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HOMOTOPY CHARACTERISTIC CLASSES
OF FOLIATIONS

BY

S. HURDER AND D. LEHMANN 2

1. Introduction

The main point of this paper is to use minimal model theory to define new,
higher order cohomology invariants of concordance classes of foliations, and
then to apply these to establish the existence of uncountable families of
distinct foliations on a much wider class of manifolds than previously had
been shown. In some sense, this work can be considered as a sequel to the
earlier paper [H2] of the first author.

Let - be a smooth (i.e., C) foliation on a manifold V without boundary.
Let f-: WOq fDn(V) denote the characteristic homomorphism of -(e.g., see [B] or [KT]), where we define the differential graded commutative
R-algebra (dgca)

Wq A(hl, h2,... hq) (R) R[Cl, c2,... Cq]/(deg > 2q)

(deg h 2i 1, deg c 2i, dh ci) and WOq denotes the subalgebra

WOq A(h 1, h3,..., ha, ) (R) R[c,, c2,...,ca]/(deg > 2q)

with q’ the largest odd integer < q. The construction of f- depends upon
the choice of a Bott connection and of a connection preserving some metric
on the normal bundle Q to o-. The induced map in cohomology is easily
shown to be independent of this choice, and to even depend only on the
concordance class of -. When the bundle Q admits a framing, or paralleliza-
tion, denoted by s, then there is also defined a map of dgca’s, f-,s:
Wq --> DR(V), which induces a map in cohomology f-,s depending only on
the concordance class of - and the homotopy class [s] of s. Note that the
map f-, will, in general, vary with the choice of[s] (which was a key point
in the paper [H3]).
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This paper is based on the following remark, which is a strong refinement
of the above discussion: the homotopy class of f- is a well-defined invariant
of the concordance class of -. More precisely, let pq: ’Oq WOq denote a
quasi-isomorphism of a minimal model for WOa. Similarly, let pq: [’q "- W
denote the minimal model for W,.

LEMMA 1. (a) The homotopy class off: pq: .gO fln(V) in the set

of dgca-morphisms from EO to lnt(V) is well defined, and depends only on
the concordance class of - in the set of smooth foliations of codimension q.

(b) If admits a framing, s, on the normal bundle Q, then the homotopy
class off-, p: ’q 12nR(V) is similarly well defined and depends only on
the framed concordance class of in the set of smooth foliations of codimen-
sion q with framed normal bundle.

In this paper, we assume that V is a connected manifold, and all algebras,
A, are connected; that is H(A) =- R.
The proof of Lemma 1 is elementary, and exactly parallel to that of

Theorem 2.11 of [H1]. (For completeness, we give a proof in 2 below.) A key
point in the first author’s Thesis [H4] was that one should regard the
homotopy class [f-o pq] in [,A’Oq, IIo(V)] as a fundamental differential
invariant of a foliation. The difficulty with this invariant is that its calculation
may be extremely laborious, and so one considers approximations derived
from it. For example, the morphism ffl- is obtained by considering the
induced map on cohomology. The dual homotopy invariants for are
obtained by considering the induced map between the indecomposable
elements of /ZOo and those of a minimal model ’ for fon(V). As these
invariants play a key role in our examples, we elaborate upon this remark. By
Theorem C of 2 below, there is a one-to-one correspondence between
[,/-{Oq, /{v] and [,"Oq, "DR(V)], with suitable hypothesis on V. Let

denote a lift of f Oq. Let A += Ker(e: A R) denote the augmentation
ideal. Let Q denote the functor which associates to a connected dgca A its
space of indecomposables: QA A/(A /)2. Then the dual homotopy map is
by definition

h= Q(.’f)" rr*(WOa) rr*(V).

The justification for introducing the notation rr*(WOq)= Q/gOq and
7r*(V) Q’v follows from Theorem A of 2.

In this paper we will construct a third approximation to the invariant
[f_ p] by considering the induced maps on the Postnikov k-invariants of
the model /e’Oq. This third approximation has the advantage that it produces
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cohomology classes which can be nontrivial in degrees greater than 2q + q2,
unlike the map fs, and takes advantage of the enormous number of
invariants in the dual homotopy spaces 7rP(WOq). As is usual for higher
order homotopy operations, our tertiary invariants are only well defined for
foliations satisfying an additional hypothesis on their primary and secondary
characteristic classes, but these restrictions are stable under concordance, so
that we obtain new cohomology concordance invariants for foliations.
The construction of the tertiary invariants is given in 3 and 4, while 2

contains preliminary material. Then in 5, 6, 7 and 8 we apply our invariants
to the study of existence of foliations. For example, we show that the 9-torus,
T9, has uncountably many .distinct concordance classes of foliations, all of
whose primary, secondary and dual homotopy clas-ses are trivial, but which
are distinguished by their tertiary classes. More generally, we give simple
conditions on the homotopy type of a manifold V which are sufficient to
guarantee that if V has at least one codimension-q foliation, then V ,has

many-parameter families of non-concordant foliations, detected only by the
tertiary invariants. These examples greatly extend the examples constructed
in 4 of [H2].

This work was begun during a visit by the first author to the Universit6 de
Lille, I, in May 1986. Their hospitality and the partial support from the
C.N.R.S. is gratefully acknowledged.

2. Homotopy between dgca-morphisms

Let (/, d,e) denote a minimal algebra over R in the sense of Sullivan [S1],
so that g= AX is a free graded commutative algebra on a space X of
homogeneous elements. Let X denote the. subspace of elements of degree
n. We Write d d.z/ when there is no danger of confusion. Moreover, d
satisfies the minimality condition

d: Xn ---> (,/L/(n) + )2

where /(n) A m< Xm is the subalgebra generated by elements of degree
strictly less3 than n. We will always assume that a dgc-algebra, (A, dA),
satisfies H(A, dA) R.

Let (R(t, dr), dR) denote the acyclic dgc-algebra, with a polynomial
variable of degree O, dt an exterior variable of degree 1, and d(t) dt.

3This convention disagrees with the usual one in Sullivan’s theory (where ’(n) denotes
A Xm) but will agree with the definition of the nth stage Yn of the Postnikov tower
according to Spanier, if we want ’(n) to be the model of Yn (see Theorem B below).
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Let (e’, d) and (A, dA) be dgc-algebras, and f0, fl" ’-" A dgca-mor-
phisms. Then f0 and fl are homotopic if there exists a dgca-morphism F"

’ A (R) R(t, dt) so that i0 F f0 and il F fl, where iz" R(t, dt) R
is evaluation at z, and A (R) R(t, dt) has the differential dA (R) 1 + 1 (R) dR.
Note that this tensor algebra also has an R(t, dt)-linear "differential", dA (R) 1,
which by abuse of notation will again be denoted by dA.

