Select alternative format: BibTeX \mid ASCII

MR1053567 (91e:57049)
Hurder, S. (1-ILCC); Lehmann, D. [Lehmann, Daniel] (F-LILL)
Homotopy characteristic classes of foliations.
Illinois J. Math. 34 (1990), no. 3, 628-655.
57R32 (55S45 57R20)

| Journal Article DoC |
| :---: | :---: |
| Delivery |

References: 0

Reference Citations: 0
Review Citations: 0
The authors obtain new higher-order cohomology invariants of concordance classes of foliations by using the minimal model theory, and establish the existence of uncountable families of distinct foliations on a much wider class of manifolds than had been previously shown by Hurder [same journal 29 (1985), no. 1, 108-133; MR 86m:57028].
For the characteristic homomorphism $f_{\mathcal{F}}: W O_{q} \rightarrow \Omega_{\mathrm{DR}}(V)$ of a foliation \mathcal{F} on a manifold V, and for a minimal model $\rho_{q}: \mathcal{M} O_{q} \rightarrow W O_{q}$, the homotopy class $\left[f_{\mathcal{F}} \circ \rho_{q}\right]$ is regarded as a fundamental differential invariant of a foliation. Following the morphism $f_{\mathcal{F}}^{*}$ on cohomology and the dual homotopy invariants for \mathcal{F}, in the present paper, a third approximation to the invariant $\left[f_{\mathcal{F}} \circ \rho_{q}\right]$ is constructed by considering the induced maps on Postnikov k-invariants of the model $\mathcal{M} O_{q}$. This produces, as tertiary invariants, cohomology classes which can be nontrivial in degrees $>2 q+q^{2}$ unlike the map $f_{\mathcal{于}}^{*}$, and an enormous number of invariants in the dual homotopy spaces $\pi^{p}\left(W O_{q}\right)$.
Many examples are shown. To obtain them, the authors give simple conditions on the homotopy type of a manifold V, called p-splitting, which are sufficient to guarantee that if V has at least one codimension- q foliation, then V has many parameter families of nonconcordant foliations, detected only by the tertiary invariants.

Reviewed by $\underline{H \text {. Suzuki }}$

(c) Copyright American Mathematical Society 1991, 2004

