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1 Introduction

The central geometric objects associated with an Anosov dynamical system on a compact manifold
are the invariant stable and unstable foliations. While each stable and unstable manifold is as
smooth as the system itself, the foliations that they form are believed to have only a moderate
degree of regularity for most systems. In this paper we will analyze the exact degree of regularity
of codimension-one stable and unstable foliations for low dimensional systems. Our main results
relate the regularity of these foliations to cohomology classes associated to the system: the Anosov
class, a new invariant of the flow which we introduce in this paper; and the Godbillon-Vey class
of the weak-stable foliation, which we show is a well-defined invariant of the system. The Anosov
class has a remarkable application: When this cohomology “obstacle to regularity” vanishes, the
foliations must be infinitely smooth. This is the rigidity phenomenon of the title. This implies the
system is algebraic by results of Avez [4] or Ghys [17]. The Godbillon-Vey invariant of the flow has
two applications: We show there are continuous families of topologically conjugate, codimension-one
foliations whose Godbillon-Vey invariants vary continuously (and are not constant!) The Godbillon-
Vey invariant of the flow characterizes the geodesic flows for metrics of negative curvature as the
flows with maximal value for this invariant, among the geodesic flows for metrics of negative curva-
ture on closed surfaces. We use this to give a new proof that the harmonic measure at infinity for
metrics of variable negative curvature on surfaces is totally singular.

Both of the cohomology invariants introduced in this paper are parameters on the space of low-
dimensional, volume-preserving Anosov systems, for which the 0-set is parametrized by Teichmuller
spaces. The authors conjecture that for other values of our cohomology invariants, the system is
determined up to smooth equivalence by a finite set of auxillary , Teichmuller-like parameters.

It is useful to first recall the three classical results about regularity of weak-stable and weak-
unstable foliations, before describing in more detail the program of this paper. Anosov showed
that these foliations are always α-Hölder [1] for some α depending on the rates of expansion and
contraction of the system. Hirsch and Pugh proved that the foliations are C1 for low-dimensional,
area-preserving systems [30], and with Shub they studied the relation between regularity and the
global maximal and minimal rates of expansion and contraction of the system [51]. On the other
hand, it was known to Anosov that the foliations need not be C2. More specifically, he showed that
for an area-preserving C3-Anosov diffeomorphism of the two-dimensional torus, every periodic orbit
carries an effectively calculable obstruction to the foliations being C2 at the point (Chapter 24, [2]).
Geometrically, Anosov’s obstruction represents the hyperbolic twist of the Poincaré return map of
the system at the point, which is equal to the first obstruction to the local Sternberg linearization
of the map.

The general program of this paper is to obtain a priori estimates of the degree of regularity for the
weak-stable and weak-unstable foliations for a volume-preserving Anosov system of codimension-
one. This is based on the authors’ study of the local obstacles discovered by Anosov for the
two-torus. We settle this problem completely for the cases described. There is great interest in
obtaining similar results for higher-codimension systems, but this is a topic of further research.

Our first main result is that the weak-stable and weak-unstable foliations are always C1, and
the modulus of continuity for their first derivatives is in the class Ω(t) = O(t · |log(t)|). In addition,
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we prove that the first transverse derivative of the foliations belongs to the “Zygmund class”, which
in particular implies the stated modulus of continuity, but is in fact stronger. This exact degree of
regularity is usually associated with the regularity theory of singular integral operators (cf. [44, 59]).

Our second main result is that if one of the foliations of a system is C1 with the transverse
modulus of continuity ω(t) = o(t · |log(t)|), and the system is C∞, then both foliations must be
C∞. This leap in the regularity from degree less than C2, to C∞, is one of the more surprising
discoveries of this study, and so far remains a phenomenon confined to codimension-one systems.

The definition of the Anosov cohomology invariant for a system is based on a technical obser-
vation, that the Anosov obstructions to smoothness at periodic orbits represent the periodic data
for a 1-cocycle over the system. The cohomology class of this cocycle is the Anosov invariant of the
system. Exceeding the degree of regularity Ω(t) = O(t · |log(t)|) for the first transverse derivative
of the weak-unstable foliation is equivalent to the vanishing of the Anosov periodic data, which by
a celebrated theorem of Livshitz (cf. Theorem 2.1 below, or [45]) implies that the Anosov cocycle
is a C1-coboundary. This fact sets the stage for the remarkable leap in smoothness to C∞.

The methods of this paper address the regularity of the weak-stable and -unstable foliations.
In order to treat the regularity of the strong-stable and -unstable foliations for flows, we require
the existence of a smooth, flow-invariant 1-form dual to the flow. The strong foliations are then
as regular as the weak foliations. (A well-known example of Plante [57] shows that without this
requirement, the strong foliations need not even be C1.) For example, such a form always exists for
geodesic flows of compact Riemannian surfaces of negative curvature. A natural question is whether
for a given volume-preserving Anosov flow on a 3-dimensional manifold, does there exists a smooth
time-change such that the new flow preserves a smooth dual 1-form? In a sequel to this paper [41],
the second author shows that there is another cohomology invariant associated to the Anosov flow,
whose vanishing is equivalent to the existence of such a form. Moreover, the obstruction class for
the smooth transverse form is the first of a sequence of cohomology invariants for general Anosov
flows. The second in the sequence is the Anosov class of this paper. One interpretation of the “leap
to C∞” described above is that for a smooth, volume-preserving Anosov flow, the vanishing of the
first two Anosov cohomology invariants implies the vanishing of all of the invariants.

There are practical applications of the regularity theory for stable and unstable foliations of
Anosov flows. The original motivation for the study leading to this paper concerned properties of
the Godbillon-Vey classes of codimension-one foliations (cf. [20]). In particular, when the weak-
stable foliation of a geodesic flow for a surface with a metric of strictly negative curvature is C2,
Ghys [16] and Mitsumatsu [53] made several observations about the relation between its Godbillon-
Vey invariant and dynamics of the flow. By the results and observations above, this foliation is C2

only for metrics of constant curvature, in which case the the Godbillon-Vey invariant reveals no
new information. On the other hand, the first author had shown in [31] that all of the secondary
class invariants can be defined for foliations whose differentiability is less than C2, with the exact
degree of regularity required depending upon the codimension and the specific secondary class. For
example, the Godbillon-Vey class in codimension-one is defined whenever the degree of regularity
is at least C1 with an α-Hölder condition on the first transverse derivative, for α > 1

2
. Thus, for

both the weak-stable and weak-unstable foliations of a volume-preserving smooth C3-Anosov flow
on a 3-manifold, there are well-defined real-valued Godbillon-Vey invariants.
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The third main result of this paper is that the extension of the Godbillon-Vey invariant to
the weak-stable foliation of volume-preserving, C3-Anosov flows is an invariant of the flow, up to
appropriate topological conjugacy of the weak-stable foliations.

The value of the Godbillon-Vey invariant for the geodesic flow of a metric of negative curvature
on a closed surface is given by an explicit formula in terms of the curvatures of the horocycles of the
flow. The formula calculates the Mitsumatsu Defect of the flow, which is the deviation from the
value of the Godbillon-Vey invariant for metrics of constant negative curvature. This formula has
several consequences, suggested by Mitsumatsu [53]. First, the Godbillon-Vey class characterizes
the flows associated to metrics of constant curvature among the geodesic flows of metrics of strictly
negative curvature on surfaces. We thus obtain a result parallel to the second author’s rigidity
theorem for the entropies of such flows [39].

The formula of Mitsumatsu shows that a C4-path of metrics with negative curvature on a closed
surface will have continuously varying Godbillon-Vey invariants. In particular, such a path from a
metric of constant curvature to a metric of non-constant negative curvature will yield a family of
Anosov flows with all of their weak-stable foliations topologically conjugate, but whose Godbillon-
Vey invariants vary continuously and non-trivially.

The third application of the Godbillon-Vey invariant for Anosov flows is based on its invariance
under absolutely continuous conjugacy. We use this property to prove that when the harmonic
measure at infinity is absolutely continuous for a metric of negative curvature on a surface, then
the metric has constant curvature (Theorem 8. below). A geometric proof of this result was first
given in [40].

The remainder of this paper is organized as follows. In section 2, we present the basic facts about
Anosov flows that are needed for the results cited above. A key result of this section, Theorem 2.6,
characterizes smooth functions on a manifold by the property that their restrictions to a regular
web of foliations should be uniformly smooth. This technical result was first proved by R. de la
Llavé, Marco and Moriyon [49] in the case of two complementary foliations, and is the key result
for the C∞-regularity theory. We give an alternative proof, based on elementary properties of the
Fourier transform. Our method of proof of Theorem 2.6 has been used by R. de la Llavé to extend
the theorem to a characterization of analytic functions [48].

Section 3 states in a precise form the results of this paper, gathered together for the reader’s
convenience.

In section 4, we prove the regularity theorem for the weak-unstable foliations. Section 5 defines
the Anosov cocycle, and gives a formula for its values at periodic orbits, the local obstructions to
regularity. Finally, in section 6 we prove that vanishing of the Anosov class implies smoothness of
the foliations. We also show that our modulus-of-continuity condition on the transverse derivative
is best possible.

Section 7 constructs the Godbillon-Vey class for foliations of regularity class C1+α for α > 1
2
.

Section 8 gives an alternative definition of this invariant for the case where the ambient manifold is a
circle bundle. In section 9 we derive the formula for the Godbillon-Vey invariant of geodesic flows for
metrics of negative curvature, modelled on Mitsumatsu’s results. This yields the characterization
of the geodesic flow for a metric of constant negative curvature as the geodesic flow with maximal
value for the Godbillon-Vey invariant.
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We conclude the paper with a short list of open problems. The first version of this manuscript
was circulated in May, 1986, and since that time considerable additional progress has been made
in the smooth rigidity theory for Anosov systems (cf. [9, 8, 11, 12, 13, 14, 15, 23, 26, 27, 28, 33, 32,
36, 37, 41, 42, 55]).

The results of this paper lay out the theory as the authors envision it will develop for higher
dimensional systems, though we expect with far greater difficulties involved. There are still several
very interesting questions remaining in the codimension-one case; we give four of them in section
10.

The authors have benefitted from conversations with many mathematicians during the develop-
ment of this work. We especially thank R. de la Llavé for explaining his papers to us, Y. Mitsumatsu
for providing an early version of his seminal paper [53], and B. Hasselblatt for numerous suggestions
to improve the clarity of exposition incorporated in this draft. The support of the Mathematical Sci-
ences Research Institute in Berkeley for the first author during the early development of this work
is gratefully acknowledged, and we thank the California Institute of Technology for its generous
hospitality.

2 Anosov Flows - Preliminaries

Let M be a closed Riemannian manifold. Let ft : M → M be a C∞-flow on M generated by
the vector field ξ = d

dt
(ft) |t=0 . The flow is called Anosov if there is a continuous splitting

TM = E+⊕E0⊕E− with E0 spanned by ξ and there are positive constants c1, c2 and γ such that

‖ Dft(η) ‖ ≥ c1 · etγ· ‖ η ‖ for η ∈ E+and t ≥ 0;

‖ Dft(η) ‖ ≤ c2 · e−tγ· ‖ η ‖ for η ∈ E−and t ≥ 0. (1)

The existence of an Anosov property (1) for a flow does not depend upon a particular choice of
Riemannian metric on TM, although the constants c1, c2 and γ will in general. The plane field E−

is called the strong-stable or contracting distribution for the flow, and E+ is the strong-unstable or
expanding distribution.

The expanding and contracting distributions are in general only Hölder [1], but Anosov also
proved that they are uniquely integrable. The integral manifolds of E− form the strong-stable folia-
tion denoted byW−, and the integral manifolds of E+ form the strong-unstable foliation denoted by
W+. define the weak-stable distribution to be the subbundle Ews = E0⊕E− and the weak-unstable
distribution to be Ewu = E0⊕E+. These are also uniquely integrable, with corresponding foliations
Fws and Fwu, respectively. Hirsch and Pugh [29] (see also [51]) proved that the individual leaves of
these foliations are smooth submanifolds of M, where the degree of smoothness is that of the flow.
Moreover, in the smooth topology on immersions, these submanifolds depend continuously both on
the flow, and on the ambient point through which the submanifold passes.

A function F : M ×R→ R is called a 1-cocycle over the flow ft if it satisfies the cocycle law

F (p, t+ s) = F (p, t) + F (ft(p), s) for all p ∈M and t, s ∈ R. (2)
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A cocycle F is said to be differentiable, or C1 along the flow, if the function F (ft(p)) is a C1 function
of t for all p ∈ M . For such a cocycle we define the infinitesimal generator, a continuous function
on M given by ϕ = ξ(F ) . The cocycle F is recovered from ϕ by the integral formula

F (p, t) =
∫ t

0
ϕ(fs(p))ds.

A cocycle F is called a 1-coboundary if for some measurable function Φ : M → R,

F (p, t) = Φ(ft(p))− Φ(p). (3)

In particular, if F is smooth along the flow, then ϕ = Φ′ξ ≡ dΦ(ξ) . The coboundary function Φ
may be required to satisfy an additional regularity condition; e.g., continuity, or Ck-differentiabilty
for some k ≥ 1. Note that if Φ is assumed to be continuous, or even just everywhere defined, then
for every periodic point p ∈M of period t0, F must satisfy the relation

F (p, t0) = Φ(ft0(p))− Φ(p) = 0. (4)

The flow ft is said to be topologically transitive if there exists a point p0 ∈M whose orbit under
the flow is dense in M. For cocycles over transitive Anosov flows with F possessing some minimal
degree of regularity, the vanishing conditions (4) at periodic orbits turn out to be both necessary
for the existence of even a measurable coboundary Φ, and sufficient for the existence of a regular
coboundary Φ. The following remarkable results on the existence of Hölder solutions of (3) were
obtained by A. Livshitz [45, 46] in the early 1970’s. The improvement to C∞-regularity of the
solution was established later, first by V. Guillemin and D. Kazhdan [24] for the geodesic flows
of surfaces of negative curvature, and then in complete generality by R. de la Llavé, Marco and
Moriyon [49].

THEOREM 2.1 (Livshitz) Let ft be a topologically transitive Anosov flow generated by the vec-
tor field ξ , and let ϕ : M → R be a Hölder function. Then the following are equivalent:

1. ϕ = Φ′ξ for a Hölder function Φ differentiable along the flow

2. ϕ = Φ′ξ almost everywhere for a measurable function Φ
differentiable along the flow

3.
∫ tp

0 ϕ(fs(p))ds = 0 for every periodic point p with period tp.

Moreover, the function Φ is unique up to an additive constant. If ϕ is a C1-function, then the
coboundary Φ is also C1.

The C1 regularity of the a solution Φ is easy to establish, given the existence of a continuous solution
Φ.

