}
with du,; = —x; A x;. Moreover, by Theorem 2.7b) of [H2], for 7, = (u,,),
Uy = (Uy3, Uyy, Ups, Uyy), D3 = (uy,) there are surjections
h'[D,]: m3(BT;) > R
h'[D,]: ms( BT;) - R
hi[0,]: mo(BT5) - R
Consider the case of U; = u,.
TueoreM 9. Let TV contain a trivial rank-3 subbundle, and suppose that

HY¥(V; Q) # 0. Then for each non-torsion o: V — S'° and real A € R, there is
a codimension-3 foliation &, , on V for which

Ygrm(u:m) = A - a*(iy) € H®(V;R).
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Thus, %, : m,o(BT3) - [V, BT,] has uncountable image. Moreover, Fol,(V)
contains an uncountable set of distinct concordance classes of foliations.

Proof. Theorem 5 and the given fact about the range of h*(us,)) on
19(BT’3) yields the first part of the claim. For the conclusion about Fol,(V),,
note that [V, BT ], is the quotient of [V, BT;] by the orbits of the group
[V, SO,]. As this latter group is countable, this second claim follows. Note
that if H*(V; Q) = 0, then [V, SO,] is a finite group, so that any measurable
structure on the set of maps in [V, BT;] constructed above will be preserved
into the quotient. O

Here again, if we assume that o induces 0 on dual homotopy, then neither
secondary classes nor dual homotopy classes are sufficient to detect the
elements of Fol;(V), produced in the proof of Theorem 9.

We conclude this section with the generalization of Theorem 6 to higher
codimension.

TueoreM 10. Suppose that V admits a codimension-q foliation &, classi-
fied by c: V = BT, with 7 = veoc. Let o be a (2q + 1)-splitting of V, and let
Py Vv St $29+1 denote the projection. Then

¢ RW =W(2q +1,q) » [V, BT,].

is injective. For each a € W(2q + 1,q), let F#, denote the foliation of V
corresponding to ¢,(a). Then the secondary classes of F, are given by

f£(2) =f£(2) + (pyo0)*(hL[2])
where we identify
hi[Z] € Hom(,,, (S24*"),R"@) = H29+!(S2+ 1, R"®),
and W(2q + 1, q) and Z are defined as in Fact 2.

TueoreM 11.  Suppose that there exists a rank-q trivial subbundle €7 C TV,
g>1 Lets={s...,s,} CH?** (V;Q) be a linearly independent set such
that each cup product s; U s; = 0,1 < i, j < a. Then for each choice of vector
(i) € R"D where 1 <i < a, there is a codimension-q foliation % 5. on V with
normal bundle homotopic to €7 C TV, and whose characteristic map satisfies

f.;;'x(zj) = g:l)‘j(i) © 8.

Proof. The hypothesis about the set § implies that there exists a map into
a bouquet, V' - V?_,K(Q,2q + 1), such that the ith canonical class in
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degree (2q + 1) pulls back to s;. Then the method of proof of Proposition 2
yields a map g: V — V ?_,529%! such that the ith-canonical integral genera-
tor of H27*1(§29*1; Q) pulls back to a non-zéro integral multiple n; - s;. For
each i, by Fact 2 we can choose a map a,: $29%! — Bf‘q for which

fX(2) = X(i) € H2+}(§2a+1;R@),
Then the classifying map c; ; for & 5 is defined to be the composition

a
Va, = i
v Vsxrt Z5 BT L. BT, O

i=1

Theorems 10 and 11 do not utilize the tertiary invariants, but rather
illustrate a second principle of this paper, that knowing the existence of
spherical cycles in BT, detected by secondary classes (or tertiary classes)
provides an access towards the calculation of the sets [V, Bl“q],, without
requiring the calculation of the spectral sequence of Remark 1 in Section 5.

8. Rigid tertiary classes

Two codimension-g foliations %, and %, on V are homotopic if there is a
smooth 1-parameter family of codimension-g foliations, {%,|0 < ¢ < 1} be-
tween them. The rigid secondary classes are precisely those which are a priori
invariant under homotopy, and are characterized as the image of the restric-
tion map

R, = image p*: H*(W,,,) > H*(W,)

in the case of framed foliations, where u: W, ; — W, is the natural restric-
tion map. In the papers [H1], [H2], examples were given of foliations with
non-trivial rigid classes. We discuss next rigid tertiary classes, and use them
to exhibit much larger families of foliated manifolds in high codimensions
with non-homotopic foliations. Moreover, these foliations can sometimes be
chosen to have homotopic tangential distributions, giving further examples
which “solve” Problem 3 of [La 2].

The rigid tertiary classes for framed foliations are constructed as follows.
Let {z),...,2z,} c W, be a cocycle basis for #,. For each 1<i, j<r,
choose u;; € .#, such that du,; = x; A x;, where p,(x,) = z; with x; closed.
Let &;; denote the subalgebra of .#, generated by the elements x; and x;.