For a minimal dgc-algebra (’, d), homotopy is an equivalence relation
on the set of dgc-morphisms {, A} from ’ into a dgc-algebra (A, dA) (cf.
Corollary 10.7, [GM]). Let [, A] denote the set of homotopy classes.
For a dgc-algebra (A, dA), define a linear map of degree -1 by setting:

0
I"A (R)R(t, dt) A,

olb
(R) O,

lb (R) tidt ( 1) lbl b
i+1’ i>0

where bl indicates the degree of a homogeneous element b A. A homo-
topy F: /A (R) R(t, dt) induces a cochain contraction operator

if-- F" # A.

The basic feature of F is then (cf. 10.3 of [GM]):

LEMMA 2. F is a linear map of degree -1 such that

doff + rod =fl-f0.

The above constructions can also be done for dgc algebras over the
rationals Q, and with this algebraic notion of homotopy, there is a one-to-one
correspondence between the homotopy theory of 1-connected dgc-algebras of
finite type over Q and the rational homotopy types of 1-connected CW-com-
plexes of finite type (cf. [L], [S1], and also Chapters X, XI of [GM]). We will
need three results from this theory. Let Y denote a 1-connected topological
space. A Postnikov tower for Y is a sequence of CW-complexes {Ynln > 1}
and maps

Pn’Yn "--) Yn-1, n > 1, fn "Y-) Yn
such that Pn fn fn-1, fn is an n-equivalence (i.e., it induces an isomor-
phism of homotopy groups, (fn): 7rp(Y) --* zrp(Yn) for p < n), 7rp(Y,) 0 for
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p > n, and Pn+l: Yn+l "’) Yn is a principal fibration of type (I-In, n) for the
abelian group II 7rn(Y). We explain this third condition in more detail.
Let K(I-ln, n + 1) denote the Eilenberg-Maclane space for IIn, then for each
n there is a characteristic map On: Yn K(I-In, n + 1) so that Yn+l is
weak-homotopy equivalent to the homotopy fiber of 0n. The characteristic
element of the fibration is the class

kn+l O*(in) Hn+l(Yn, IIn)

where n Hn+ l(K(I-In, n + 1); IIn) is the canonical generator as a IIn-mod-
ule (el. Chapter 8, [Sp]).
We return to a minimal algebra /, and recall that X" denotes a choice of

a spanning space for the indecomposable elements of degree n. That is, Xn

defines a section of the surjection

,n ,/,’+/( ,+)2 1 ,/n ( QM) n

and so can be identified with (QM)n. The basic theorems of Sullivan’s
rational homotopy theory are then:

THEOREM A. Let Y be a 1-connected CW-complex offinite type, and " a
minimal model for a rational deRham model Ay of Y. Then there is a natural
isomorphism

(Q,) n Hom(Trn(y), Q).

Thus, each element ofXn naturally defines a group homomorphism on rn(Y).

THEOREM B.
(a)

(b)

(c)

For Y and /{ as above:
’(n) is a minimal model for the n-th stage, Yn, of the Postnikov tower

of Y.
The Hirsch extension corresponds to the localization over Q of the
principal fibration

Pn+lK(Trn,n) -’* Yn+l Yn.
Thus, H*(Yn; Q) H*(’(n), de).
The (n + 1)-st k-invariant kn+l Hn+(Yn; zrn) is identified with the
map d: Xn -> Hn+l(’(n)) via the isomorphisms

Hn+l(Yn" zrn(Y ) (R) Q) -= 7rn(Y ) (R) Hn+l(,/(n))
Hom(Xn, Hn+l(,//g’(n))).

THEOREM C. Let ’ be a minimal dgc-algebra, and let : A - B be a
dgca-morphism which induces isomorphisms on cohomology. Then the induced
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map of mapping spaces,

q,: {,A", A} {d’,B},

induces a bijection of homotopy classes,

For proofs of these results, see either [L] or Chapters X, XI of [GM]. By
tensoring the above Q-vector spaces with R, we get corresponding statements
for real algebras. Let us conclude this section with a proof of Lemma 1. For a
manifold V, the natural inclusion

fDn(V) () R(t, dt) - YDn(V R)
R

is evidently an isomorphism on cohomology. It is a standard result of
characteristic class theory (cf. [B]) that for concordant foliations 0 and 1
and any choice of Bott connections on their normal bundles, there is a Bott
connection on the normal bundle to the concordance foliation -on
V R extending the two. Thus, one obtains a homomorphism F" WOq
’DR(V R)whose restrictions to the slices V {0} and V {1} satisfy

F f and F; f.
By Theorem C, f,.-opq and flopq determine the same class in
[’Oq, fDn(V)], as was to be shown. For framed foliations, obviously the
same method works again for the algebra

3. Obstruction to the existence of a homotopy

In this section, we develop a characteristic class for the obstruction to
extending a partial homotopy between two dgca-morphisms. Our main result
gives a criterion for the vanishing of the indetermancy ideal for this obstruc-
tion, which will be used for the applications to foliation theory, developed in
the next section.

Let (’, d) denote a minimal dgc-algebra over R, and f0, fl: -’-) two
dgca-morphisms. A partial n-homotopy from f0 to fl is a dgca-morphism Fn:
/(n) - ’(R) R(t, dt) such that z F fz[(n) for z O, 1. From such, we
construct a degree O, linear map

(3.1) n Fn. Xn __) ,
n(X) fl(X) fo(X) ffn(dx).
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An algebra /is r-connected if ’(r + 1) R, and one then has

d" gn "-- (’(n r) + )2.
Thus, for ’ r-connected, the map yn can be defined using a partial
(n r)-homotopy from f0 to fl. The basic properties of ,n are given by the
next two results.

PROPOSITION 1. (a) y takes values in the cocycles of degree n.
(b) 3, is functorial in sge’.
(c) Given a partial n-homotopy Fn, it is both necessary and sufficient for the

existence of a partial (n + 1)-homotopy F+I extending Fn that the
cohomology classes [yn(x)] Hn(s") vanish for all x Xn.