THEOREM 2.2 (Cocycle Regularity) Let ϕ be a C∞ function on M which satisfies condition
(1) of Theorem 2.1 for {ft} a C∞ Anosov flow. Then the solution Φ is C∞. Hence, if ft is,
in addition, topologically transitive and any of the conditions (1), (2) or (3) hold for ϕ, then a
C∞-solution Φ exists.
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The Cocycle Regularity Theorem is one of the main technical tools of our regularity theory, so
we give an essentially self-contained proof of it here, which is considerably briefer than the original
proof in [49]. For arbitrary p ∈M , and q ∈ W−(p), the forward orbits of p and q are attracting so
that it is easy to show

Φ(q)− Φ(p) =
∫ ∞

0
{ϕ(fs(p))− ϕ(fs(q))} ds

and for q ∈ W+(p) the backward orbits are attracting so that

Φ(q)− Φ(p) =
∫ ∞

0
{ϕ(f−s(p)− ϕ(f−s(q)} ds.

Naturally, we also have

Φ(ft(p))− Φ(p) =
∫ t

0
ϕ(fs(p)) ds

From these formulas and the Anosov Property (1), we can conclude that Φ is C1 , as the distributions
E−, E+ and E0 span the tangent spaces to M. The C∞ regularity of Φ is based upon Theorem 2.6
below, and observe that the hypotheses on Φ of that theorem are implied by the above formulas.
Theorem 2.6 is postponed until after we discuss an important application of Theorems 2.1 and 2.2.

A transverse invariant 1-form for the flow ft is a continuous 1-form on M which satisfies

τ(ξ) = 1, and τ(η) = 0 for η ∈ E− ⊕ E+ (5)

When the flow is topologically transitive, there is a unique continuous 1-form, up to a multiplicative
constant, which vanishes on the subbundle E−⊕E+, so that in the condition (5) we need only require
that τ(ξ) = 1 at one point of M. In general, the form τ is only Hölder continuous (see Theorem 4.1
of [57]). If the form τ happens to be C1, then it carries considerable additional information.

THEOREM 2.3 Let ft be a C∞ Anosov flow on a compact 3-manifold M with C1-transverse
1-form τ . Then:

1. The form τ is in fact C∞;

2. The invariant 3-form τ∧dτ is either identically zero, and then the flow is the suspension of
an Anosov diffeomorphism of the 2-torus, or τ∧dτ is nowhere vanishing.

REMARK. In the second case of the dichotomy described in (2.3.2), the flow is said to be contact.
Such a flow can be extended to a Hamiltonian flow on M × R with a homogeneous Hamiltonian
function (cf. Appendix, [3]). An immediate corollary of (2.3.2) is that the 2-form dτ is either
identically zero in the suspension case, or in the contact case is equal to the invariant transverse
flux form i(ξ)(dvol) and hence is also C∞. Here, dvol is the smooth invariant volume form for the
flow.

Proof. First we show (2.3.2). The 3-form τ∧dτ is continuous and flow-invariant. If it is identically
zero, then by Plante (Theorem 3.1, [57]; see also Ghys [19]) there exists a compact smooth section
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for the flow which must be a 2-torus. Obviously, the section can be chosen to be C∞, from which
the first case of (2.3.2) follows.

If τ∧dτ is not identically zero, then both its positive and negative parts define absolutely con-
tinuous, invariant measures for the flow (unless one of them vanishes identically.) An application of
the Livshitz Theorem, as described in [47], yields that any absolutely continuous invariant measure
for a transitive Anosov flow is given by a positive density; i.e., non-vanishing almost everywhere.
The Cocycle Regularity Theorem then implies that this density is a C∞ non-vanishing 3-form on
M, which must either be the positive or negative part of τ∧dτ and therefore equal to this form.

The proof of (2.3.1) is based upon a result from [41].

LEMMA 2.4 There is a smooth Anosov flow {gt} with generating vector field {ρ ·ξ}, for a positive
smooth function ρ, for which the invariant transverse form α is C∞, is C0-close to τ , and satisfies
dα = dτ . 2

The C∞-function ρ is uniquely determined by α from the equation 1 = α(ρ · ξ) = ρ · α(ξ). We
claim that this identity also suffices to show that τ is C∞. The identity dτ = dα and the de Rham
Theorem for M imply that there is a closed C∞ 1-form β on M and a C1 function H for which
τ = α + β + dH. We thus deduce that

1

ρ
= 1− β(ξ)−H ′ξ

Since ρ, α and β are C∞ , this implies that H ′ξ is C∞. As a C1 solution H to the equation (2.1.1)
exists, the Cocycle Regularity Theorem implies that H is C∞, and hence that τ is C∞. This
completes part (1) of Theorem 2.3. 2

We conclude this background section with a result which implies the
Cocycle Regularity Theorem. For the case of two complementary foliations, it was first proven by
R. de la Llavé, Marco and Moriyon (Lemma 2.3, [49]). The theorem below characterizes the C∞

functions on Rn by their local restrictions to complementary C0,∞-foliations of Rn with a transverse
regularity hypothesis. Our proof elaborates upon the (unpublished) idea of C. Toll to use a direct
Fourier transform approach, and estimate the decay rates of the transforms via a cone method. We
include this proof due to its simplicity, which has led to generalizations to the analytic case [48],
and because the multifoliation case has proved to be an essential tool in the study of the smooth
stability of lattice actions on higher dimensional tori (cf. [33]). Yet another proof for the case of
two foliations has been given by J.-L. Journé, [34, 35] with a different regularity hypothesis on the
foliations and using the method of Taylor series approximations.

DEFINITION 2.5 . Let F1,F2, . . . ,Fr be a set of continuous foliations of Rn, with the leaves
of Fi of dimension ni, where n1 + n2 + · · · + nr = n. We say that these are a Ck-regular web of
foliations of Rn if they satisfy the additional regularity hypotheses:

1. For each 1 ≤ i ≤ r, the leaf Li(p) of Fi through p ∈ Rn is a Ck immersed submanifold of M,
and the immersion depends continuously (in the Ck-topology on immersions) on the point p.
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2. The tangential distributions TFi are pairwise transverse, and moreover there is an internal
direct sum decomposition TM = TF1 ⊕ · · · ⊕ TFr

3. For each 1 ≤ i ≤ r, there exists an ε > 0 so that for each p ∈ Rn, there is a coordinate system
Φp : (−ε, ε)n → Rn satisfying:

(a) Φp(0, 0) = p

(b) For each i, let ~xi ∈ (−ε, ε)ni, and write ~x = (~x1, . . . , ~xr) for a typical point ~x ∈ (−ε, ε)n.
Then holding ~xj fixed for j 6= i and letting ~xi vary, we obtain a local Ck-chart in the leaf
Li(Φp(~x1, .., ~xi = 0, .., ~xr)). We define

Φi
p(~x)(~xi) = Φp(~x).

(c) For each 1 ≤ i ≤ r, let dvi denote the (n − ni)-volume form on Rn−ni lifted to Rn via
the product structure of (b). Then the push-forward density

ωΦ
i = Φp,∗(dvi)

is a continuous (n − ni)-form on the image of Φp. (This condition implies that each
foliation Fi is absolutely-continuous transversally, with continuous transverse invariant
volume form.)

(d) The continuous (local) form ωΦ
i restricts to a Ck-section of the normal density bundle

along each leaf of Fi. That is, the global form ωΦ
i determined by the local forms is smooth

when restricted to the leaves of Fi.

Let us mention two examples where regular webs of foliations arise naturally from dynamical
systems. The stable and unstable foliations of a Ck-Anosov diffeomorphism of a compact manifold,
M, are Ck-immersed submanifolds, with the individual leaves depending continuously on the base-
point through which they pass. The tangential distributions are transverse, as they are identified
with the Anosov splitting of TM from condition (1). The transverse regularity hypothesis, (2.5.3c),
was essentially proven by Anosov, but a detailed proof following Anosov’s ideas is given in (Lemma
2.5, [49]). Thus, given any coordinate chart on M, the restriction of the stable and unstable folia-
tions to the chart will satisfy the hypotheses of Definition 2.5. For an Anosov flow, one considers
a smooth transversal to the flow in a coordinate chart, and takes for the foliations F1 and F2 the
restrictions to the transversal of the weak-unstable and weak-stable foliations of the flow.

The second class of examples is provided by a family of n, commuting, volume-preserving C∞

Anosov diffeomorphisms of the n-torus, Tn. For 1 ≤ i ≤ n, we require that each Fi be one-
dimensional, and be the stable manifold for one of the Anosov diffeomorphisms. It then follows
that each Fi is transversally C1, and hence restricted to any coordinate chart on Tn, will be a web
of 1-dimensional foliations of Rn. This is a basic example in the studies [33, 32, 42].

THEOREM 2.6 Let F1, . . . ,Fr be a regular web of foliations on Rn.
Suppose that f : Rn → R is continuous, and for each 1 ≤ i ≤ r and p ∈ Rn, the restriction of f to
the leaf Li(p) of Fi is Ck, with the leafwise Ck-jet of f |Li(p) depending continuously on the point p.
Then f is Ck−n−1 on Rn.
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Proof. We give the proof for k =∞, and leave the modifications for the case k <∞ to the reader.
The conclusion on f is local, so we can assume that f has compact support in a common foliation
chart for all of the foliations, which without loss can be assumed centered at the origin. The first
step is to make a change of coordinates, for which the appropriate coordinate subplanes through the
origin are the leaves through the origin for the foliations. This is possible, as the individual leaves
of the foliations are C∞-immersed submanifolds. Using that the tangential distributions TFi are
continuous fields, we can moreover assume that on the support of f , the above coordinate subplane
distributions are C0-close to TFi near the origin. We put these two conclusions in a precise form,
but first must introduce notation.

Recall from the definition (2.5) that there is a product decomposition

Rn = Rn1 ⊕ · · · ⊕Rnr ,with ~x ∈ Rn, ~x = ~x1 + · · ·+ ~xr

the corresponding decomposition of vectors. Let us write ~xi = ~x− ~xi for the vector obtained from
~x by setting the ith component equal to 0. Write F̃i for the foliation Fi in these local coordinates.
Then we can assume there exists ε > 0 so that:

1. The leaf of F̃i through ~x = 0 contains the subdisc
{~xj = 0 for j 6= i, ‖ ~xi ‖< ε}.

2. For each 1 ≤ i ≤ r, there is a function

~ψi : (−ε, ε)n → Rn−ni ⊂ Rn

so that the general leaf of F̃i through ~xi is locally given by the graph,

L~xi = {~xi + ~ψi(~xi + ~xi) | ~xi ∈ Rni}

and there is 0 < δ < r−2 such that ‖ ~ψi(~x) ‖≤ δ for all ~x ∈ Rn with ‖ ~x ‖< ε.

3. For each ~xi, the function

~ψi~xi : (−ε, ε)ni → Rn−ni , defined by ~xi 7→ ~ψi(~xi + ~xi)

is C∞, and in the C∞-topology on maps depends continuously on the parameter ~xi. Moreover,
there is the uniform estimate

‖ ∂

∂xj
(~ψi(~x)) ‖ ≤ δ for 1 ≤ j ≤ n.

4. For each ~xi, the mapping

~ψi~xi : (−ε, ε)n−ni → Rn−ni , ~xi 7→ ~ψi(~xi + ~xi) ∈ Rn 7→ Rn−ni (6)

is absolutely continuous, with absolutely continuous inverse, and pushes the standard measure
d~xi on Rn−ni forward to a continuous measure on a neighborhood of 0 ∈ Rn−ni . (This
condition is the coordinate form of the hypothesis (2.5.3c).)
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Let f(~x) denote the function f in the above coordinates about the the origin. Introduce the

“dual” variable ~ξ ∈ R̂n to ~x. As f is continuous with compact support, we can form its Fourier
transform f̂ on R̂n, given by the usual formula

f̂(~ξ) = (2π)−n/2 ·
∫

Rn
exp{i(~ξ · ~x)}f(~x) d~x (7)

LEMMA 2.7 For each integer m > 0, there exist constants
C(m), T (m) > 0 such that for all ~ξ ∈ Rn with ‖ ~ξ ‖= 1,

| f̂(t~ξ) |< C(m) · t−m for t > T (m). (8)

The estimate (8) implies that for each s > 0, the function f belongs to the s-Sobolev space on
Rn. As f has compact support, we can then apply the Sobolev lemma to deduce that f is C∞. Thus,
the proof of Theorem 2.6 is reduced to proving Lemma 2.7.
Proof of Lemma 2.7. The “cone method” of proof alluded to above is based on the simple
observation that for any unit vector ~ξ ∈ R̂n, there exists an index 1 ≤ i ≤ r such that r· ‖ ~ξi ‖≥‖ ~ξ ‖.
This says that ξ lies in a cone centered on the coordinate plane Rni ⊂ Rn. We fix a particular
value of i with this property, and make a change of variables for the integral in (7) using the graph
presentation of the foliation F̃i. The estimate (8) will then follow from a second change of variables

and the technical hypotheses on ~ψi made above.
Fix a unit vector ~ξ and index 1 ≤ i ≤ r so that ~ξ = ~ξi + ~ξi, where r· ‖ ~ξi ‖≥‖ ~ξ ‖ . Introduce

the function
F̂ (t) = f̂(t~ξ).

Next, make a change of coordinates in Rn using the graph-function of Fi, (~xi, ~x
i) = (~xi, ~ψ

i(~xi, ~v
i))

into the integral (7), and separate out the variable ~vi to obtain

F̂ (t) = (2π)−n/2 ·
∫

Rn−ni
Φ(~vi) d~vi (9)

where we introduce the function

Φ(t, ~vi) =
∫

Rni

exp{it(~ξi · ~xi + ~ξi · ~ψi(~xi, ~vi))}f(~xi, ~ψ
i(~xi, ~v

i)) | ∧~ψi | (~xi, ~vi) d~xi (10)

where | ∧~ψi | d~vi is the image of the standard volume form d~vi under the map (6). By our

hypotheses, the function ~xi 7→| ∧~ψi | (~xi, ~v
i) is C∞ in ~xi, and depends continuously on ~vi in the

C∞-topology on maps.
The second step in the proof, and the key idea, is to make a second change of coordinates in

the definition of Φ(t, ~vi), which will yield superpolynomial decay of this function in the variable t,
with the estimates uniform in ~vi. The idea is to write the equation (10) as a convolution integral
along the leaves of F̃i, with an integrand consisting of f restricted to the leaves, and other terms
arising from the change of variables, but uniformly smooth due to the regularity hypotheses on the
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web of foliations. The decay in t is then a consequence of the standard properties of the Fourier
transform of smooth functions. The proof of Lemma 2.7 follows, as F̂ (t) is obtained from Φ(t, ~vi)
by integrating the second variable over a compact set.

We begin with some linear algebra. Let A be an invertible ni×ni-matrix, whose first row is the
vector ~ξi considered as an element of Rni , and whose subsequent rows form an orthonormal basis
for the complement to ~ξi. Let B be an ni × (n− ni)-matrix whose first row is ~ξi, and has 0 for all
other entries. Introduce a new variable

~zi = ~zi(·, ~vi) : (−ε, ε)ni → Rni

~zi(~xi, ~v
i) = ~xi + A−1 ·B · ~ψi(~xi, ~vi) (11)

The choice of A and B is made to ensure that

~ξi · ~zi(~xi, ~vi) = ~ξi · ~xi + ~ξi · ~ψi(~xi, ~vi),

and give the matrix norm estimate

‖ A−1 ·B ‖≤ ‖
~ξi ‖
‖ ~ξi ‖

≤ r.