ProposiTiON 3.  The tertiary class y(u; j) is rigid on the set [V, BT,|2, il

Proof. 1t suffices to follow the usual proof that the rigid secondary classes
are homotopy invariant. A homotopy {%,} yields a codimension-(g + 1)
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foliation % on ¥ X R for which i*% = %, where i,: V — V x [0,1] is the
inclusion at time ¢. The characteristic maps fg °p,° @, for 0 <t <1, are
determined up to homotopy as the restrictions i}* o fo-o p,, 11 #,,, = Q).
Here, i: #,,, —» #, denotes a lift of the map w. Choose an indecompos-
able #;; € .#,,, such that {i(%;;) = u;. Then the tertiary class yz(&,;) is
well defined in H*(VV X R;R) and its restrictions to ¢ =0 and ¢ = 1 yield
Ys{u;;) and yg(u;;), respectively, which must then agree. O

Fact 4 (cf. §3 [H2]). Let g = 2k > 4, and set
Ry = {h,¢3, hece)
R, = {hyh,ck|I C (4,6,...,2k + 2)}, k odd
Rk = {thCZk, hzclzc, hzhlcg‘l C (4, 6, ceey 2k)}, k cven

Then there exists a bouquet of spheres X, and a map g;: X, — BT,, for
which the composition

(81) = A(R))
H,(X,;Z) Rl H,(BTy;Z) —5 R

is bijectively onto a lattice in R", where r, denotes the cardinality of the set
R,. In other words, all of the rigid classes in R, can be independently
evaluated on spherical cycles. Thus, by Theorem 4.4 of [H1], for each
1<i<j<r, there is a map g;: §"i — BT, for which A%(u;Xg,,) is
non-zero precisely when i = p and j = v, where the u;; are chosen as in Fact
3 for {z,;} a basis of the set R,.

We give an example of how to apply Fact 4 and Proposition 3 for g = 6,
and leave to the reader the more general cases.

THEOREM 12. Let TV contain a rank-6 trivial subbundle, and suppose that
either

(a) HBW;Q) #0, or

) HY(V;Q # 0.
Then V has an infinite set of codimension-6 foliations, all with distinct rigid
classes in case a), and distinct rigid tertiary class in case b). If H'(V; Q) = 0 for
i =3,5,7and 11, then Fol (V) , contains an infinite set of foliations which are
not homotopic as foliations. Moreover, if the set of lifts | of the tangent map T

2 B Om -6
"L Bo,

is finite, then there exists an infinite set of pairwise non-homotopic foliations with
homotopic tangential distributions.
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Proof. Case (a) is similar to Example 1, so we consider (b). Choose o
V — $% which is non-torsion. Let u,, € .#; of degree 37 satisfy du,, = x,x,,
where pg(x;) = h,c3 and pg(x,) = h¢ce. Then apply Theorem 5 and Fact 4
to obtain a set of foliations {Z, , |n € Z} for which

757‘,,,,(”12) =c-n-o*(iy) € H(V;R),

where c is a non-zero constant. This yields an infinite set of distinct elements
in the image of

[V, BTs] - [V, BT,].
Then consider the commutative diagram

[V,80,1 —I[V,80,]

l l

[v,BT,] —[V, BTl

[V7 BF6]* ——)[Vy Br7]*

With our last hypothesis, both groups at top are finite, so that the infinite set
in the image of the middle line descends to an infinite set in the image from
BTy — BT,. If the set of tangential lifts is finite, then an infinite subset of
these foliations must have homotopic tangential distributions. O

Note that V' = 8% X §* X M satisfies (b) for any compact orientable
18-manifold M, and this example will have trivial secondary classes.

9. Universal Postnikov invariants

Let us close this paper with a remark on the implications of the vy-
invariants for the topology of BT,. On page 121 of [H2], a set V{ c H*(W,)
was constructed, and a corresponding bouquet of spheres indexed by the
elements of V"

2q+q*
Yq = V ( V (Sn)z)
n=2q+1\ zeV}
dim z=n
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In more detail we have

V= {hiet, by,

Y2 = SS \Y SS,

V3 = {hici, hicicys hacyy hihyc, hihyeicy),

Y;=8"vSTv SV S0y S etc
For each z € 17; and real A € R, there exists a continuous map

¥, \: S7 - BT,
for which the characteristic map
fXv H"(W,) > H"(S™;R) =R
satisfies f,%(z) = A, and f*(w) = 0 for z # w € V. Thus, for all families of
reals A = {A } C R, there is a continuous map np— Y, - BF such that the
characteristic map
fir: HY(W,) > H*(Y,;R)

maps ¥} onto A.

TueoreM 13.  For each A as above with all A, # 0, there exists a homomor-
phism

Yx: My, = Apr,
such that A5 °yx = id on Ay,

Proof. Let fo: W, — .#pr, denote the map of minimal models covering
the universal map A W, - OB T,) where Q(BT,) denotes the real simpli-
cial deRham algebra of the s1ngular s1mp11c1al complex of Bl" Then
Ay e fo = fx- Let o: .4y — 4, denote the map induced by the 1nclus1on of
V‘ into W,. The composmon ax = fx° pg ° o is an automorphism of .#y, so
set Y5 = f0 pgeoca;’. Then #y; =id. O

CoRrOLLARY 5. Let u be an indecomposable element of degree N in .4, such
that 0 # [du]l € HN “(,ZY(N ). Then the corresponding Postnikov lnvanant

yldu] € H¥*!((BT,) s R)

is non-zero, where (BT,)y denotes the N-th stage of a Postnikov tower for BT,.
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