Proof. (a)

d,)tn(x) dfl(x) dfo(x ) d(Pn(dx))
Yl(d) fo(d) a(Pn(d))
ffn(d(dx)) =0

by Lemma 2.
(b) Let g: s’ be a dgca-morphism. Then

g*(/n(x)) go fl(x ) go fo(x) g(.#n(dx))
g fl(x) g fo(x) (g(R) lFn)^(dr),

where the last equality follows from the rule

g a (R)tmdt ) (R)tmdt.

But this last expression above is clearly the obstruction associated to the
partial n-homotopy g Fn.

(c) If Fn/ extending Fn^eXists, then by Lemma 2, yn(x) is exact, and
more precisely 7(x)= d,Fn+l(X). The converse is proved in proposition
10.4 of [GM]. []

Let (,)/n),. Xn ._ Hn(S) be the linear map obtained by setting

(,n),(X) [n(x)],

its cohomology class. Via adjunction, (,n), can also be viewed as an element
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of Hn(scZ; Hom(Xn; R))where it clearly corresponds to the desuspension of
the Postnikov kn/ 1-invariant for the lifting of the relative n-homotopy Fn. By
part (c) above, (yn), is the obstruction to extending F; but to show (yn),
obstructs the existence of any homotopy from f0 to f, one must determine
to what extent (yn), depends upon the data F. This is the customary
problem with applying Postnikov theory to obtain characteristic classes. For a
related discussion in the context of foliations, see [Shul]. Our next result
enables us to overcome this problem.
A minimal algebra (, d.) is said to be N-spherical if de vanishes on

/(N + 1). Equivalently, for some choice of the spaces {Xnl 1 < n < N},
each x X is closed. The rational Hurewicz Theorem states that an
r-connected minimal algebra is 2r-spherical. Another important example is
provided by the minimal model /Oq for WOq, which is 2q-spherical. The
algebra q is 4q-spherical.

Let be a subalgebra generated by dosed homogeneous indecomposable
elements in a minimal algebra ’. Then define a subspace of ’,

For example, if is r-connected, then /(3r)
_
(2r)’.

THEOREM l. Let and ’ be as above. Let fo, fl: / be given
dgca-morphisms.

(a) Suppose that a partial homotopy F: --, sd’(R) R(t, dt) from f0] to

fll is given. Then there is a well-defined obstruction morphism y*:

’ H*(ze’). For u ’ of degree N, the value of y*(u) in the quotient
space

(3.2) uU(c’)/(Image{f (N) H*(,’)} A H*(’))

is independent of the choice of F. Moreover, for u ’ with du 0, then
*(u) f(u) f(u).

Proof The last conclusion is evident from the definition of y*(u). We
need a standard device from simplicial DeRahm theory for the proof of the
first statement. Let 4/ denote a minimal dgc-algebra, and F,F’: --.
A (R) R(t, dt) denote two homotopies from f0 to fl. Then there exists a
dgca-morphism

J: ./ ,s’(R) R( r, dr) (R) R( s, ds)

such that

Jl(r,s)=(t,o) F and Jl(r,s)=(o,t)
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The map J is constructed via obstruction theory of minimal models, or can
sometimes be written down explicitly. Then let F" denote the restriction of J
to the opposite face, r + s 1:

F" JI r+s= ’/"-’) S(R) R(t, dt).
t$

Define an operator, integration on the 2-simplex A z, by

fa s’(R) R( r, dr) (R) R( s, ds) ---> "
a rI. smdrds

A

(--1) lal

(re+l+2)(/+ 1) "a

and let it be zero for other monomials. Then let f fa
map of degree -2.

J: M/---) s’, a linear

LEMMA 3 (Simplicial Stokes’ Theorem). Let x 4/ be closed. Then

d <Y(x) P(x) P’(x) + P"(x).

Proof See 10 of[B]. []

We apply Lemma 3 to the maps F and F’ to obtain for u ’, y’(u)
y(u) ff"(du)- def(du), where F" is a partial homotopy restricted to
//= from fl to fl. The theorem now follows from the next lemma by
taking ,4/= and F F":

LEMMA 4. Let M be a minimal dgc-algebra with trivial differential, and F:
/---> e’(R) R(t, dt) a homotopy from f: M/ " to itself. Then for x 1/of
degree n and decomposable,

(3.3) if(x) Image(f*" ( Hi(dl/)
i<n

Proof. Write x ElalXi, where each xI is a product of closed indecom-
posable elements of //. It suffices to establish (3.3) for each ff(xi). Let
Xi Xl k /k Xs with xk of degree n, and indecomposable. Define
u,, ve /’(R) R[t] by the rule

F(x) f(x) + u, + ( 1)nkvk at.
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It follows from dF(xk) 0 that

d
(3.4) d--iUk dvk, Uk(O) U(1) O,

where u(z) represents evaluation at z. Define an (nk 1)-form wk "by setting wk fd vk dt and observe that dcWk 0 by (3.4). Define for each
Xk an element of ’(R) R(r, dr) (R) R(s, ds) by setting

J( Xk) f( Xk) + d s" vk dt

and observe that

(3.5) J( Xk) (1, s) f( Xk) + ds A wk,

J(Xk) (t,1) f( xk) + Uk + vk dt,

(X)(0, S) (X)(t, 0) 0.

Then let J(xi)= J(Xl)/k /k J(xs), and observe that integration over r
and s yields

f(XI) 1foIj(xi) S

with degree n 2. By Stokes’ Theorem, we have

dcf(xi) folj(xi)(t, 1)- folj(xI)(1, s)

I(x,) E +- f(xx) "’"/x w/ Z(x)
k=l

by (3.5). This last expression lies in the ideal of (3.3) as each wk is closed, so
the proof of Lemma 4 is complete. [3

We draw an important Corollary of Theorem 1:

COROLLARY 1. Let be a subalgebra generated by closed homogeneous
indecomposable elements of a minimal algebra ’, and let ’ be as above. If F:

s’(R) R(t, dt) is a partial homotopy between two dgca-morphisms fo, fl:
’- such that the obstruction class [y] with values in the quotient in (3.2) is
non-zero, then there does not exist a homotopy defined on " between fo and
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Proof If a h.omotopy if: ’(R) R(t, dt) exists between f0 and fl, then
by restricting F to , we obtain a characteristic map q* which is identically
zero by Proposition l(c). However, the quotient classes [y] and [3] agree by
Theorem 1, implying [y] 0 which contradicts our hypothesis. []

4. Tertiary classes for foliations

For the remainder of this paper, V will denote a connected smooth
manifold without boundary and having the homotopy type of a finite CW
complex. Let FOlq(V) denote the set of concordance classes of smooth (i.e.,
C) codimension q foliations on V, and Fol-(V) the subset of foliations with
orientable normal bundle. In this section we introduce the subsets of FOlq(V)
on which the tertiary homotopy invariants are defined. Our basic tools are
the Postnikov obstruction classes of 3, and the theory of Haefliger-
Gromov-Phillips-Thurston relating concordance classes of foliations on V to
sets of homotopy classes of maps into classifying spaces.