Thus, by the estimates in conditions (2,3) above, the function defined by (11) is injective in ~xi, and
the matrix differential ∂~zi

∂~xi
is invertible, uniformly in ~vi. Introduce the inverse function ~xi = α(~zi, ~v

i)

which is C∞ in the variable ~zi, uniformly in ~vi. Substitute this change of variables into (10) to
obtain

Φ(t, ~vi) =
∫

Rni

exp{it~ξi · ~zi) F (~zi, ~v
i) d~zi (12)

where we have as integrand the product of functions

F (~zi, ~v
i) = f(α(~zi, ~v

i), ~ψi(α(~zi, ~v
i))) | ∧~ψi | (α(~zi, ~v

i), ~vi) | ∂α
∂~zi
| (~zi, ~vi). (13)

The function F is compactly supported, and all of the terms appearing in (13) are C∞ in ~zi,
uniformly in ~vi. Thus, its Fourier transform in ~zi has superpolynomial decay in the transform
variable ~̂zi, uniformly in ~vi, so that Φ(t, ~vi) has the same property as was to be shown. 2

3 Formulation of Results

A continuous function f : (a, b)→ R is in the Zygmund class Λ∗(a, b), or just Λ∗ when the domain
is clear from the context, if Λ∗(f) <∞, where the Zygmund norm is given by

Λ∗(f)
def
= sup

a<x<b
lim sup
h→0

| f(x+ h) + f(x− h)− 2f(x) |
| h |

(14)

Zygmund studies this class of functions in his famous treatise [65], and in particular shows (Theorem
3.4) that a function f ∈ Λ∗(a, b) has modulus of continuity Ω(s) = O(s | log(s) |), and therefore f
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is α-Hölder for all α < 1. However, f need not be Lipshitz, nor be of bounded variation. The norm
(14) is one of a family of such “norms” which arise in the study of singular integral operators (cf.
[44, 59]).

The definition of the Zygmund class for functions on Rn uses the same norm as in (14), but
replaces the open interval with an open subset of Rn. For a non-negative integer, k, and real number
0 ≤ α < 1, consider the five classes of functions denoted respectively by:

Ck,α, Ck,1, Ck,Λ∗ , Ck,Ω, Ck,ω (15)

which are k-times differentiable on the appropriate open domain, and whose kth-derivatives are
respectively of class

α−Hölder; Lipshitz; Zygmund; Ω(s) = O(s | log(s) |); ω(s) = o(s | log(s) |)

A vector subbundle E ⊂ TM of the tangent bundle of a manifold M is said to be in one of the
classes (15) if E is locally spanned by vector fields whose coordinate expressions with respect to a
local C∞-framing of TM are in the appropriate class.

THEOREM 3.1 (Regularity) Let {ft} be a volume-preserving, C3-Anosov flow on a compact
Riemannian 3-manifold M.

1. The weak-stable distribution Ews and the weak-unstable distribution Ewu are of class C1,Λ∗;

2. If {ft} admits a C1-transverse invariant 1-form, τ , then the strong-stable distribution E− and
the strong-unstable distribution E+ are also of class C1,Λ∗.

Part (2) of Theorem 3.1 is an immediate consequence of part (1) and Theorem 2.3. The proof
of part (1) is givien in section 4.

Anosov observed (Lemma 24.1, [2]) that for an area-preserving, C3-Anosov diffeomorphism
F : Tn → Tn of the 2-torus, if either the stable or the unstable distribution of F is C2, then at each
periodic orbit of F there exist a differential relation of third order which F must satisfy. The next
three theorems put this observation into a systematic framework.

Let {ft} be a volume-preserving, C3 Anosov flow on the 3-manifold M. For each periodic point
p ∈ M of period tp, let Ψp : (−ε, ε)2 → M be a C3-adapted transversal to the flow, as defined in
section 4 below. (These always exist for the suspension of a C3-toral automorphism; in general,
the Anosov flow must be C4 as in Proposition 4.2.) The Poincaré return map of the flow, for the
transversal Ψp, is defined on an open subset (0, 0) ∈ Tp ⊂ (−ε, ε)2. The return map is written in
coordinates as

F (x, y) =

{
µx+ ϕ(x, y)

µ−1y + ψ(x, y)

}
We adopt the notation that the partial derivatives with respect to the coordinates x and y are
denoted by the corresponding subscripts. At the periodic orbit p, we define:

Af (p, tp) =
1

2
µψxyy(0, 0) =

−1

2
µ−1ϕyxx(0, 0) (16)
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THEOREM 3.2 (Local Vanishing) Let {ft} be a volume-preserving, C4-Anosov flow on a closed
3-manifold M. Let p be a periodic orbit of period tp > 0. Suppose that one of the following three
conditions holds:

1. The first transverse derivative of Ews or Ewu has modulus of continuity ω(s) = o(s· | log(s) |)
at p;

2. Either Ews or Ewu has a measurable transverse second derivative almost everywhere on M;

3. There is a measurable second derivative for the local angle function between Ews and Ewu

almost everywhere on M;

Then Af (p, tp) = 0.

The proof of the local vanishing theorem above is given in section 5, and is based on a detailed
study of how the third jet of the Poincaré map dictates the regularity of the unstable foliations at
periodic orbits.

In section 5 we define the Anosov cocycle AΨ
f over the flow {ft}. For a periodic point p ∈M of

period tp, the special values of this cocycle are given by (16). Let H1({ft}; R) denote the group of
C1-cocycles over the flow {ft} modulo the C1-coboundaries.

THEOREM 3.3 (Anosov Class) Let {ft} be a volume-preserving, C4-Anosov flow on a closed
3-manifold M.

1. The cohomology class Af ∈ H1({ft},R) of the cocycle AΨ
f is independent of the choice of

adapted transverse coordinates Ψ for the flow.

2. If {ft} and {f̃t} are two volume-preserving, C6-Anosov flows on M, and Θ is a C1-diffeomorphism
of M conjugating the two flows, then Θ∗Ãf̃ = Af .

It is well-known that when two Anosov flows, {ft} and {f̃t}, on a compact manifold M are
topologically conjugate by a homeomorphism F, then there exists an α > 0 such that F is α-Hölder.
We can thus compare their Anosov classes, Af and Ãf̃ , among the Hölder 1-cocycles over the flow
{ft}. By the Livshitz Theorem 2.1, the cohomology classes of these flows are determined by their
values at periodic orbits. We fix the flow {ft}, and a basic problem is to find a characterization
of the Anosov flows topologically conjugate to {ft}, modulo C1-conjugacy, with the same Anosov
class. The next result solves this problem for the case when the Anosov class vanishes.

THEOREM 3.4 (Smooth Rigidity) Let {ft} be a volume-preserving, Ck-Anosov flow on a
closed 3-manifold M, for k ≥ 5.. The Anosov class Af vanishes if and only if the distributions
Ewu and Ews are Ck−3. For k = ∞, the distributions are C∞.

The proof of Theorem 3.4 begins with the study of the Anosov cocycle in section 5, and is
concluded in section 6.
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COROLLARY 3.5 Let {ft} be as in Theorem 3.4. The local obstructions Af (p, tp) of (16) vanish
for every periodic orbit of the flow if and only if the weak-unstable and the weak-stable distributions
are Ck−2. In particular, if either distribution is of class C1,ω, then both distributions are Ck−2.

Proof: If either distribution is C2, then the local obstructions vanish by Theorem 3.2, and by the
Livshitz Theorem the Anosov cocycle is a coboundary. Conversely, by the Livshitz Theorem, if the
local obstacles vanish, then the Anosov class vanishes and by Theorem 3.4 the distributions are
Ck−2. 2

COROLLARY 3.6 Let F : T2 → T2 be an area-preserving, Ck-Anosov diffeomorphism of the
2-torus, for k ≥ 5. Then there is the dichotomy:

1. For some periodic point p ∈ T2 of F, one of the stable or unstable distributions E− or E+ is
not C1,ω at p;

2. The diffeomorphism F is Ck−3-conjugate to a linear Anosov automorphism of T2.

In particular, if the Anosov class of the flow obtained by suspending F vanishes, then F is Ck−3

conjugate to a linear automorphism.

Proof: The suspension of the diffeomorphism F produces a flow {fFt } on the closed 3-manifold

M =
T2 ×R

(x, r) ∼ (F (x), r + 1)
.

The adapted system of local transversals for this flow can be chosen to lie in the submanifolds
T2 × {r}, for r ∈ [0,1], so that the local Anosov obstructions for the flow are calculated in terms
of F at periodic points. We then apply the Livshitz Theorem to this flow to conclude that either
some local obstacle is not zero, and hence by Theorem3.2 one of the distributions E− or E+ is not
C1,ω at this periodic point, or the Anosov class of the flow vanishes and hence by Theorem 3.4 the
distributions are Ck−3. The flow {fFt } has a Ck-transverse 1-form, so the strong foliations are of
the same class, and hence the stable and unstable foliations of F are Ck−3. The proof of Theorem
10.2 by Avez [4] then implies that F is Ck−3-conjugate to an Anosov linear automorphism. 2

COROLLARY 3.7 Let g denote a C∞ Riemannian metric on a closed 2-dimensional orientable
manifold S, such that the geodesic flow flow {f gt } on the unit tangent bundle M = T 1S is Anosov.
Then the local obstructions Af (p, tp) for the flow vanish at all periodic orbits if and only if the metric
g has constant negative curvature.

REMARK. A metric with strictly negative curvature has a contact Anosov geodesic flow [2].
However, there are weaker hypotheses which will guarantee that the flow is Anosov, as discussed
by Eberlein [10].
Proof: A metric of constant negative curvature has analytic weak-stable and weak unstable folia-
tions, so that all of the local obstacles vanish. Conversely, note that the Louiville measure on M is
flow invariant. Thus, if the local obstacles vanish, then the horocycle foliations of the geodesic flow
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are C∞ by Theorem 3.4. It then follows by the work of Ghys [17] that the flow is C∞-conjugate
to a flow for a metric of constant negative curvature. This implies that the metric and topological
entropies of the flow {f gt } must agree, so by the metric entropy rigidity theorem of Katok [39] the
metric g must have constant curvature. Alternately, the Godbillon-Vey invariant of the weak-stable
foliation of the flow must assume the maximal possible value, as the foliation is C∞-conjugate to a
Roussarie foliation, hence by Corollary 9.3 below the metric g has constant curvature. 2

The second part of this paper centers on the Godbillon-Vey class of codimension-one foliations.
This is a degree 3 cohomology class, traditionally defined for transversally C2 foliations (cf. [6,
22].) The foliations arising from Anosov dynamical systems are conjecturally rarely C2, so it is of
significance that an extension of the invariant to foliations of diffentiability class less than C2 can
be given. The next four results describe the properties of this extended class.

Let us first recall two definitions from the theory of foliations. A codimension-q foliation F on a
manifold M is said to be of class Ck,α if its tangential distribution TF is defined as the annihilating
subspace of a q-form, θ, on M where in local coordinates θ is of differentiability class Ck,α. The
standard equivalence relation for cohomology invariants of foliations is concordance. We say that
two codimension-q Ck,α-foliations F0 and F1 on M are Ck,α-concordant if there is a codimension-q
Ck,α-foliation F on the product M× [0,1], such that the restriction of F |M×{i} is Ck,α-conjugate
to Fi for i = 0, 1.

THEOREM 3.8 (Dynamical Godbillon-Vey) Let F be a codimension-one C1,α-foliation of a
closed orientable 3-manifold M, for α > 1

2
. Then there is a Godbillon-Vey class, GV(F) ∈ H3(M ; R)

which extends the usual Godbillon-Vey class for C2-foliations, and satisfies:

1. The cohomology class GV(F) depends continuously on the defining 1-form θ for F , in the
C1,α-topology on 1-forms;

2. If F0 is C1,α-concordant to F1, then GV(F0) = GV(F1);

3. Let Θ : M0 →M1 be a diffeomorphism conjugating two C1,α-foliations, F0 to F1. If either

• Θ is C1,β for α + β > 1,or

• Θ and Θ−1 are transversally Lipshitz for α = 1,

then GV(F0) = Θ∗GV(F1).

REMARKS.

• T. Tsuboi has shown that it is not possible to define a “Godbillon-Vey” class for C1-foliations
which is invariant under C1-concordance [64]. Moreover, Tsuboi has constructed a family
of examples of codimension-one C2-foliations on a 3-manifold such that their Godbillon-Vey
invariants do not depend continuously on the foliations in the C1,α-topology for α < 1

2
.

• The definition of the Godbillon-Vey invariant given in section 7 is based on distribution
theory. An alternative construction of our extension is given in section 8, based on Thurston’s
“area functional” approach. The methods introduced in section 8 are the basis for Tsuboi’s

17



more general extension of the Godbillon-Vey class, which incorporates both the invariant of
Theorem 3.8 and the piecewise-C2 extension defined by Ghys (cf. [18, 63]).

• The C1-invariance of the Godbillon-Vey class for C2-foliations was first proved by G. Raby
[58]. However, Ghys and Tsuboi [21] proved that in the C2 case, the result is weak, as
the C1 conjugacy Θ between the two foliations must actually be C2 on the support of the
cohomology class GV(F′). The results (3.8.3) are new, and part of a more general study of
the C1-invariance of the secondary cohomology invariants of foliations [31].

Define the stable and unstable Godbillon-Vey invariants of a volume-preserving C3-Anosov flow
{ft} on a closed, oriented 3-manifold M , to be the real numbers:

gvs({ft}) = 〈GV (Fws), [M ]〉
gvu({ft}) = 〈GV (Fwu), [M ]〉 (17)

where the Godbillon-Vey classes of the weak-stable and weak-unstable foliations are well-defined by
Theorems 3.1 and 3.8, and we pair these classes with the fundamental class [M] of the 3-manifold.

COROLLARY 3.9 Let {fλ,t|0 ≤ λ ≤ 1} be a 1-parameter family of volume-preserving C3-Anosov
flows on a closed 3-manifold M, which vary C3 in the parameter λ. Then both the stable and unstable
Godbillon-Vey invariants of the flows vary continuously with λ.

Proof: The weak-stable and weak-unstable foliations of the family of flows depend C1,α on the
parameter λ, for any α < 1, (cf. Lemma 3.8 of [52], or see [43]). The corresponding Godbillon-Vey
classes then vary continuously with the parameter by Theorem 3.8.1. 2

The geodesic flow of a metric of negative curvature on a closed surface is on a circle bundle over
the surface, and the weak-stable foliation is transverse to the fibers of this bundle. In this context,
there is a technical, but significant strengthening of the conclusion (3.8.3) above. The proof of the
following is given at the end of section 7.

THEOREM 3.10 (Absolute-Continuity Invariance) Let F and F̃ be codimension-one, C1,α-
foliations on closed oriented 3-manifolds M and M̃ , respectively, for α > 1/2. Suppose that F
is the weak-stable foliation of a volume-preserving C3-Anosov flow on M, and that there exists a
homeomorphism Θ : M → M̃ conjugating F to F̃ with Θ transversally absolutely continuous. Then
GV(F) = ± Θ∗GV(F̃), according to whether Θ is orientation preserving or reversing.