Let BFq denote the Haefliger classifying space for smooth codimension-q
foliations [Hae]. A foliation - on V determines a well-defined homotopy
class of maps c-: V BFq, such that if two foliations are concordant, then
their classifying maps are homotopic. There is a natural map v: BFq --. BOa
such that

voc-: V BOq

classifies the normal bundle to -. One says that u classifies the universal
normal bundle on BFa. Given a map r: V BOa, let {V, BFq} denote the
set of continuous maps c" V BFq for which u c is homotopic to -, and
topologize the set with the usual function space topology. Similarly, let
FOlq(V)z denote the concordance classes of foliations whose normal bundles
are classified by a map homotopic to r. Then the above discussion implies
there is a well-defined map Folq(V)-- [V, BFq].
Deep theorems of Gromov-Phillips (for V open) and Thurston (for V

compact) provide a converse to the above discussion (cf. Chapter 4 of [La 1]).
We recall the precise result. Let T: V BOm classify the tangent bundle to
V, and suppose that T factors:

V BOq X BOrn_q BOm

so that r determines a rank q-sub-bundle of TV. The main theorem is that if
there is a lifting c: V BFq so that v c = r, then there is a foliation cc of
codimension q on V for which c-= c. Moreover, homotopic lifts yield
concordant foliations. Thus, for - determining a sub-bundle of TV, there is a
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bijection

(4.1) Folq(V), [V, BFq],.

From (4.1) it follows that the task of (abstractly) constructing foliations on a
manifold V can be broken into two steps:

(a) Produce a splitting (-,/): V BOg BO,,,_q
(b) Characterize the lifts c: V BFa of z.

The first step is a relatively easy problem about the differential topology of
V. The second step is traditionally solved via Postnikov tower constructions
(see the next section).
There is a special case of (4.1)worth noting. Suppose that TV contains a

rank-q trivial bundle ea TV; then we can take ’: V BOa to be the
constant map onto a basepoint BOq. In this case we use the notation
for (4.1)

(4.1’) FOlq(V), IV, BFa] ,

Let be a subalgebra of gOa generated by closed indecomposable
homogeneous elements. For c [V, BFa], let fc: WOa- l)(V) denote the
characteristic homomorphism for the foliation cc. (This works even when
z u c is not a sub-bundle of TV (cf. Chapter 3, [La 1]).) Then define the
subset

(4.2) [V, BFa[o@] {c [V, BFa]. such that (fc Pa)*[ 0}.

and also let

Iv, BFqIWOa] =- {c Iv, BFa] such that fc* 0}.

THEOREM 2. Let be as above, and let u ’. That is, u is an indecom-
posable element of gOa with du . Then there is a well-defined tertiary
characteristic class

y*(u)" [V, BFa]] --+ H*(V;R)

which is functorial in V. If u is homogeneous of degree p, then y*(u) rakes
values in HP(V; R). Moreover, * induces a universal map

y" [V, BFal2] --+ H*(V;Hom(2’;R)).
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Next, let r define a sub-bundle of TV. For c [V, BFq[],, let y*(u)
denote the corresponding tertiary class in H*(V; R) and

Yc*" ’ --> H*(V;R)

the tertiary characteristic homomorphism for c and ’.
COROLLARY 2. Let be as above and u ’. Suppose that co, c

V, B I’ql satisfy *o(u) 4 * (u). Then o and cc are not concordant.

Proof of Theorem 2. Given c: V--, BFq with characteristic map fc pq:
/O f(V), we define y*(u)[c] to be the Postnikov obstruction class
y*(u) obtained from a homotopy, F, between fc PI and the zero map.
The homotopy F exists because is itself a minimal dgc-algebra (with trivial
differential) and (fc Pq)*l is identically zero, so that a choice for each
indecomposable generator z of a form w fRV) with dw fc po(zi)
determines a homotopy F from f0 Pq to 0.
By Theorem 1 and our definition (4.2), the value of yc*(U) does not depend

on the choice of F, for u homogeneous. Extend Yc* by linearity to all of ’to obtain the tertiary characteristic map Yc. []

We next discuss how the Postnikov invariants yield tertiary classes for
framed codimension-q foliations. It is slightly more convenient to work with
B_F.q+, the classifying space of foliations with orientable normal bundles. Let
BFq denote the principal SOq-fibration over B_F+ associated to the universal
map v" BFq+ BSO. It is well known that BIq is weak homotopy equivalent
to the homotopy fiber of v (cf. _[H3])" For c- IV, BF+], classifying a
foliation -, then a lift -" V BFq classifies - with a choice of framing of
the normal bundle Q.
There is a Puppe sequence of fibrations

(4.3) SO BF BF--> BSOa
inducing an exact sequence of sets

(4.4) [V, SOq] --) IV, B’q] "-* [V, BF+] , -->*

Note that [V, SOq] has a natural group structure,_ and acts on the next term in
the sequence. The exactness of (4.4) at [V, BFq] is the statement that the
orbits of this group action are precisely the inverse images of elements of
V, BFq+ ,. This is the homotopic formulation of the principle that V, BFa+ ],
counts concordance classes of foliations with trivial normal bundles, while
[V,B Fq] counts the homotopy classes of normally framed foliations, which are
parametrized by the homotopy gauge group [V, SO,]. Thus, invariants for
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framed foliations may separate into distinct classes maps ’" V BFq, which
coalesce in [V, BFq* ]., but the coalescing is precisely determined by the
group [V, SOq] and (4.4). These points are just elaborations on the meaning
of (4.4), but it is useful to make these "well known" facts precise, as they are
applied in 7 and 8 below.