The last result in this development is the Formula of Mitsumatsu for the value of the Godbillon-
Vey invariant of a geodesic flow of a closed surface. It is necessary to introduce a few technical
properties of these flows before we can state the result.

Let {ft(g)} be the geodesic flow on M = T 1Σ for a smooth metric g of strictly negative curvature
on an oriented surface Σ. Give TM the natural Riemannian metric induced by the metric on TΣ on
its bundle of orthonormal frames, and let dvol denote the Riemannian volume form on M . The π/2-
rotation on M smoothly conjugates the weak-stable to the weak-unstable foliation of the flow, so the
two invariants defined by (17) coincide, and we denote their common value by gv(g). For a metric of
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constant negative curvature, the weak-stable foliation on M is called the Roussarie foliation, after
the paper [Ro] where the Godbillon-Vey invariant for this foliation was calculated to be 4π2χ(S).
The integer χ(Σ) is the Euler characteristic of the surface Σ. Mitsumatsu [53] calculated the value
of gv(g) for all metrics of negative curvature for which the weak-stable foliation is of class C2. As
seen above, this restriction forces the metric to be constant curvature. However, the formula he
derived continues to be defined for the non-constant curvature case, and a modification of his proof
yields a calculation of gv(g) in the more general case.

Let ∂/∂φ denote the unit tangent vector field on M tangent to the fibers, whose time t flow is
rotation by t radians in T 1Σ. Introduce the positive, global C1-solution H = H+ : M → R to the
Ricatti equation

ξg(H) +H2 + k(g) ◦ π = 0 (18)

where k(g) : Σ→ R is the Gaussian curvature function of the metric g. We define the Mitsumatsu
Defect

Def(g) = 3 ·
∫
M

(
∂H

∂φ

)2

· dvol (19)

THEOREM 3.11 (Mitsumatsu Formula) Let g be a C4 metric with strictly negative curvature
on a closed surface Σ. Then the weak-stable (and weak-unstable) foliation of the geodesic flow has
a well-defined Godbillon-Vey invariant, given by the formula

gv(g) = 4π2χ(Σ)−Def(g).

Moreover, Def(g) is non-negative and equal to zero if and only if g has constant curvature.

REMARK. There is a striking resemblance between the formula (19) and the Pesin Formula [56]
for the metric entropy h(g) of the geodesic flow {ft(g)} with respect to the Liouville measure dvol
on M :

h(g) =
∫
M
H · dvol (20)

Recall that the entropy of an Anosov flow is a measure of the growth rate of the lengths of the
closed orbits of the flow [38]. Comparing the formulas (19) and (20) suggests that the term Def(g)
should be viewed as a type of “mean variation” of the distribution of the closed orbits.

We conclude the section on results with the two applications of the Formula of Mitsumatsu
mentioned in the Introduction.

COROLLARY 3.12 (Topological Non-invariance of Godbillon-Vey) Let M be the unit tan-
gent bundle to a closed oriented surface Σ with negative Euler characteristic. There exists a con-
tinuous family of codimension-one C1,Λ∗-foliations on M parametrized by the space of metrics of
negative curvature,

{Fg | g a metric on Σ of strictly negative curvature} ,

such that the Godbillon-Vey invariants gv(Fg) vary continuously and non-trivially in the C4-topology
on metrics. Furthermore, all of the foliations Fg in this family are Hölder-topologically conjugate,
but not topologically conjugate by absolutely-continuous maps.
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COROLLARY 3.13 (Measure Rigidity) Let g be a C4 metric of strictly negative curvature on
a closed surface Σ. Then the geodesic measure class at infinity coincides with the harmonic measure
class of g if and only if g has constant curvature.

Proof. The metric g is conformally equivalent to a metric of constant negative curvature, g0, so
there is a positive scalar function ρ : Σ → R+ such that g = ρg0. By the conformal invariance of
the Laplacian in dimension two, the harmonic measure classes for g and g0 coincide. If the geodesic
measure is absolutely continuous with respect to the harmonic one, then there exists a continuous,
absolutely continuous orbit equivalence h between the geodesic flows {ft(g)} and {ft(g0)} (For a
proof of this folk-lore theorem, see [40].) We then have that h conjugates the weak stable foliation
of the metric g to the weak-stable foliation of the metric g0, and the conjugacy is transversally
absolutely continuous. Reversing the rôles of g and g0 shows that the inverse conjugacy is also
absolutely continuous, so by Theorem 3.10, gv({ft(g)}) = 4π2, and hence by Theorem 3.11 g has
constant curvature. 2

4 Regularity of the Weak-Unstable Foliations

Let {ft} be a C3-Anosov flow on the closed Riemannian 3-manifold, M, which leaves the Riemannian
volume form dvol invariant. In this section, we prove that the weak-unstable foliation of the flow
is in the class C1,Λ∗ . We will first show that the transverse derivative has modulus of continuity
Ω(s) = O(s | log(s) |), and then observe that a modification of the argument establishes the stronger
result that the derivative is in the Zygmund class.

We can assume without loss that the bundles E+ and E− are orientable. Let η+ denote a unit
vector field spanning E+, and η− denote a vector field spanning E− so that the triple {ξ, η+, η−}
is a unit volume frame at each point. Define the local multipliers of the flow, λ+(p, t) and λ−(p, t),
by the equation

Dft(η
+(p)) = λ+(p, t) · η+(ft(p))

Dft(η
−(p)) = λ−(p, t) · η−(ft(p)) (21)

The flow invariance of the volume form implies that the multipliers satisfy λ+ · λ− = 1, and we
say that the local expansion and contraction multipliers of the flow are equal. The work of Hirsch
and Pugh [30] then implies that the foliations Fws and Fwu are C1, and the transverse derivative
is α-Hölder for some α < 1.

There are three steps in the proof. We first introduce adapted transverse coordinates for the
flow, based on the C1 foliations Fws and Fwu. The vector field η+ above need not even be C1, so
we replace it with a unit vector field e+ which is C1, and the pair {ξ, e+} still spans Ewu. The
Hölder function Ω is used to define a norm on the set of C2-vector fields near to e+. We essentially
prove that there is a compact set in this norm which is invariant under the projectivized transverse
action of the flow. More precisely, we show that any C2-vector field v which is C1-close to e+ is
exponentially attracted to e+ by the forward iterates of the flow, yielding a sequence of vector fields
which are Cauchy in the Ω-norm. This implies that e+ is C1,Ω, which proves that Ewu is of class
C1,Ω.
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For each p ∈M , let Lwup and Lwsp denote the weak-unstable and weak-stable manifolds through
p.

DEFINITION 4.1 (Adapted Transverse Coordinates) Let {ft} be a volume-preserving Ck-
Anosov flow on the closed 3-manifold M, for k ≥ 2.
Ck-adapted transverse coordinates for the flow consists of a C1-map

Ψ : M × (−ε, ε)2 →M

for some ε > 0, which satisfies

1. For each p ∈M the map

Ψp : (−ε, ε) → M (22)

Ψp(x, y) = Ψ(p, x, y)

is a Ck-diffeomorphism into, with the vectors D(x,y)Ψp(∂/∂x) and
D(x,y)Ψp(∂/∂y) uniformly transverse to the flow vector field ξ(Ψp(x, y)): We specify that the
angles be everywhere greater than π/4, and orthogonal to the vector ξ(p) for (x,y) = (0,0).

2. The maps

Ψp : {(x, 0)| | x |< ε} → L+
p ⊂ Lwup (23)

Ψp : {(0, y)| | y |< ε} → L−p ⊂ Lwsp

are coordinates onto the 1-dimensional submanifolds L+
p and L−p centered at p, and depend C1

on the basepoint p, when considered as Ck-immersions of (−ε, ε) into M.

3. For each p ∈ M , define Xp = Ψp((−ε, ε)2), which by (4.1.1) above is a uniformly embedded
transversal to the flow.

• The C1-foliation W u
p of Xp defined by the restriction Fwu|Xp is C1-tangent at p to the

linear foliation of Xp by the coordinate lines parallel to the x-axis, in the coordinates
provided by Ψp.

• The C1-foliation W s
p of Xp defined by the restriction Fws|Xp is C1-tangent at p to the

linear foliation of Xp by the coordinate lines parallel to the y-axis, in the coordinates
provided by Ψp.

4. Let dν be the restriction of the 2-form i(ξ)(dvol) to Xp. Then

Ψ∗p(dν) = dx ∧ dy

REMARK. Adapted transverse coordinates are a cocycle form of the Moser-Sternberg canonical
coordinates for a symplectomorphism. We briefly recall the relevant result from their theory (cf.
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[54, 60]). Let F = (F1(x, y), F2(x, y)) be a C∞-local diffeomorphism of an open neighborhood of
the origin,

F : U → R2, with F (0, 0) = (0, 0), and F ∗(dx ∧ dy) = dx ∧ dy

such that the eigenvalues of the differential DF are not of modulus 1. Then by Theorem 1 of [54],
(cf. also Theorem 9, [60]), there is a C∞, volume-preserving local change of coordinates about (0,0)
so that the germ of F in the new coordinates (x̃, ỹ) has the form

x̃∗ = F̃1 ∼ x̃(µ + ax̃ỹ + a2(x̃ỹ)2 + · · ·) (24)

ỹ∗ = F̃2 ∼ ỹ(µ−1 − ax̃ỹ + b2(x̃ỹ)2 + · · ·). (25)

At (0,0), we identify the non-zero first derivatives

∂(F̃1)

∂x̃
= µ;

∂(F̃2)

∂ỹ
= µ−1; (26)

the second derivatives of F̃ vanish; and there are two non-vanishing third derivatives

∂3(F̃1)

∂x̃∂x̃∂ỹ
= 2a = − ∂3(F̃2)

∂x̃∂ỹ∂ỹ
. (27)

At a periodic orbit of the flow, the conditions (4.1.1-4) imply that the Poincaré return map of
the flow on the transversal Xp in the local coordinates Ψp agrees to second order with the Moser-
Sternberg local canonical form. This is stated explicitly in Lemma 4.7 below, and is a key point in
our constructions.

PROPOSITION 4.2 Ck−1-adapted transverse coordinates exist for a volume preserving Ck-Anosov
flow on a closed 3-manifold, for k ≥ 3.

Proof. The foliations Fws and Fwu are C1 by the Hirsch-Pugh theory [30], and we assume that
the Anosov distributions are orientable, so we can choose unit C1-vector fields e+ and e− on M
satisfying for each p ∈M

• e+(p) ∈ Ewu(p) & e−(p) ∈ Ews(p)

• e+(p) and e−(p) are orthogonal to ξ(p).

There exist a constant 0 < c < 1 such that the Riemannian exponential map exp : TM →M ×M
is a diffeomorphism into, when restricted to a c-tube around the zero section in TM. Thus, there
exist a constant 0 < ε < c so that the map

E : M × (−2ε, 2ε)2 → M ×M (28)

(p, (a, b)) → exp(a · e+(p) + b · e−(p))

satisfies
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• E is a C1-diffeomorphism into;

• Ep(a, b) = E(p, (a, b)) is C∞ in the variables (a,b)

• Xp
def
= Ep((ε, ε)

2) is uniformly transverse to the vector field ξ, with angles bounded below by
π/4.

Recall that Lwup is the curve through p in the transversal Xp contained in a leaf of the weak-
unstable foliation, and Lwsp is the corresponding curve for the weak-stable foliation. The images of
these curves under the local coordinates Ep are Ck, and tangent to the x and y-axis, respectively,
at the origin (0, 0). Also, the Ck-germs of these image curves depend C1 on the base point p by
an application of the C1-Section Theorem 3.5 of [51]. Therefore, we can introduce a Ck-change of
coordinates on the domain of Ep,

(a, b) = hp(ã, b̃) = (ã+ ψp(b̃), b̃+ ϕp(ã))

where Lwup is given by the graph (ã, ϕp(ã)), and Lwsp is given by the graph (ψp(b̃), b̃). Note that both
ϕp and ψp have vanishing first derivative at (0, 0), and their k-jets at (0, 0) depend C1 on the point
p.

Finally, we introduce a Ck-change of coordinates (ã, b̃) = kp(x̃, ỹ) with kp(x̃, 0) = (x̃, 0),
kp(0, ỹ) = (0, b̃) so that the composition

Ψp(x̃, ỹ)
def
= Ep ◦ hp ◦ kp(x̃, ỹ) (29)

pulls the volume form dν on Xp back to the form dx̃∧dỹ. The pull-back volume form (Ep ◦hp)∗(dν)
depends Ck−1 on the point (x̃, ỹ), so the coordinate map kp can be chosen to be Ck−1, and depends
C1 on the point p. It is then easy to see that the map (29) defines Ck−1-adapted coordinates. 2

Let us introduce the spaces of vector fields that we work with:

Γξ(TM) = {v ∈ Γk(TM)| 〈v(p), ξ(p)〉 = 0 ∀ p ∈M}
Γ∗ξ(TM) = {v ∈ Γξ(TM)| v(p) 6= 0 ∀ p ∈M}

SΓξ(TM) = {v ∈ Γξ(TM)| ‖ v(p) ‖= 1 ∀ p ∈M}

For δ > 0, define a subset of SΓξ(TM),

V (δ) = {v ∈ SΓξ(TM)|v = αe+ + βe−, for α, β ∈ Ck(M)

with |β(p)| < δ and |∇β(p)| < δ ∀ p ∈M} (30)

The closure of this set in the C1-uniform topology, denoted by V (δ), is a compact set of C1-
vector fields containing e+. It is clear from the definition that e+ is the unique element of the
intersection of all of the sets V (δ), δ > 0.

The differential Dft of the flow does not map the set V (δ) to itself, but does have the property
that for any v ∈ V (δ), 〈Dft(v(p)), e+(ft(p))〉 > 0. Let πξ : TM → TM be the fiberwise projection
map onto the Ck-subbundle of vectors orthogonal to ξ. Define a projectivized form of Dft:

Pft : SΓξ(TM) → SΓξ(TM) (31)

Pft(v)(ft(p)) = ‖ πξ(Dft(v(p))) ‖−1 ·πξ(Dft(v(p)))
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PROPOSITION 4.3 1. Pft ◦ Pfs = Pfs+t for all s, t ∈ R;

2. For v ∈ V (δ), limt→∞Pft(v) = e+ uniformly in the C1-topology;

3. For each δ > 0, there exists t(δ) > 0 such that Pft : V (δ)→ V (δ) for t > t(δ).

Proof. (4.3.1) is immediate as Dft(ξ) = ξ. (4.3.2) is a direct consequence of the Anosov conditions
(1), which imply that e+ is exponentially expanded and e− is exponentially contracted for by Dft for
t large. As the multipliers are equal, a local calculation shows that the expansion and contraction
are uniform in the C1-topology. (See the Cr-Section Theorem 3.5 of [51] for the details of the proof.)
Define a 1-cocycle over the flow by the rule

πξ(Dft(e
+)(ft(p))) = µ+(p, t)e+(ft(p)), for µ+ ∈ Ck(M ×R). (32)

Similarly, we define µ−(p, t) for e−. The Anosov condition implies that

lim
t→∞

µ+(p, t) =∞, lim
t→∞

µ−(p, t) = 0,

uniformly in p. Together these imply (4.3.3). 2

Let us fix p ∈ M , with L−p the “stable” curve through p defined by (4.1.2), and y the local
coordinate for this curve. Given a vector field v ∈ Γξ(TM), its restriction to Xp is projected onto
TXp, and then expressed in the local coordinates Ψp as (v1(x, y), v2(x, y)). Denote the restriction
of this vector field on (−ε, ε)2 to the y-axis by (v1(y), v2(y)). This construction depends upon the
basepoint p; we emphasize this fact by using the notation vp(y) = (vp,1(y), vp,2(y)). Let Dy denote
the derivative with respect to the y-coordinate.

Our local “norm” based on the function Ω is defined for v ∈ V (δ) when δ < 1. The definition
requires locally rescaling the vector field. For each p ∈ M , let ṽp denote the local vector field at p
along the stable manifolds L−p obtained from vp by pointwise scaling so that in coordinates we have
ṽp(y) = (1, ap(y)). For each ε0, k > 0, introduce the set

V (δ; ε0; k) = {v ∈ V (δ)| ∀ p ∈M, ∀ y with ε0 ≤ |y| ≤ ε, (33)

|Dy(ap)(y)−Dy(ap)(0)| ≤ k · |y| · | log(|y|)|} (34)

The condition (34) is closed in the C1-topology for fixed δ < 1, so each set V (δ; ε0; k) is C1-
precompact.

Our approach to the regularity of Fwu is based on the following technical result. The interested
reader can skip ahead to Corollary 4.8 to see how it implies C1,Ω-regularity.

PROPOSITION 4.4 For 0 < δ < 1, there exist constants k, T > 0 and 0 < ε0 < ε, so that for all
positive integers n,

PfnT : V (δ)→ V (δ; εn0 ; k).

Proof. The proof is based on induction. We start with an elementary observation.

24



LEMMA 4.5 Given 0 < δ < 1 and 0 < ε0 < 1, there exists k > 1 so that (34) holds for all
v ∈ V (δ). That is, V (δ) ⊂ V (δ; ε0; k).

Proof. The uniform continuity in v ∈ V (δ) of v1,p(y) and Dy(vp)(y) on the set (p, y) ∈M×{|y| ≤ ε}
implies there is a maximum of the left-hand-side of the expression (34) on the set V (δ). Fixing
ε0 > 0, we can then choose k > 0 so that (34) holds uniformly on V (δ). 2

Fix 0 < δ < 1, then choose T > t(δ) > 0 so large that the function µ defined in (32) satisfies
µ(p, t) > 4 for all p ∈ M, t > T. Fix p ∈ M and set p′ = fT (p). Let F : Xp → Xp′ denote the
Poincaré return map for the flow. That is, there is a Ck function τ : Xp → R with τ(p) = 0 and
for q ∈ Xp, ft+τ(q)(q) ∈ Xp′ . Then F (q) = ft+τ(q)(q).

Note that the function µ(p, T )−1 < 1/4 is the exponent of contraction for the local maps F with
respect to the unit vector fields e− along the curves L−p . The vector field e− need not be tangent
to this curve, but by the hypothesis (4.1.1) on adapted coordinates, it makes an angle at most π/4
with the tangent line to the curve. Thus, for all p ∈ M and q ∈ L−p , the projection of e−(q) to the

line TqL
−
p ⊂ TqXp has length at least 1/

√
2, with a similar bound on the converse projection. It

then follows from our choice of T that F is a strict contraction with exponent less than 1/2 from
the curve L−p into the curve L−p′ .

Introduce the coordinate y along L−p and z along L−p′ . Write (u, z) = F (x, y) and more specifically,
z = F (0, y). For v ∈ V (δ) let (1, bp′(z)) denote the local rescaling of vT at p′. The heart of the
proof of Proposition 4.4 is the next result, which follows from explicit local calculations.

PROPOSITION 4.6 There exist 0 < ε1 < ε, δ > 0, and k > 1 such that for all p ∈ M and
|y| < ε1, if v ∈ V (δ) satisfies the estimate

|Dy(ap)(y)−Dy(ap)(0)| ≤ k · |y| · | log(|y|)|, then (35)

|Dz(bp′)(z)−Dz(bp′)(0)| < k · |z| · | log(|z|)| (36)

Proof. Expand the local coordinate form of F into the “Moser local form”,

(u, z) = F (x, y) = (µx+ ϕ(x, y), µ−1y + ψ(x, y)),

where µ = µ(p, T ) as defined in (32), and ϕx(0, 0) = ψy(0, 0) = 0. (Recall that subscripts denote
the respective partial derivatives.)

LEMMA 4.7 The local forms ϕ and ψ satisfy the differential identities:

1. (µ+ ϕx)(µ
−1 + ψy)− (ϕy)(ψx) = 1 at all points (x,y)

2. ϕx(0, 0) = ϕy(0, 0) = 0; ψx(0, 0) = ψy(0, 0) = 0

3. ϕxy(0, 0) = ϕxx(0, 0) = ϕyy(0, 0) = 0; ψxy(0, 0) = ψyy(0, 0) = ψxx = 0.

4. If ϕ and ψ are C3 in a neighborhood of (0, 0), then
ϕyyy(0, 0) = 0 = ψxxx(0, 0) and µ−1ϕyxx(0, 0) + µψxyy(0, 0) = 0.
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Proof. The 2-form i(ξ)(dvol) on M is a transverse invariant volume form for the flow, as dvol is
flow invariant. Therefore the restrictions dν to transversals are invariant under the Poincaré maps
F = Fp. The local coordinates are chosen so that Ψ∗p(dν) = dx∧dy, so in coordinates F ∗(du∧dz) =
dx ∧ dy which implies (4.7.1). The manifolds L+

p and L−p are invariant under the map F, which in
coordinates is equivalent to ϕ(0, y) = 0 = ψ(x, 0) for all (x, y). Differentiating this relation yields
(4.7.2). Property (4.1.3) implies that the vector field DF(x,y)(∂/∂x) = (µ + ϕx, ψx) is C1-tangent
to the vector field ∂/∂u at the origin (0, 0). This yields ϕxy(0, 0) = ψxy(0, 0) = 0. Differentiating
equation (4.7.1) and using that these mixed partials vanish yields ϕxx(0, 0) = ψyy(0, 0) = 0. Finally,
differentiating (4.7.1) twice, with respect to x and y, and using (4.7.2) and (4.7.3) yields the equality
(4.7.4). 2

Fix an ε0 < ε, and consider v ∈ V (δ). We obtain an estimate for wp′
def
= vT,p′ = PfT (v)p′ in

terms of the functions ϕ and ψ, and the local coordinates of vp. Let ṽ denote the local vector field
at p obtained from vp by pointwise scaling so that in coordinates we have ṽ(0, y) = (1, a(y)). Then
apply DF to ṽ and rescale to obtain a vector field w̃ at p′ which in local coordinates has the form
w̃(0, z) = (1, b(z)). Elementary calculation then gives the following differential expression for b(z)
in terms of a(y) and the partial derivatives of ϕ and ψ:

b(z) =
(µ−1 + ψy) · a+ ψx
(µ+ ϕx) + ϕy · a

(y(z)) (37)

Let us expand all of the terms in equation (37) into their second order expansions: the first order
partials of ϕ and ψ vanish uniformly at (0,0); the coordinate expression z = µ−1y+ 1

2
ψyy(0)y2+o(|y|2)

inverts to give the expression y = µz − 1
2
ψyy(0)µ3z2 + o(|z|2); the function a(y) is C1, so we can

write it as a(y) = a0 + a1y + A(y), where A is a C1-function with A(0) = 0 and vanishing first
derivative A′(y) at 0. Expanding (37) in these second order terms then yields the simple estimate

Dz(b)(z)−Dz(b)(0) = µ−1A′(µz) +O(|z|). (38)

Our hypothesis (35) translates into the estimate:

|A(y)| ≤ k · |y| · | log(|y|)|. (39)

Expand b(z) = b0+b1z+B(z) with B(0) = B′(0) = 0, then combining the previous two estimates
and substituting in the second order expansion for y = y(z), we obtain

|B(z)−B(0)| ≤ k · (|z|+O(|z|2)) · | log(|z|) + log(µ) +O(|z|)|. (40)

Now require ε1 > 0 to be sufficiently small so that − log(|z|)� log(µ) for |z| < ε1. This can be
chosen to hold uniformly in p. The right hand side of (40) is then estimated by

|B(z)−B(0)| ≤ k · |z| · | log(|z|)| − k · log(µ)(|z|+ o(|z|)) +O(|z|) (41)

The error term, O(|z|), which arises from the second order terms in the expansions of the terms in
(34), is uniform in p and independent of k. Thus, for a suitably large choice of k and ε1 > 0 small
as indicated above, we have that

−{k · log(µ)(|z|+ o(|z|))}+O(|z|) < 0
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uniformly in p ∈ M and |z| < ε1. Thus |B(z)− B(0)| < k · |z| · | log(|z|)|, which was to be shown.
2

It remains to deduce Proposition 4.4 from Proposition 4.6. Choose ε1 > 0 and 0 < δ < 1 so
that Proposition 4.6 is satisfied. Choose 0 < ε0 < ε1 such that for all p ∈ M , Fp(0, ε1) > ε0, and
similarly Fp(0,−ε1) < −ε0. (This condition has a very simple geometric interpretation: we require
that the Poincaré maps Fp send the segments of the curves in L−p corresponding to these coordinate
intervals, to curves in L−p which overlap with them. Thus, the union of the forward images of the
segments Ψp({(0, y)|ε0 < |y| < ε1}) covers all of a deleted neighborhood of p ∈ L−p .) Let k > 0 be
given by Lemma 4.5 for this value of ε0.

Fix v ∈ V (δ) and n ≥ 1. We must show that PfnT (v) ∈ V (δ; εn0 ; k). Fix p ∈ M and y so that
εn0 < |y| < ε. By our choice of ε0, there exists an integer 0 < m ≤ n such that for some y′′ with
ε0 < |y′′| < ε1, we have Fm(0, y′′) = (0, y). Now observe we can apply Proposition 4.6 iteratively to
the vector field v and the points fiT (p) for 0 ≤ i < m, as the map F is a strict contraction on the sets
L−fiT (p). As the estimate (35) holds for v, we conclude that (36) holds for (0, z) = Fm(0, y′′) = (0, y)
as was to be shown. 2

COROLLARY 4.8 The vector field e+ is in the class C1,Ω.

Proof. Choose δ, k, T > 0 as in Proposition 4.4. For v ∈ V (δ), the vector fields vn = PfnT (v)
converge in the uniform C1-topology to e+ by Proposition 4.3.2, hence the local rescaled vector
fields ṽnT,p converge uniformly to the rescaled field ẽ+

p . Then we have for p ∈M and |y| < ε1,

|Dy(ẽ
+
p )(y)−Dy(ẽ

+
p )(0)| = lim

n→∞
|Dy(ṽnT,p)(y)−Dy(ṽnT,p)(0)|

≤ k · |y| · |log(|y|)|. (42)

as we can apply the estimate (34) for arbitrary ε0 > 0 as nT →∞. This shows that the local fields
ẽ+
p are C1,Ω in the y-coordinate. The vector field e+ is locally obtained from the local field ẽ+

p by
dividing by its length, so it will also be C1,Ω along the stable manifold L−p . The vector field e+ is
known to be Ck along the unstable manifold Lwup , so that e+ is C1,Ω uniformly in p. 2

A variant of the proof of Proposition 4.6 yields the estimate needed to establish that Zygmund
regularity of the vector field e+. The key result is obtained by using the full strength of the second
order expansion of (37).

PROPOSITION 4.9 There exist 0 < ε2 < ε, δ > 0 and a monotone decreasing function
C(k) > 0 of k > 0 such that for all p ∈ M and |y| < ε2, if v ∈ V (δ) satisfies the estimate (in the
notation of Proposition 4.6)

|Dy(ap)(y) +Dy(ap)(−y)− 2Dy(ap)(0)| ≤ k|y|, then (43)

|Dz(bp′)(z) +Dz(bp′)(−z)− 2Dz(bp′)(0)| < k|z|(1 + |z|C(k)). (44)

Proof. The second order expansion of the terms appearing in (37) yields the following estimate of
the left-hand side of (44)

|Dz(bp′)(z) +Dz(bp′)(−z)− 2Dz(bp′)(0)|
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= µ−1|A′(y(z)) + A′(y(−z))− 2A′(0)|+O(|z|2)

≤ k{|z|+ µ2ψyy(0)|z|2/2}+O(|z|2)

≤ k|z|(1 + |z|C(k)), (45)

where C(k) is chosen so that

C(k) ≥ µ2ψyy(0)/2 +O(|z|2)/k|z|2 (46)

uniformly in p ∈ M . Note that the second order error term O(|z|2) is independent of k, so we can
choose C(k) to be uniformly decreasing. 2

The inductive estimate (44) is used to prove the analog of Proposition 4.4.

PROPOSITION 4.10 For 0 < δ < 1, there exist constants K > 0 and 0 < ε3 < 1 so that for all
positive integers n, for all v ∈ V (δ) the vector field vnT = Pfnt(v) satisfies the local estimates

|Dy(anT,p)(y) +Dy(anT,p)(y)− 2Dy(anT,p)(0)| ≤ K|y|; 2−nε3 < |y| < ε3 (47)

Proof. Fix 0 < δ < 1. Recall that T was chosen so that the local expansion constants µ(p, T ) > 4,
so we can choose ε3 > 0 such that at every point p ∈ M , the local coordinate expansion of the
Poincaré map F for the flow fT satisfies |µ−1 + ψy(y)| < 1/2 for all |y| < ε3.

Select ε4 with 0 < ε4 < ε3 so that the forward images of the segments with coordinates {ε4 <
|y| < ε3} under the iterates F n cover the deleted stable manifolds, as in the proof of Proposition
4.4. For example, choose ε4 < inf{|µ−1 + ψy(y)| · ε3 : |y| < ε3}. Then choose a constant K0 so that
there is the uniform estimate for all v ∈ V (δ) and p ∈M :

|Dy(ap)(y) +Dy(ay)(−y)− 2Dy(ap)(0)| ≤ K0ε4 < K0 · |y| for ε4 < |y| < ε3.