Recall that : V BFq determines a dgca-morphism fe" Wq fI(V), and
we can apply the Postnikov invariants to the morphism

L --,

The same method of proof as used for Theorem 2 now yields:

THEOREM 3. Let c /gq be a subalgebra generated by closed indecompos-
able homogeneous elements, and let u ’. Then there is a well-defined tertiary
characteristic map for framed foliations

y*(u)" IV, BF,I] H*(V;R)

which induces a universal map

3" [V, BFqI] --+ H*(V;Hom(o’;R)).

The algebra W is 2q-connected, so we can take o /q(4q + 1) and then
/q(6q + 1) c ’. Recall that 7rP(Wq) denotes the space of indecomposables
for / in degree p. With the obvious notation for maps vanishing on
H*(Wq) and H(W), we obtain:

COROLLARY 3. (a) For all p <_ 6q, there is a well-defined tertiary map

yP" [V,BqIH*(Wq)] --+ HP(V; rP(Wq))
(b) For p 4q + 1, there is a well-defined tertiary map

,)/4q+ 1. IV, Bq[H2q+l(wq)] + H4q+l(v; "rr’4q+ l(Wq)),
Corollaries 2 and 3 just indicate some of the possible choices for the

subalgebra . Other choices will also be used in 7 below for which u has
degree p greater than the range of degrees for which H*(Wa) is non-trivial.

5. Applications of tertiary classes-universal constructions

In this section, we give some abstract constructions of elements in [V, BFa ],.
For a manifold V possessing a codimension-q foliation r with normal
bundle r, sufficient conditions on V are described which imply the existence
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of a map (to be defined below)

A key point is that the evaluation of the tertiary classes on the image of 6
can be reduced to a calculation of dual homotopy invariants, yielding the two
main results, Theorems 4 and 5, of this section.

First, consider the case when TV admits a rank-q trivial sub-bundle, so
that the constant map .: V --. BFq induces a codimension-q foliation -. on
V. Let IIP(V) [V, Sp] be the p-th cohomotopy group.

PROPOSITION 2. Let V have the homotopy type of a finite CW complex X.
For p odd, the cohomology Hurewicz homomorphism

lie(V) --) HP(V; Z)

is onto a subgroup offinite index. For p even and X of dimension less than 2p,
the same conclusion holds.

Proof Let a HP(V;Z). There is a classifying map ga: V K(Z, p)
such that ga*(ip)= a, where ip is the canonical general of HP(K(Z, p),Z).
The inclusion of the p-cell, Sp K(Z, p), induces a rational homotopy
equivalence for p odd, and is a (2p- 1)-equivalence for p even. We can
assume that g, is the trivial map on the (p 1)-skeleton of X. The map g,
on the p-skeleton Xp lifts to a map a: X Sp" Since X has only finitely
many cells, and Zrr(S) is a finite torsion group for r > p, p odd, (and
2p 1 > r > p for p even) a sufficiently high power of a" Xp SP lifts to
a map ffa" X Sp (of. the proof of Lemma 1.2 of [H2].) Thus, each element
a HP(V; Z) has a power in the image of the Hurewicz map, and the
proposition follows. []

We say a map r: V - Sp is non-torsion if the class o’*(ip) He(V; Z) is
not torsion.
For each r UP(V), define

by setting, for a ’p(BFq),

Spa Li F$(a)’V- -B -B
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This extends to a pairing

,. n.(v) -+ ,.

For p odd and HP(V;Q) O, one knows that non-torsion cr exist by
Proposition 2, and this becomes a very effective method of constructing
elements of V, BFq+ ..
For the case when z is not homotopic to a constant, we must first assume

the existence of a map c [V, BFq].
We say that V has a p-splitting, tr, if there exists r: V VV Sp

satisfying:

(5.1a) tr*(ip) HP(V; Q) is non-trivial, where ip HP(V v Sp’, Q) is the
non-zero integral class arising from the SP-summand.

(5.1b) The composition

plOtr: V-+ VV Sp -- V V pt= V

is homotopic to the identity.

Given c and a p-splitting, r, as above, there is a well-defined map

defined fora rp(BFq) to be the composition

(5.2) 6o.(a)" V V V Sp cv,,. BFq.+V BL BF-.
It is only necessary to check that v d(a) , and this follows from (5.1b).
Note that if is a subalgebra generated by closed elements of degree less

than p, and c [V, BFq+ I], then the image of d will also lie in this
subset.

Remark 1. The customary abstract approach to calculating [V, BFa+], is
to replace the map v" BF BSOa with a Postnikov tower approximation
(cf. Chapter 8, [Sp]):

BF--+ Yn --+ Y,,- -+ Y --+ BSOq

such that lim Yn is weak homotopy equivalent to BFq+. Then there is a

filtration with terms [V, Yn], increasing to [V, BF+], which is the E,-term
of a spectral sequence converging more generally to H*({V, BF+}). The
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differentials arise from the boundary maps in the fibrations

Thus, one obtains natural candidates for elements in [V, B Fa+], from the
fiber groups HP(V; 7rp(BFq)). In general, it is difficult to determine which
classes in these fiber groups live to E in the spectral sequence. The idea of
introducing p-splittings is that we identify a family of classes in the fiber
groups which are known to persist to E by the direct construction (5.2). o

We next study the relation between the classes in the image of (5.2) for a
given c, the tertiary classes for c and the dual homotopy invariants
h" *(WOq) 7r*(BFq). For u {Oq, let [u] ,rP(WOq) denote its equiv-
alence class.

THEOREM 4. Let be as before, with all generators of degree less than p,
and let u ’. Let c V, BFq[] and suppose that a, fl 7rp(B Fq) are
given with

h"([ul)(i#a) *

where i: BFq BFa. Then for all p-splittings tr of V,

* u) in H’ R).u). ( v;

In particular, (a) and 6([3) are not homotopic in [V, BFq],.