Set

Kn = K0 ·
n∏

m=1

(1 + 2−mC(K0)ε3)

K = lim
n→∞

Kn

Let y satisfy 2−nε3 < |y| < ε3. Then for some 0 ≤ m ≤ n, there is y′′ with ε4 < |y′′| < ε3 so that
y = Fm(y′′). Note that dj = |F j(y′′)| < 2−jε3, so we can successively apply Proposition 4.9 and the
estimate (44) with k = Kj and C(k) = C(Kj) < C(K0) to the vector field v(n−j)T ∈ V (δ) to obtain

|Dz(anT,p′)(z) +Dz(anT,p′)(−z)− 2Dz(anT,p′)(0)| < Km|z| ≤ K|z| (48)

which finishes the proof of Proposition 4.10. 2

We conclude this section with the proof of Theorem 3.1.1. The vector field e+ is the limit in the
uniform C1-topology of vector fields vnT , so we obtain from Proposition 4.10 a uniform estimate of
the local renormalized form of e+ along the stable curves L−p . This implies that e+ is of class C1,Λ∗

along each curve L−p , uniformly in p. The field e+ is Ck on the submanifolds Lwup , so we obtain the
desired estimate locally about p, uniform in p. 2
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5 Anosov Cocycle and Local Obstructions to Regularity

As noted in the Introduction, Anosov found obstructions to the stable and unstable foliations being
C2 for a volume-preserving C3 Anosov diffeomorphism of T2. Similar obstructions can be found
for flows via selecting cross-sections to the flow. One of the original observations which led to this
work was the realization that the Anosov obstructions represent the periodic data for a 1-cocycle
which arises from the induced action on the 2-jets transverse to the flow.

In this section, we construct the Anosov cocycle AΨ
f for a volume-preserving, C4-Anosov flow ,

and show that its cohomology class, Af , is a flow invariant. Geometrically, the value of this cocycle
is the hyperbolic twist of the Poincaré map in the adapted transverse coordinates to the flow; at
periodic orbits this is the first obstruction to linearizing the Poincaré return map.

Anosov’s observation can also be generalized in a different direction. Namely, if the value of
the cocycle along a periodic orbit through p ∈ M does not vanish, then the semi-norm ‖ ‖Ω

p of
Dy(e

+), associated to the modulus of continuity Ω(s) = s| log(s)|, does not vanish at p. This shows
that the assertion of Theorem 3.1.1 can not be improved by replacing Ω with any other modulus of
continuity.

We assume that the flow is at least C3 and admits C3-adapted coordinates. For example, these
always exist for a C4-flow by Proposition 4.2. For 0 < δ < 1 and v ∈ V (δ), adopt the convention
introduced in the last section that ṽp denotes the rescaled vector field defined in a neighborhood of
p ∈M , which is given in adapted transverse coordinates along the stable curve L−p by an expression
(1, ap(y)). Let ṽt,ft(p) denote the rescaled image of ṽ under the Poincaré map Ft : Xp → Xft(p), with
local form (1, at,ft(p)(z)).

LEMMA 5.1 Let ṽ have local form (1, ap) with second order expansion ap(y) = a0 +a1y+yαp(y)+
o(|y|2), where αp(y) is continuous and vanishes at 0. Then the rescaled vector field (1, at,ft(p)(z))
has second order expansion for z near to 0 given by, for µ = µ(p, t):

at,ft(p)(z) = µ−2a0 + µ−1a1z + µ−1zαp(µz) + AΨ
f (p, t)z2 + a0B

Ψ
f (p, t)z2 + o(|z|2), (49)

where AΨ
f (p, t) = 1

2
µψxyy(0, 0) and BΨ

f (p, t) = 1
2
{µψyyy(0, 0)− µ−1ϕxyy(0, 0)}.

Proof. Write each of the functions of y appearing in (37) in their second order expansions, then
use Lemma 4.7 to simplify the resulting quotient, noting that we have y = µz + o(|z|2). 2

We can apply Lemma 5.1 to the vector field e+, which is characterized by the property that
a0 = 0 for every p ∈M . Equation (49) simplifies to:

at,ft(p)(z) = µ−1a1z + µ−1zαp(µz) + AΨ
f (p, t)z2 + o(|z|2). (50)

Isolating the second order component of (50) yields

αft(p)(z) = µ−1αp(µz) + AΨ
f (p, t)z + o(|z|), (51)

which shows that AΨ
f measures the translational contribution by the Poincaré map to the “α”-term

of e+ . We develop this remark later in the section to obtain obstacles to e+ being C1,ω if AΨ
f does

not vanish. Let us first make a few basic observations about the coefficient AΨ
f .
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COROLLARY 5.2 (Anosov Obstacles) AΨ
f (p, tp) = 0 if Ewu is C2 at the periodic point p for

the flow.

Proof. Assume the vector field e+ has a second order expansion with α(y) = a2y + o(|y|) at
a periodic point p. Choose v = e+ and t = tp in Lemma 5.1, then note that (51) reduces to
a2 = a2 + AΨ

f (p, tp). 2

PROPOSITION 5.3 (Anosov Class) Let k ≥ 3.

1. Let Ψ be a choice of Ck-adapted coordinates. Then AΨ
f : M ×R→ R is a C1-cocycle over the

flow;

2. The C1-cohomology class of AΨ
f is independent of the choice of

Riemannian metric on TM and Ck-adapted coordinates.

Proof. (1) The Ck-immersions Ψp depend C1 on the basepoint p by (4.1.2), so the third jet of the
return map of ft will depend C1 on p in these adapted transverse coordinates. Hence the expression
AΨ
f (p, t) = 1

2
µ(p, t)ψxyy depends C1 on p also. The cocycle law for AΨ

f is the identity

AΨ
f (p, t+ s) = AΨ

f (p, t) + AΨ
f (ft(p), s)

which follows from explicit calculation, using the chain rule and the identities of Lemma 4.7.
(2) Let Ψ and Ψ̃ be two choices of adapted coordinates for the flow {ft}, possibly with respect

to different Riemannian metrics on TM. Then at each p ∈ M , there is a local C3-diffeomorphism
(x̃, ỹ) = Tp(x, y) such that for some C3-function σ : (−ε, ε)2 → R with σ(0, 0) = 0,

fσ(x,y) ◦Ψp(x, y) = Ψ̃p ◦ Tp(x, y).

The transverse 2-form dν = i(ξ)(dvol) is flow invariant, so the coordinate change maps Tp preserve
the volume 2-form dx ∧ dy. The stable and unstable manifolds through p correspond to the x and
y axes in coordinates, so Tp must also preserve the x and y axes. From this we observe that the
identities of Lemma 4.7 also hold for the maps Tp(x, y) = (T 1

p (x, y), T 2
p (x, y)). (If the metrics are the

same for both sets of adapted coordinates, we also have that the partials T 1
p,x(0, 0) = T 2

p,y(0, 0) = 1.)
The local Poincaré maps with respect to the two sets of adapted coordinates are related by

T−1
ft(p)
◦ F̃p ◦ Tp = Fp (52)

The calculation used to show that AΨ
f is a cocycle in (5.3.1) above shows more generally that for

any local volume-preserving C3-diffeomorphism T fixing (0,0), the expression T 1
x (0, 0)T 2

xyy(0, 0) is
a additive quantity. That is, under composition of such maps this expression combines linearly.
Applying this remark to the equation (52), and letting Φ(p) = 1

2
T 1
p,x(0, 0)T 2

p,xyy(0, 0), we obtain

−Φ(ft(p)) + AΨ̃
f (p, t) + Φ(p) = AΨ

f (p, t). (53)

The function Φ(p) depends C1 on the basepoint p by the properties of adapted coordinates and the
chain rule, so this completes the proof of (5.3.2). 2
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COROLLARY 5.4 Let {ft} and {f̃t} be volume-preserving, C6-Anosov flows on closed 3-manifolds
M and M̃ , respectively. Let Θ : M → M̃ be a C1-diffeomorphism conjugating the two flows up
to a time-shift. Then the induced map Θ∗ on 1-cocycles identifies the respective Anosov classes:
Θ∗Ãf̃ = Af .

Proof. The continuous invariant volume form for a transitive Anosov flow is unique up to a scalar
multiple, so Θ must be volume-preserving, and hence Θ is C3 by an application of the regularity
theory in [50], and Theorem 2.6 for k = 6, and n = 2 the dimension of the transversal to the flow.
Let Ψ be adapted coordinates on M, and Ψ̃ be adapted coordinates on M̃ . The pull-back Anosov
cocycle Θ∗ÃΨ̃

f̃
is clearly the Anosov cocycle over {ft} constructed from the C3-adapted transverse

coordinates Θ−1 ◦ Ψ̃, which by Proposition 5.3 is cohomologous to AΨ
f . 2

Proposition 5.3 and Corollary 5.4 together yield a proof of Theorem 3.3. In the remainder of
this section we prove the results that are used to establish Theorem 3.2. We first examine the
applications of the Livshitz Theorem 2.1 to the vanishing of the Anosov class.

PROPOSITION 5.5 Let {ft} be a volume-preserving, C4-Anosov flow on the closed 3-manifold
M.

1. For each period orbit p ∈ M of period tp, the Anosov obstacle Af (p, tp)
def
= AΨ

f (p, tp) is inde-
pendent of the choice of adapted transverse coordinates.

2. The Anosov class Af = 0 if and only if Af (p, tp) = 0 for all periodic orbits.

3. Af = 0 if either Ews or Ewu has a measurable transverse second derivative on a set of positive
Lebesgue measure in M.

4. Af = 0 if the local angle function between Ews and Ewu has a measurable second derivative
on a set of positive Lebesgue measure in M.

Proof. (1) At a periodic point, the equation (53) reduces to

AΨ
f (p, tp) = AΨ̃

f (p, tp).
(2) If the Anosov class is zero, then the coboundary equation (3) shows that AΨ

f (p, tp) = 0 at
periodic orbits. The converse is Theorem 2.1.3.

(3, 4) The set of points p ∈ M where the vector field e+ has a transverse second derivative is
measurable and flow invariant. As the flow is ergodic, this set must have either measure zero or full
measure. Each of the hypotheses implies that the local functions αp(y) have a derivative at y = 0
for a set p of positive measure, and hence a2(p) = α′p(0) exists for a flow invariant set of p with full
measure. The equation (53) implies

a2(ft(p))− a2(p) = AΨ
f (p, t). (54)

Then by the Livshitz Theorem 2.1 there is a C1-extension of a2(p) so that equation (54) holds
everywhere, and thus Af = 0. 2
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The last result of this section is a local calculation relating non-vanishing of Af (p, tp) with the
modulus of continuity of the field e+ at p. This will complete the proof of Theorem 3.2. We
formulate the result in a general fashion.

Let F : (−ε, ε)2 → R2 be a C3-embedding for which the local coordinates F (x, y) = (µx +
ϕ(x, y), µ−1y + ψ(x, y)) satisfy µ > 1, and

ϕ(x, 0) = 0 = ψ(0, y)

ϕx(0, 0) = 0 = ψy(0, 0)

(µ+ ϕx(x, y))(µ−1 + ψy(x, y))− ϕy(x, y)ψx(x, y) = 1

These conditions imply that the first and second partial derivatives of ϕ and ψ vanish at (0, 0)
(cf. proof of Lemma 4.7). We can assume that F extends to a hyperbolic, volume-preserving
C3-diffeomorphism of R2, and so can define stable and unstable invariant vector fields e− and e+,
which will be tangent to the y and x axes, respectively, near the origin. In a neighborhood of (0, 0)
we can assume that e+ has the coordinate form e+(x, y) = (1, a(x, y)). An easy calculation shows
that e+ is C1 at (0, 0), so there is an expansion a(0, y) = a1y + τ(y) where τ(y) = yα(y) and α is a
C1-function away from y = 0, and continuous at y = 0 with α(0) = 0. We define AF = 1

2
µψxyy(0, 0).

Define a semi-norm on the vector field e+ by setting

‖ Dy(e
+) ‖Ω

0 = sup
0<|y|<ε

τ ′(y)

|y|| log(|y|)|
(55)

THEOREM 5.6 Let f be a C3-map as above. Then

‖ Dy(e
+) ‖Ω

0 ≥ |AF |
log(µ)

(56)

Proof. Make a volume-preserving, C3-change of coordinates so that F (x, 0) = (µx, 0) and F (0, y) =
(0, µ−1y). The vector field e+ is projectively invariant under the differential DF , so for |y| < ε,
applying DF and rescaling yields a recursive equation for α, which is a specialized form of (53):

α(µ−1y) = µ−1 {α(y) + AFy + o(|y|)} (57)

Iterate the estimate (57) to obtain the general formula

α(µ−ny) = µ−n {α(y) + nAFy + E(n, y)} (58)

E(n, y) =
n−1∑
i=0

µi+1o(µ−i|y|) (59)

Fix a point 0 < y < ε and n > 0. By the Mean Value Theorem, there is a point zn with
0 < zn < µ−ny so that

τ ′(zn) =
τ(µ−ny)

µ−ny
= α(µ−ny).

32



We can assume without loss that ε < 1/e so that the function s| log(s)| is monotone increasing for
0 < s < ε, and thus

|τ ′(zn)|
zn| log(zn)|

≥ |α(µ−ny)|
(µ−n)| log(µ−ny)|

.

By (58), the right-hand-side is equal to∣∣∣∣∣ α(y)

y(n log(µ)− log(y))
+

n · AF
(n log(µ)− log(y))

+
E(n, y)

y(n log(µ)− log(y))

∣∣∣∣∣ (60)

By a delicate and fortuitous coincidence, the term E(n, y)/n is seen to tend to zero as n→∞, so
the limit of (60) is |AF |/ log(µ) which establishes (56). 2

COROLLARY 5.7 Let {ft} be a volume-preserving, C3-Anosov flow on a 3-manifold M, and p
a periodic orbit with period tp. If Af (p, tp) 6= 0, then Ewu is not C1,ω at p. More precisely, the first
transverse derivative at p of the C1 vector field e+ has the estimate

‖ Dy(e
+) ‖Ω

p ≥ |Af (p, tp)|/ log(µ(p, tp)) . (61)

6 Smooth Rigidity

Smooth rigidity for Anosov flows is the phenomenon that when appropriate cohomology invariants
vanish, the weak-unstable and weak-stable foliations are smooth . As discussed in the Introduction,
it is then known in some cases that the flow is smoothly conjugate to an algebraic flow. In this
section, we show that when the Anosov cocycle of a volume-preserving Ck-Anosov flow on a 3-
manifold is a C1-coboundary, then the weak-unstable foliation is Ck−3. The same conclusion then
follows for the weak-stable foliation by the time-reversing symmetry between the stable and unstable
foliations, which completes the proof of Theorem 3.4.

The critical aspect of the proof of Ck−3-regularity of the weak-unstable foliation is to show that
the field e+ is transversally C3. We then invoke a standard bootstrap method for hyperbolic systems
to deduce that e+ is transversally Ck, and an application of Theorem 2.6 yields that e+ is Ck−3 on
M.

Fix Ck-adapted coordinates Ψ for the flow ft, and let a : M → R be a C1-function which
satisfies the coboundary equation

AΨ
f (p, t) = a(ft(p))− a(p) for all (p, t) ∈M ×R. (62)

In section 4 we observed that for a Ck-vector field v ∈ V (δ) for δ < 1, the forward images
vt = Pft(v) converge exponentially fast to the field e+ in the uniform C1-topology. This was
codified in the equation (49). The idea of the proof is to use the coboundary relation (62) to deduce
that the formal second derivative terms in the Taylor expansions of the local fields ṽt = (1, at,p(y))
are bounded independently of t and p ∈ M , from which we deduce that the field is transversally
C1,1. An application of the uniqueness part of the Livshitz Theorem then implies that the local
fields ṽt are Cauchy in the uniform C3-topology on y, from which we deduce that e+ is transversally
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C3. This method is a combination of techniques, similar to those utilized in the Hirsch-Pugh Theory
of regularity: We use a compactness condition on the transversal 2-jets and the Livshitz Theorem
2.1.1, 2.1.2 to obtain a formal candidate for the transversal 2-jet of e+; the uniqueness part of the
Livshitz Theorem and properties of absolutely continuous functions on the line then imply that the
formal transversal 2-jet is the actual second derivative.

Let us fix a Ck-vector field v ∈ V (δ) for some 0 < δ < 1, and set vt = Pft(v). Adopt the
notation of Lemma 5.1; then the key technical result is the estimate:

PROPOSITION 6.1 The absolute value of the term BΨ
f in (49) is uniformly bounded on the set

M × [0,∞).

Proof. From the identities (4.7) and (62) we can write

BΨ
f (p, t) =

1

2
µψyyy(0, 0) + AΨ

f (p, t)

=
ψyyy(0, 0)

2ψy(0, 0)
+ a(ft(p))− a(p) (63)

=
1

2

d2

dy2
(log{ψy(0, y)}) (0) + a(ft(p))− a(p). (64)

It clearly suffices to give an estimate for the derivative term in (64).
We can assume without loss that t = NT for a positive integer N and T as in the proof of

Lemma 4.5. For 0 ≤ i ≤ N , we set pi = fiT (p), and let yi denote the local transverse coordinate
through pi. For each i, the Poincaré map of fT from Xpi to Xpi+1

is given in local coordinates by
yi+1 = ψi(0, yi), for C3-functions ψi,pi depending uniformly on pi and y. Then use (4.7.2) to observe
that

d2

dy2
(log{ψy(0, y)}) (0) =

d2

dy2

(
N−1∑
i=0

log{ψi,y(0, ψi(0, y))}
)

(0) (65)

=
N−1∑
i=0

ψi,yyy(0, 0)

ψi,y(0, 0)
ψiy(0, 0)2 (66)

where we use the convenient notation ψi(0, y) = y for i = 0, and ψi(0, y) = ψi−1 ◦ · · · ◦ ψ0(0, y) for
i > 0. The quotient |ψi,yyy(0, 0)/ψi,y(0, 0)| is uniformly bounded for p ∈M , and by the choice of T
in section 4 there is a uniform estimate ψiy(0, 0)2 < 4−2i. Therefore, the sum in (66) is uniformly
convergent in p. The Proposition follows from this. 2

COROLLARY 6.2 (C2-Compactness) Fix a C2-vector field v ∈ V (δ) for 0 < δ < 1, and let
at,2(p) denote the coefficient of the quadratic term in the Taylor expansion at y = 0 of the local
vector field ṽt,p about p. Then there is a constant K(v), depending only on the vector field v, so that
|at,2(p)| < K(v) for all t ≥ 0.
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Proof. The relation (49) yields the formula

at,2(p) = a0,2(f−t(p)) + AΨ
f (f−t(p), t) + a0,0(f−t(p))B

Ψ
f (f−t(p), t) (67)

where |AΨ
f (f−t(p), t)| is uniformly bounded by (62), and

|a0,0(f−t(p))B
Ψ
f (f−t(p), t)| is bounded by Proposition 6.1. 2

PROPOSITION 6.3 The vector field e+ is transversally C3.

Proof. We first show that e+ is transversally C1,1, with an integrable second derivative. Corollary
6.2 shows that e+ is the C1-limit of C3-vector fields {vt = Pft(v)|t ≥ 0}, so that at each p ∈ M
the sequence {ṽt,p(y)|t ≥ 0} has a uniform bound on its second derivative in y at y = 0. The choice
of adapted transverse coordinates is uniform in p in the C3-topology on immersions, so there is a
uniform change of coordinates between points q, q′ ∈ Xp on the same transversal. (To define the
change of cooordinates, it is necessary to apply the flow for small time, but there are uniform C3-
estimates on the flow for small time also.) Therefore, we conclude that for fixed p ∈M , the sequence
of local vector fields {ṽt,p(y)} is bounded in the C2-topology, uniformly in p and |y| < ε/2. Thus,
the limiting local vector field ẽ+

p (y) = limt→∞ ṽt,p(y) has a Lipshitz estimate on its first derivative
for |y| < ε/2. In the local expansion ẽ+

p = (1, ãp(y)), this says that the derivative ã′p(y) is Lipshitz,
and hence is absolutely continuous. This implies that a second derivative ã′′p(y) exists for almost
every |y| < ε/2, and ã′′p(y) is integrable to the function ã′p(y).

The existence of a second derivative for ẽ+
p (y) at y implies the existence of a second derivative

for ẽ+
q (z) at z = 0, for q the point on Xp corresponding to y. Thus, for all p ∈ M and for almost

every q ∈ Xp the vector field e+ has a transverse second derivative at q. By the Fubini Theorem, the
set of points p ∈M at which e+ has a second derivative is a set of positive Lebesgue measure. This
set is clearly flow invariant, so by ergodicity must be a set of full measure. Therefore, for almost
every p ∈ M , the local expansion ẽ+

p (y) = (1, ãp(y)) has a second derivative at y = 0. Denote this
second derivative by 2ã2(p).

Equation (51) shows that the function ã2(p) is an almost everywhere defined solution of the
coboundary equation (62) for AΨ

f . It is given that there is a C1-solution, a(p), of this equation, so
by the uniqueness of solutions, the function ã2(p) can be extended to a C1-function defined on all
of M . Therefore, for each p ∈M , the derivative function ã′p(y) is the integral of a C1-function, and
hence ãp(y) is a C3-function of y. It follows that e+ is transversally C3 at every point of M with
uniform estimates on its transverse 3-jet. 2

The second technical result that we need to establish the regularity of e+ is a “bootstrap”
procedure for concluding that e+ is transversally Ck. Bootstrapping is a familiar phenomenon in
hyperbolic dynamical systems, which is based on expressing the higher derivatives of an invariant
line field in terms of an exponentially converging power series, such that each successive derivative
converges even faster. Thus, once the bootstrap can be invoked, the invariant field is as smooth as
the system. Our use of this principle is very similar to that in (page 568, [49])

PROPOSITION 6.4 (Bootstrap) Let {ft} be a volume-preserving, Ck-Anosov flow on a 3-
manifold M. Suppose that e+ is transversally Cn, with uniform estimates on the transverse n-jets.
If 3 ≤ n < k, then e+ is transversally Cn+1, with uniform estimates on the transverse (n+ 1)-jets.
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Proof. The method of proof is based on standard techniques, so we will be brief with details, and
leave to the reader the often tedious explicit calculations. Fix a point p and let t = T be as in the
proof of Lemma 4.5. Expand the local vector field

ẽ+
p (y) = ã2(p)y2 + · · ·+ ãn(p)yn + o(|y|n).

For the Poincaré map fT , we similarly expand the quantities

ψy(0, y), ψx(0, y), ϕx(0, y), ϕy(0, y)

appearing in (37) into their Taylor expansions in the powers {y, y2, . . . , yn}, and expand the inverse
of the function z = z(y) = µ(p, T )−1y+ψ(0, y) up to order n. Substitute these expansions into (37)
to obtain the relation

ãn(fT (p)) = µ(p, T )n−2ãn(p) + ζn(p, T ) (68)

where ζn(p, T ) is a polynomial in the coefficients of these expansions not involving ãn(fT (p)). The
function ζn(p, T ) is seen to be uniformly C1 in p. Now rewrite (68) as

ãn(p) = µ(p, T )2−n{ãn(fT (p)) + ζn(p, T )}. (69)

Recursively substitute (69) into itself N times to obtain the formula

ãn(p) =

{
N−1∑
i=0

µ(p, iT + T )2−nζn(fiT (p), T )

}
(70)

+ µ(p,NT )(2−N) {ãn(fNT−T (p)) + ζn(fNT−T (p), T )}

Both ãn(q) and ζn(q, T ) are uniformly bounded functions of q ∈M , so the sum in (70) is uniformly
convergent, with uniform estimates in p. Let N tend to infinity to obtain the closed formula

ãn(p) =
∞∑
i=0

µ(p, iT + T )2−nζn(fiT (p), T ) (71)

The functions appearing in (71) can be restricted to the curves Xp and expressed in the local
coordinate y. We abuse notation, and let p represent the local coordinate y in this case. There are
then uniform estimates on the first transverse derivatives :∣∣∣∣∣dζn(fiT (p))

dy

∣∣∣∣∣ ≤ K1 (72)∣∣∣∣∣d{µ(p, iT + T )2−n}
dy

∣∣∣∣∣ ≤ K2µ(p, iT + T )2−n. (73)

Combine (71) with the bounds (72) and (73) to see that d{ãn(p)}/dy exists everywhere, given by
the term-by-term differentiation of (71). We also obtain the uniform estimate∣∣∣∣∣d{ãn(p)}

dy

∣∣∣∣∣ ≤
∞∑
i=0

K3µ(p, iT + T )2−n

≤ K3

∞∑
i=0

4(2−n)i
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The existence of a transverse derivative for the Taylor coefficients up to order n then implies
that e+ has a transverse Taylor expansion of order (n+1). 2

We can now deduce the Smooth Rigidity Theorem 3.4.

COROLLARY 6.5 Suppose that {ft} is a volume-preserving, Ck-Anosov flow on a closed 3-
manifold M, for k ≥ 5. If the Anosov class Af vanishes, then the vector field e+ is Ck−3 on M.

Proof. The assumption is that we can solve equation(62) for a C1-function a(p). Then by Propo-
sition 6.3, the vector field e+ is transversally C3. The Bootstrap Propostion 6.4 implies that e+

is transversally Ck. It is known from stable manifold theory (cf. [29]) that the field e+ is Ck

when restricted to the leaves of the unstable foliation. Restrict the vector field e+ to the adapted
transversal Xp, and we can invoke Theorem 2.6 to conclude that for all p ∈M , the restricted vector
field e+|Xp is Ck−3 . All of our calculations are natural with respect to the flow, so the field e+ will
be Ck−3 on all of M. 2

7 Dynamical Godbillon-Vey Classes

The Godbillon-Vey class for a C2, codimension-one foliation F is a cohomology class GV (F) ∈
H3(M ; R). Its definition by Godbillon and Vey [22], and calculation in a pivotal example by
Roussarie, led to the explosion in the study of secondary invariants in the 1970’s. In this section,
we refine the definition of this class so that it makes sense for foliations of differentiability class
C1,α for all α > 1/2. The invariance of the Godbillon-Vey class under diffeomorphisms of low-
differentiability is shown, extending the previous work of Raby [58] for C2-foliations.

The existence of the extended Godbillon-Vey class was observed by the first author in 1984.
It raised the question about the regularity of Anosov foliations, whose solution we addressed in
the first part of this paper. The degree of regularity is fortuitously compatible with the extended
definition of the Godbillon-Vey class. The consequences of this will be examined in section 9,
where we develop the formula of Mitsumatsu for the Godbillon-Vey classes of the weak-unstable
foliations of geodesic flows of negative curvature. This formula is the non-homogeneous counterpart
of the Roussarie calculation, except that as discussed in the Introduction, the values of the classes
now vary continuously and non-trivially with the parameter in the space of all metrics of negative
curvature.

For a transversally oriented, codimension-one C2-foliation F , the Godbillon-Vey class has a well-
known elementary definition. Choose a non-vanishing C2-1-form, θ, whose kernel is the tangential
distribtution to F . We can solve the equation dθ = η ∧ θ for a C1-1-form η, and the Godbillon-Vey
class is the cohomology class of the closed continuous 3-form η ∧ dη. When M is a closed oriented
3-manifold, we can also define the Godbillon-Vey invariant

gv(F) =
∫
M
η ∧ dη. (74)

F is said to be transversally C1,α if its tangential distribution TF is C1,α, and the leaves of F are
a C1-family of smoothly immersed submanifolds.
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PROPOSITION 7.1 Let F be a codimension-one C1,α-foliation of a closed oriented 3-manifold
M . For α > 1/2, there is a natural, well-defined Godbillon-Vey invariant gv(F), which extends the
definition (74) for F of class C2.

Proof. The integral (74) is considered as a quadratic form on the 1-form η, and we want to extend its
natural domain from the obvious class of C1-forms, to 1-forms which are distributions transversally.
This is accomplished via the Čech definition of the Godbillon-Vey class. The hypothesis that the
form θ is C1,α implies that η is Cα, and we use a standard result from harmonic analysis on the line
to show that the distributional pairing (74) is defined for such forms.

Let us begin with the result needed from harmonic analysis, based on the Fourier Transform
technique. Let Aα be the topological space of α-Hölder continuous, compactly supported functions
on the real line R, with norm

‖ f ‖α = sup
r∈R
|f(r)| + sup

r 6=s

|f(s)− f(r)|
|s− r|α

. (75)

For a pair of compactly supported C1-functions f and g on R, define a skew-symmetric bilinear
form

I(f, g) =
∫

R
f(r)g′(r)dr (76)

PROPOSITION 7.2 For α, β > 0 with α + β > 1, (76) extends to a skew-symmetric, bilinear
form

I : Aα ×Aβ → R.

Moreover, I(f, g) is jointly continuous on subspaces of functions with uniformly bounded support.

Proof. The Fourier Transform f̂(ξ) of a continuous function f(r) with compact support is defined
as

f̂(ξ) = FT (f)(ξ) =
1

2π

∫
R
e−irξ f(r) dr

FT induces an isometric isomorphism between the Hilbert spaces L2(R, dr) and L2(R, 2πdξ). The
key point in the proof is to identify the range of the α-Hölder functions under FT . The proof of
the next lemma follows Stein (cf. page 139, [59].)