Proof By the functoriality of the tertiary invariants, it will suffice to show
that 7fv ,,(u) and Yc*v t(u) HP(V v SP; R) have distinct values when pro-
jected onto the HP(S; R) factor. Again by functoriality, this is equivalent to
showing that 7*(u) and 7*(u) HP(SP; R) have distinct values. To calculate
these y-invariants, we can assume the partial homotopy is the constant map,
for the minimal model /t’sp(p) is (p- 1)-connected. Thus, the only term
arising in the definition of y*(u) is [’a(u)] HP(SP; R). But this is exactly
h(u) via the identification 7rP(Sp) =- HP(SP; R). Similarly for/3, and so by
hypothesis, 7*(u) h(u) h(u) 7(u). [3

Actually, Theorem 4 can be cast in a stronger form, which we give as a
corollary to the above proof. Let c Oq be as before, and let {ua,..., us}
c ’ be indecomposable elements of degree p. Let (Ul,..., us), and let
h#(): 7r,(Ba) R denote the evaluation of the corresponding dual homo-
topy invariants.
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COROLLARY 4. Let {ua,..., us} be as above. Suppose that there exists a
p-splitting tr of V, a class c V, BFq[], and a subset

W( q) =,(,rq)

for which h#(Vt)lW(p, q) is a bijection onto Rs. Then the composition

,, ,"()
RW(p, q) ----, [V, BFq]], HP(V; )

is a bijection. In particular, is injective on W(p, q) and y() is sutjective.

We formulate a version of Corollary 4 for maps into the classifying
space BFq.

THEOREM 5. Let c ’q be a subalgebra generated by closed indecompos-
able homogeneous elements of degree less than p. Suppose that HP(V; Q) is not
trivial, and for p even that in addition, V has the homotopy type of a CW
complex of dimension less than 2p. Let {Ul,..., us} c ’ be indecomposable
elements such that there exists a set W(p,q) c rp(BFq) for which h():
W(p, q) R is a bijection. Then, for each tr tiP(V) with non-trivial image
in HP(V; Q), there is an inclusion

$" W(p,q) -’) [V,Bq]I c [V,Bq].
Moreover, the evaluation of TP() on the image of in [V, BFqI] is

faithful.

6. Examples in codimension one

In this and the next two sections, we give applications of the tertiary classes
to the construction of non-concordant foliations. The case of codimension-one
is most elementary, for all of the y-invariants are secondary classes corre-
sponding to multiples of the Godbillon-Vey class.

THEOREM 6. Let V have zero Euler charactedstic, so that there exists a
non-vanishing vector field on V. Then for each class a Ha(v; Q) and real
number h R, there exists a foliation on V such that

f (hlCl) A" tx H3(V; R).

Proof There exists an integral class/3 H3(V; Z) and an integer m such
that a (I/m) /3 in H3(V; Q). Let ga" V K(Z; 3) classify/3. Then as in
{}5, a multiple ff" V K(Z; 3) factors through the inclusion S3 K(Z; 3).
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Let a P-(gff(i3)) in H3(V;Q), then by results of Thurston one can
choose c" S3 - BF1+ for which fc*(hac1) =p A [i3], where 3 H3($3; Z)
is a generator. Then f-= c gt determines a codimension-one foliation as
desired, rq

The above examples are the best possible using that 03 surjects onto R. To
obtain more, for example that fc*(hlCl) -H3(V;R) can be arbitrary, one
must show that the map BF+ K(R; 3) classifying the Godbillon-Vey class
admits a cross-section. For a further discussion, see [M].

7. Examples in higher codimension

For codimension two and above, the algebra ’Oq has great complexity
(cf. [HK], [Sh]), and there are many classes for which the tertiary construction
can be applied. Moreover, there are large families of indecomposable classes
in /Oq whose corresponding dual homotopy invariants define surjections of

-.(BFq) onto real vector spaces. We first recall the data needed, then
describe examples.

Fact 1 (cf. [H2]). Let z hlC21, z2 hlC2 denote the Vey basis for
Hs(W02). For the vector 2 (z1, z2) let A(2): H5(BF2;Z)- R2 denote
evaluation on 5-cycles. Then comp_osition with the Hurewicz homomorphism

yields a surjection from 7r’5(BI"2) onto R2"

,w5(O2) i.__ "w5(Br2) H5(Br2;Z) R2 -.-, 0.

Moreover, there is a set W(5, 2) c 7rs(BF2) on which A()o Jf i# induces a
bijection onto R2.

The above result admits a generalization to all codimensions q > 2.

Fact 2 (cf. [HI], [H2]). There is a set

Vq {z1,. Zr(q) H2q+ l(WOq)

of linearly independent classes such that:
(a) r(q) > q.
(b) The corresponding vector-valued functional A() on Ha/I(BFq;Z)

when restricted to the image of

77"2q + l(Bq) -----)i "ff’2q + I(B 1-’q) arta’ H2q+l(B[’q’Z)
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is onto Rr(q). Moreover, there is a subset

W(2q + 1, q) C 7r2q + l(nq)

on which A()o i is a bijection onto Rr(q). [-1

The classes {ZI,... Zr(1) from Facts 1 and 2 have the important additional
property that each has the form hlCJ where degree cj 2q. Thus, the
products ziz in WOq are identically zero. Choose indecomposable cocycles
{Xi} c’Oq such that pq(Xi) -Zio Then for each 1 < < j < r(q), there
exists an indecomposable homogeneous class u ij /e’Oq of degree 4q + 1
such that

duij --X /k Xj mod(p ),

where (p) denotes the ideal in gOq generated by the even Chern classes.
Moreover, the terms in duij containing a factor of the p have as other
factors secondary classes from n*(WOq) (cf. [HK]).

Fact 3 (cf. [H1]). For q > 2, set

1 2s(q) -(r(q) -r(q)), (U12 U13,..., Ur(q)-l,r(q))"

Then evaluation of the dual homotopy classes

h#()" 7r4q+ l(Bq) --) Rs(q)

yields a surjection. Let W(4q + 1, q) denote a subset on which h() restricts
to a bijection onto.

Before giving the more abstract systematic examples, let us consider the
case for T9 from the introduction.

THEOREM 7. For each trivial rank-2 bundle e 2 C T(T9), there is a family of
codimension-2 foliations { A R}, all of whose normal bundles are homo-
topic to this embedded subbundle, and for which:

(a) The secondary maps

f" H*(WO2) H*(T9;R)

are identically zero.
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(b) The dual homotopy classes

(c)
are identically zero.
The indecomposable u =/,/12 defines a tertiary invariant

5", (u) H9(T9;R) R

which has the value A on -, and hence the are pairwise non-con-
cordant.

Proof Let aA" S9 ---> B2 satisfy h#([Ul2]Xa,) A 71"9(89) R, which
exists by Fact 3. Let tr" T9 --> S9 denote the map obtained by collapsing the
8-skeleton of T 9 to a point. Then clearly each ca aao tr

[T9, BFzlH*(WO2)] and we evaluate y(u) using functoriality and the
Hurewicz identification of y*(u) and h([]) to obtain (c). m

In Theorem 7, we can replace T9 by any manifold V satisfying the
following condition: there exists a codimension 2 foliation - on V such that
f-= 0 and h= 0, and V admits a 9-splitting. For example, given any
compact orientable 7-manifold M0, and any other manifold W, then V
$2 M0 W satisfies the conditions above. We leave it to the reader to
construct further examples in codimension two, and next consider the situa-
tion for codimension q > 2.

THEOREM 8. Suppose that either"
(a) Them exists a codimension-q foliation r on Vfor which

f-" H*(WOq) --* H*(V; R)

is zero, and them exists a (4q + 1)-splitting r of V
(b) TV contains a rank-q trivial subbundle and them exists a non-torsion

map tr: V S4q+1 (that is, H4q+I(V;Q) 4 0). Then for each real vector

(ho.) W(q), there exists a codimension-q foliation ,x such that

%.gv,x(Uij) Aij" O’*(i4q+1) u4q+l(V;R)

In particular, tr determines an inclusion of sets

," W(4q + 1, q) Rs(q) [V, BFq]. Folq(V)

where v c in case a) or - in case b).
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Proof. This follows from combining Fact 3 with Corollary 4 of 5. D

Note that in Theorem 8 case b), if we also assume that the map
V S4q+l induces the trivial map on rational homotopy, then the dual
homotopy invariants of all the foliations ,x will be zero. If we require that
each ax: S4q+l ---) BPq induces the zero map on secondary classes, then all
secondary classes of ,x also vanish. Again, it is easy to produce explicit
examples where this holds; the simplest examples are for V Tp with p >
4q+l.
For the classifying space BFq of framed foliations, the homotopy perma-

nence principle (Corollary 6.10 of [H1]; see also the treatment of the
cohomology permanence principle in [H3]) yields many more secondary
classes from H*(Wq) which detect spherical cycles in H. (BFq; Z). A rather
complete list of the realizable variable classes is described in Remarks 2.4
and 2.9 of [H2].
We consider here just the case q 3, and leave the general construction

for q > 3 to the reader. Consider the following elements in a Vey basis
for W3:

Z hlc31 of degree 7

z2 hlClC2 of degree 7

Z3 hlh2C31 of degree 10

z4 hlh2clc2 of degree 10.

In W3, all of these cocycles have pairwise trivial products, so that for lifts
{x 1, x2, x3, x4} to g3, there are indecomposable classes {uij 1 < < j < 4}
with duij -x A x. Moreover, by Theorem 2.7b) of [H2], for 1 (u2),
2 (U13, U14, U23, U24), 3 (U34) there are surjections

h#[Vl] 7r13(BF3) R

h"[V2]" zr16(BF3) R4

h"[V3]" 7r19(BF3) R

Consider the case of 53 u34.

THEOREM 9. Let TV contain a trivial rank-3 subbundle, and suppose that
H19(V; Q) :: 0. Then for each non-torsion tr" V - S19 and real h R, there is
a codimension-3 foliation , on Vfor which

’y-,x(U34) A" O’*(i19) H19(V;R).
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Thus, " "rrl9(Bl-’3) -> [V, BI3] has uncountable image. Moreover, Fol3(V) ,
contains an uncountable set of distinct concordance classes offoliations.

Proof Theorem 5 and the given fact about the range of h#([u34]) on
"n’19(B 1-"3) yields the first part of the claim. For the conclusion about Fol3(V).,
note that [V, BF3+]. is the quotient of [V, BF3] by the orbits of the group
[V, S03]. As this latter group is countable, this second claim follows. Note
that if H3(V; Q) 0, then [V, SO3] is a finite group, so that any measurable
structure on the set of maps in [V, BF3] constructed above will be preserved
into the quotient.

Here again, if we assume that tr induces 0 on dual homotopy, then neither
secondary classes nor dual homotopy classes are sufficient to detect the
elements of FoI3(V). produced in the proof of Theorem 9.
We conclude this section with the generalization of Theorem 6 to higher

codimension.

THEOREM 10. Suppose that V admits a codimension-q foliation -, classi-
fied by c: V--* B I’q with " v c. Let r be a (2q + 1)-splitting of V, and let
P2: V /S2q + .__> S 2q + denote the projection. Then

" Rr(1) W(2q + 1, q) --> Iv, BFq]
is injective. For each a W(2q + 1, q), let denote the foliation of V
corresponding to (a). Then the secondary classes of are given by

f,, (2) =f-(2) + (pzoo’)*(h[2])
where we identify

h[] Hom(’rr2q+l(S2a+l),Rr’a)) H2q+l(s2q+l;Rr(q)),

and W(2q + 1, q) and are defined as in Fact 2.

THEOREM 11. Suppose that there exists a rank-q trivial subbundle e q c TV,
q > 1. Let g {sl,..., sa} HEq+I(v; Q) be a linearly independent set such
that each cup product s t3 sj 0, 1 <_ i, j <_ a. Then for each choice of vector
(i) Rr<q) where 1 <_ < a, there is a codimension-q foliation z,x on V with
normal bundle homotopic to e q TV, and whose characteristic map satisfies

f,,,x(zj) E A(i)" si.
i--1

Proof. The hypothesis about the set g implies that there exists a map into
a bouquet, V V ’=IK(Q, 2q + 1), such that the ith canonical class in
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degree (2q + 1) pulls back to s. Then the method of proof of Proposition 2
yields a map g" V -o V = $2q+1 such that the th-canonical integral genera-
tor of H2q+ l(s2q+ 1; Q) pulls back to a non-zro integra_l multiple n si. For
each i, by Fact 2 we can choose a map ai" S2/1 -0 BFq for which

f*(2) (i) n2q+l(s2q+l;Rr(q)).

Then the classifying map c, x for q,x is defined to be the composition

a

V S2q+1 -Bq---L-BFq.
i=1

Theorems 10 and 11 do not utilize the tertiary invariants, but rather
illustrate a second pri_nciple of this paper, that knowing the existence of
spherical cycles in BFq detected by secondary classes (or tertiary classes)
provides an access towards the calculation of the sets [V, BFa],, without
requiring the calculation of the spectral sequence of Remark 1 in Section 5.

8. Rigid tertiary classes

Two codimension-q foliations 0 and 1 on V are homotopic if there is a
smooth 1-parameter family of codimension-q foliations, {t[0 < t < 1} be-
tween them. The rig/d secondary classes are precisely those which are a priori
invariant under homotopy, and are characterized as the image of the restric-
tion map

image/z*" H*(Wq+I) H*(Wq)

in the case of framed foliations, where tz: Wq+I Wq is the natural restric-
tion map. In the papers [H1], [H2], examples were given of foliations with
non-trivial rigid classes. We discuss next rigid tertiary classes, and use them
to exhibit much larger families of foliated manifolds in high codimensions
with non-homotopic foliations. Moreover, these foliations can sometimes be
chosen to have homotopic tangential distributions, giving further examples
which "solve" Problem 3 of [La 2].
The rigid tertiary classes for framed foliations are constructed as follows.

Let {ZI,...,Zr} C Wq be a cocycle basis for .@. For each 1 < i, j < r,
choose uij /q such that duij xi/k xj, where pq(Xi) --Z with xi closed.
Let o@o. denote the subalgebra of ’q generated by the elements x and x..

PROPOSITION 3. The tertiary class y(ui) is rigid on the set [V, BFqIi].

Proof It suffices to follow the usual proof that the rigid secondary classes
are homotopy invariant. A homotopy {tt} yields a codimension-(q + 1)
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foliation - on V R for which t*-= ot, where t" V--+ V x [0, 1] is the
inclusion at time t. The characteristic maps f< pa , for 0 _< t < 1, are
determined up to homotopy as the restrictions i* f: o pa+ 1" /+ -+ i2(V).
Here, /2" /+1 -+ /q denotes a lift of the map be. Choose an indecompos-
able i: +1 such that /2(i)= ui. Then the tertiary class Y:(i:) is
well defined in H*(V R; R) and its restrictions to 0 and 1 yield
yo(Ui) and y(ui), respectively, which must then agree. El

Fact 4 (cf. 3 [H2]). Let q 2k > 4, and set

R3 {hack, h6c6}
Re= {h2hlc21lc_(4,6,...,2k+2)}, kodd

Rk= {h2kC2k,h2c,h2hlc[Ic(a,6,...,2k)}, keven

Then there exists a bouquet of spheres Xk and a map ge: Xk BF2e for
which the composition

H, ( gk; Z) (g H, (n2k Z) A(R Rrk

is bijectively onto a lattice in Rrk, where re denotes the cardinality of the set
Re In other words, all of the rigid classes in Re can be independently
evaluated on spherical cycles. Thus, by Theorem 4.4 of [H1], for each
1 < < j" < re, there is a map gij" Snij -’-> B2k for which h(uij)(g,) is
non-zero precisely when =/x and j v, where the uij are chosen as in Fact
3 for {zi} a basis of the set Re.
We give an example of how to apply Fact 4 and Proposition 3 for q 6,

and leave to the reader the more general cases.

THEOREM 12. Let TV contain a rank-6 trivial subbundle, and suppose that
either

(a) H15(V; Q) 4: 0, or
(b) H37(V; Q) :# 0.

Then V has an infinite set of codimension-6 foliations, all with distinct rigid
classes in case a), and distinct rigid tertiary class in case b). IfHi(v; Q) 0 for

3, 5, 7 and 11, then FoI6(V). contains an infinite set offoliations which are
not homotopic as foliations. Moreover, if the set of lifts of the tangent map r

"" T
Vm ,,, BOm

is finite, then them exists an infinite set ofpairwise non-homotopic foliations with
homotopic tangential distributions.
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Proof Case (a) is similar to Example 1, so we consider (b). Choose
V S37 which is non-torsion. Let u12 e’6 of degree 37 satisfy du12 XlX2,

where p6(x1) h2c32 and p6(x2) h6c6. Then apply Theorem 5 and Fact 4
to obtain a set of foliations {r,,In Z} for which

7r,n(Ul2 ) C" n" 0"*(i37) H37( V; R),

where c is a non-zero constant. This yields an infinite set of distinct elements
in the image of

[V, B6] [V, BrT].

Then consider the commutative diagram

[V, S06] --------[V, S07]

IV, ,,,IV,

IV, ---,IV,

With our last hypothesis, both groups at top are finite, so that the infinite set
in the image of the middle line descends to an infinite set in the image from
BF6 BF7. If the set of tangential lifts is finite, then an infinite subset of
these foliations must have homotopic tangential distributions. []

Note that V S6 x S 13 x M satisfies (b) for any compact orientable
18-manifold M, and this example will have trivial secondary classes.

9. Universal Postnikov invariants

Let us close this paper with a remark on the implication_s of the y-
invariants for the topology of BFq. On page 121 of [H2], a set Vq c H*(Wq)
was constructed, and a corresponding bouquet of spheres indexed by the
elements of V:

V V (Sn)z
n=2q+l z V,

dim z n
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In more detail we have

Y2 S5 V S5,

’ {hlC31, hlClC2, h2c2, hlh2C31, h,h2ClC2},
Y3 $7 V S 7 V S 7 V S1 V S1, etc.

For each z Vq and real h R, there exists a continuous map

Sz,," S’ BFq

for which the characteristic map

fz*,X" Hn(Wq) "-) Hn( sn; R) R

satisfie_s f*,(z) , and fz*,(w) 0 for z 4: w Vq. Thus, for_ all families of
reals {hz} c R, there is a continuous map qx: Yq - BFq such that the
characteristic map

fx*’H*(Wa) H*(Yq; R)

maps Vq onto

THEOREM 13.
phism

For each A as above with all A z 4 O, there exists a homomor-

such that /ZOx YX id on .//gyq.

Proof Let fo" Wq --. e’Br denote the map of minimal models covering
the universal map A: Wq - II(BFq)where f(BFq) denotes the real_ simpli-
cial deRham algebra of the singular simplicial complex of BFq. Then
Z/x f0 fx- Let r: ’y /Zq denote the map induced by the inclusion of- "" fx pq r is an automorphism of ’yo, soVq into Wo. The composition ax
set Yx fo pq O" af 1. Then /Ox id. t3

COROLLARY 5. Let u be an indecomposable element ofdegree N in /{q such
that 0 4 [du] HN+ I(,/yq(N)). Then the corresponding Postnikov invariant,

y[du] HN+I((Brq)N’I)
is non-zero, where (BFq)N denotes the N-th stage of a Postnikov tower for BFq.
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