LEMMA 7.3 Let f ∈ Aα+ε for some α, ε > 0 with support in the interval (−δ, δ). Then there is
a constant K(α) > 0 independent of f such that

2π
∫

R
|f̂(ξ)|2 |ξ|2α dξ ≤ 2δ

εK(α)
· ‖ f ‖2

α+ε (77)

Proof. There is a uniform estimate |f(r + t) − f(r)| ≤‖ f ‖α+ε |t|α+ε, which under the Fourier
transform yields

2π
∫

R
|f̂(ξ)|2|eitξ − 1|2 dξ =

∫
R
|f(r + t)− f(r)|2dr (78)

≤ 4δ ‖ f ‖2
α+ε |t|2α+2ε (79)
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Divide the two sides of the estimate (79) by t1+2α and integrate:

2δ

ε
‖ f ‖2

α+ε ≥ 2π
∫

R
|f̂(ξ)|2

∫ 1

0

|eitξ − 1|2

t1+2α
dtdξ (80)

≥ 2πK(α)
∫

R
|f̂(ξ)|2|ξ|2α dξ (81)

where we use the substitution s = tξ to obtain

K(α) =
∫ 1

0

|eis − 1|2

s1+2α
ds. 2

Let f ∈ Aα and g ∈ Aβ with α + β > 1. Define

I(f, g) = −2π
∫

R
f̂(ξ) ĝ(−ξ) ξ dξ (82)

Set ε = (α+β−1)/2, and let δ(f) > 0 be the least number δ such that (−δ, δ) contains the support
of f , and similarly for g. The Cauchy-Schwartz inequality and Lemma 7.3 yield the estimate

|I(f, g)|2 ≤ 2π
∫

R
|f̂(ξ)|2 |ξ|2α−2ε dξ ·

∫
R
|ĝ(ξ)|2 |ξ|2β−2ε dξ

≤ 4δ(f)δ(g)

πε2K(α− ε)K(β − ε)
‖ f ‖α ‖ g ‖β (83)

which shows in particular that (82) is well-defined. Definition (82) extends (76) by standard prop-
erties of the Fourier Transform. It is obvious from the definition that I(f, g) = −I(g, f). Finally,
the estimate (83) shows that if we bound the functions δ(f) and δ(g) from above, then the form
I(f, g) is jointly continuous in f and g, completing the proof of Proposition 7.2. 2

Let υ be a smooth unit vector field on M which is everywhere transverse to the foliation F . (If
F is not transversally orientable, then we pass to the appropriate double covering of M .) Define θ
to be the 1-form on M which vanishes when restricted to leaves of F , and has θ(υ) = 1. We take
η = ι(υ)dθ, and note that dθ = η∧θ follows from the Cartan identity L(υ) = d◦ ι(υ)+ ι(υ)◦d. The
form η is in general only of class Cα, so that the exterior product η ∧ dη is a distribution. Given a
finite set of smooth, non-negative compactly supported functions {λi|1 ≤ i ≤ n} with

∑n
i=1 λi = 1,

we write ηi = λi · η, and then
η ∧ dη =

∑
1≤i,j≤n

ηi ∧ dηj . (84)

It will suffice to define the local integrals
∫
U ηi ∧ dηj for U ⊂M an open set containing the support

of the integrand.

DEFINITION 7.4 (Foliation Chart) A C1,α-foliation chart (Φ, U) for F is an open set U ⊂M
and a C1,α-diffeomorphism Φ : (−1, 1)3 → U ⊂M onto U , such that :

1. For −1 ≤ z ≤ 1, the restriction Φz : (−1, 1)2 → U is onto a connected component of a leaf of
F|U ;
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2. The immersions Φz are smooth, and their jets depend C1 on the parameter z;

3. The vector field ∂/∂z is positively oriented with respect to the transverse field υ.

Standard methods of foliation theory show:

LEMMA 7.5 For a transversally-oriented C1,α-foliation F on a compact 3-manifold M , there
exists a finite covering of M by C1,α-foliation charts. 2.

Let {λi|1 ≤ i ≤ n} be a smooth partition-of-unity subordinate to a fixed covering by C1,α-
foliation charts, {(Φi, Ui)|1 ≤ i ≤ n}. The 1-form θ restricted to Ui is expressed in local coordinates
as θi = hi(x, y, z)dz, where hi is smooth in (x, y) and is C1,α in the variable z. The restriction
of the 1-form ηi to Ui has the local form ηi = ai(x, y, z)dx + bi(x, y, z)dy + ci(x, y, z)dz where the
coefficients are smooth in x and y, and Cα in z. (The coefficient of dz is ambiguous in this local
form, as η is only specified up to exterior product with θ, which is hidz in local coordinates.)

For a C2-foliation, we can expand the definition (74) into the sum

gv(F) =
∫
M

∑
1≤i,j≤n

ηi ∧ dηj =
∑

1≤i,j≤n

∫
Ui
ηi ∧ dηj (85)

For a foliation of transversal class C1,α, the formal differential dηj has two components, a contin-
uous part when differentiating with respect to x or y, and a distributional part when differentiating
with respect to z . This suggests rewriting each of the summands in (85) according to their continu-
ous or distributional character. For a pair of continuous functions f(z) and g(z) with compact sup-
port, set 〈f, g〉 =

∫
R f(z)g(z) dz. If f, g are also functions of x, y then the integral will be a function

of x, y, which we indicate by 〈f, g〉(x, y). The same considerations apply to the skew-symmetric form

I(f, g), and in this sense we define
ABij =

∫∫
I(ai, bj) dxdy BAij =

∫∫
I(bi, aj) dxdy

ACij =
∫∫
〈ai, ∂cj/∂y〉(x, y) dxdy CAij =

∫∫
〈ci, ∂aj/∂y〉(x, y) dxdy

BCij =
∫∫
〈bi, ∂cj/∂x〉(x, y) dxdy CBij =

∫∫
〈ci, ∂bj/∂x〉(x, y) dxdy

where all double integrals are over the set R2. We then define the Godbillon-Vey invariant of F by
the formula

gv(F ; η) =
∑

1≤i,j≤n
{−ABij +BAij + ACij − CAij −BCij + CBij} (86)

There are two sets of choices made in obtaining the definition (86): a choice of transverse vector
field υ, and hence of 1-forms θ and η; and a choice of foliation charts which cover M. The first
ambiguity is equivalent to considering the result of choosing η̃ = η + df + gθ for functions f of
transverse class C1,α and g of transverse class Cα.

LEMMA 7.6 gv(F ; η) = gv(F ; η̃) where η̃ = η + df + gθ for functions f of transverse class C1,β

and g of transverse class Cβ, when α+ β > 1. When F is of class C2, then we can assume simply
that g is smooth on leaves and transversally integrable, and f is transversally absolutely continuous;
i.e., df exists almost everywhere, is smooth on leaves and transversally integrable.
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Proof. It will suffice to consider f and g of class C2, for the pairings 〈·, ·〉 and I(·, ·) are continuous
in the appropriate topologies when we substitute the coefficients of the local form

η̃i = (ai + λifx)dx+ (bi + λify)dy + (ci + λi{fz + g})dz

into (86). Next, write each local form ηj as a limit in the transverse Cα-topology

ηj = lim
p→∞

ηi,p

of C1-forms with compact support on Uj. Then we calculate

gv(F ; η̃) = gv(F ; η) + lim
p→∞

∫
M
{df + gθ} ∧

(
n∑
i=1

dηj,p

)
(87)

The form dθ = η ∧ θ is closed as a distribution, so the product dη ∧ θ = 0 as a distribution. This
implies that the gθ contribution to the limit in (87) vanishes. The other component of this limit
vanishes by Stokes’ Theorem. Note the above proof only used that df is transversally Cβ. Similarly,
the conclusion for C2-foliations actually holds when the 1-form η is only tranversally Lipshitz, so
that its coefficient functions have bounded transverse derivatives almost everywhere. 2

The ambiguity introduced by the choice of covering is easily dealt with. Given two choices of
coverings of M by foliation charts, we can assume that the partition-of-unity {λi} is subordinate
to both covers, so the task is to prove that the local terms in the sum (86) are independent of the
choice of coordinates. We let ηj be a limit of C1-forms ηj,p as before; then these terms are actually
integrals of a 3-form over the appropriate foliation charts. These integrals are independent of chart,
up to C1-diffeomorphisms, so they agree in any chart chosen, and hence their limits agree. It follows
that gv(F ; η) is independent of choices, so yields a well-defined invariant gv(F).

It is clear that the formula (86) reduces to (85) when the form η is C1 as the skew-symmetric
product I(·, ·) reduces to the ordinary integral when one of the arguments is a C1-function.

The naturality of gv(F) will be addressed in the next proposition, which will complete the proof
of Proposition 7.1. 2

Naturality of the Godbillon-Vey invariant is its invariance under orientation-preserving, C1,α-
diffeomorphisms. This invariant actually has a much stronger invariance property, as given by the
next two results. (cf. Raby [58].)

PROPOSITION 7.7 Let F and F̃ be codimension-one C1,α-foliations on closed oriented 3-manifolds
M and M̃ , respectively, for α > 1/2. Suppose there exits an orientation-preserving, C1,β-diffeomorphism
Θ : M → M̃ conjugating F to F̃ with α + β > 1. Then gv(F) = gv(F̃).

Proof. We can assume that Θ is smooth along leaves by standard smoothing techniques
for leafwise diffeomorphisms. Let θ be a transverse 1-form for F , and θ̃ the same for F̃ . Then
Θ∗(θ̃) = exp(g)θ for a function g : M → R which is smooth along leaves of F , but is a priori only
transversally Cβ. Then define 1-forms η, η̃, η̂ by the relations

dθ = η ∧ θ, dθ̃ = η̃ ∧ θ̃, Θ∗(η̃) = η̂
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Fix a covering of M by C1,α-foliation charts, with notation as above. For a function f : M → R
which is C1 along the leaves of F , we define the “leafwise differential” dFf using the foliation charts:
write f =

∑n
i=1 fi, where each fi = λi · f . Then in coordinates, dFfi = fi,xdx + fi,ydy, and dFf is

obtained by summing up the local differentials. A key property of the leafwise differential is that
df = dFf + hθ for some function h on M .

We can assume without loss that β < α. Let {gp|p = 1, . . .} be a sequence of smooth forms
converging to g in the transverse Cβ-topology, with {hp} such that dgp = dFgp + hpθ. The proof of
Lemma 7.6 gives that

gv(F ; η) = gv(F ; η + dgp) = gv(F ; η + dFgp) for all p.

The evaluation of gv(F̃ ; η̃) in terms of M is facilitated by the next elementary calculation.

LEMMA 7.8 η̂ = η + dFg + hθ, where the function h on M is Cβ.

Proof.

η̂ ∧ exp(g)θ = Θ∗(dθ̃) = dΘ∗(θ̃) = d{exp(g)θ}
= dFg ∧ exp(g)θ + η ∧ exp(g)θ

so that η̂ = η+ dFg+ hθ for some function h. However, η̂ is transversally Cβ and dFg is Cβ, so the
claim follows. 2

The composition of Θ with foliation charts on M yields C1-foliation charts on M̃ , which are
sufficient to calculate gv(F̃ ; η̃) by the remarks following the proof of Lemma 7.6. We let gv(F ; η̂)
denote the evaluation of this invariant by the formula (86) with entries the coefficients of η̂. By
Lemmas 7.8 and 7.6, and the continuity of the inner products in (86), we have

gv(F ; η̂) = gv(F ; η + dFg) = lim
p→∞

gv(F ; η + dFgp) = gv(F ; η). 2

When the foliation is transversally C2, the natural extension of the proof of Proposition 7.8
yields that gv(F) is invariant under C1-diffeomorphisms. The above proof then becomes essentially
the same as the original proof of Raby. A somewhat stronger conclusion can be shown.

PROPOSITION 7.9 Let F and F̃ be codimension-one C1,1-foliations on closed oriented mani-
folds M and M̃ , respectively. Suppose there exist an orientation preserving homeomorphism Θ :
M → M̃ conjugating F to F̃ such that Θ and Θ−1 are transversally Lipshitz, and leafwise C2 with
the 2-jet depending Lipshitz on the transverse parameter. Then gv(F) = gv(F̃).

Proof. Let us elaborate on the regularity of Θ. In local coordinates (Ui,Φi) on M and (Ũi, Φ̃) on
M̃ , we write (x̃, ỹ, z̃) = Θi(x, y, z). Then for x0, y0 fixed, the function z 7→ Θi(x0, y0, z) is Lipshitz,
so has a bounded derivative almost everywhere which integrates back to the function. Moreover, the
derivative depends C1 on the points x, y. Fixing the variable z0, the function (x, y) 7→ Θi(x, y, z0)
is C2, and the 2-jet is a Lipshitz function of z0. We require that the same conclusions hold on the
inverse function Θ−1.
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The regularity of F implies that we can choose a transversally Lipshitz 1-form η satisfying
dθ = η ∧ θ, and similarly choose η̃ for F̃ . The function Θ almost everywhere has a transverse
derivative, so the 1-form θ̃ pulls-back under Θ to an almost everywhere defined 1-form on M with
transversally integrable coefficients, whose kernel contains the tangential distribution to F . Thus,
there is a leafwise C1, measurable function g on M with exp(g) integrable so that Θ∗(θ̃) = exp(g)θ
almost everywhere. Note that exp(g) is bounded on M by a multiple of the Lipshitz constant for
Θ, and similarly exp(−g) is bounded by a multiple of the Lipshitz constant for Θ−1. Therefore, g
is a bounded measurable function on M . We need for the proof only that |g| is integrable, which is
clearly implied by it being a bounded function.

The coefficients of dη̃ are integrable functions on M̃ , so the calculation of gv(F̃ ; η̃) involves
ordinary integrals over an open cover for F̃ . These integrals are invariant under an absolutely
continuous change of coordinates, so we can calculate them using the foliation cover of M via
the map Θ, given by the expression denoted gv(F ; η̂) as in the proof of Proposition 7.7, where
η̂ = Θ∗(η̃). The same method as used in Lemma 7.8 also yields

LEMMA 7.10 η̂ = η + dFg + hθ for a transversally integrable function h.

By Lemma 7.6, gv(F ; η) = gv(F ; η + dFf + hθ), for arbitrary C1-functions f and h, and the
calculations are continuous in h for the L1-norm transversally. Choose a sequence of C1-functions
{gp|p = 1, . . .} converging to g in the C1-topology on leaves, and in the L1-norm transversally. Then
as in the proof of Proposition 7.7 we have

gv(F ; η) = gv(F ; η + dFgp) = gv(F ; η + dFg) = gv(F̃ ; η̂). 2 (88)

Propositions 7.1, 7.7 and 7.9 together yield the claims of Theorem 3.8.1 and 3.8.3. The con-
tinuous dependence of gv(F) on parameters follows from the continuity of the formula (86) in the
Cα-topology. The concordance invariance of the extended Godbillon-Vey invariant follows from a
standard extension of our defintion, via simplicial methods, to a cohomology class which can be
defined on foliated 4-manifolds with boundary. However, the proof is omitted as the result is not
central to this work. (The interested reader can consult [31] for a detailed treatment.) Let us
conclude this section with a proposition which implies Theorem 3.10.

PROPOSITION 7.11 Let F be a codimension-one C1,α-foliation on a closed oriented 3-manifold
M . Suppose that {ft} is a volume-preserving C3-Anosov flow on M , such that the leaves of F are the
weak-unstable manifolds of the flow. Then for any codimension-one C1,α-foliation F̃ on a closed ori-
ented 3-manifold M̃ , if there is a transversally absolutely-continuous, leafwise C2-homeomorphism
Θ : M → M̃ conjugating F to F̃ , then gv(F) = ± gv(F̃) with sign according to whether Θ is
orientation preserving or reversing.

Proof. We can assume without loss that Θ is orientation-preserving. Let θ be a transverse C1,α

1-form defing F , and θ̃ a defining 1-form for F̃ with the same orientation as θ with respect to Θ.
The flow {ft} preserves the foliation F , so there is a C1,α-function φ : M × R → R such that
f ∗t θ|p = exp{φ(p, t))}θ|p. It is clear that φ is C1-1-cocycle over the flow. The push-forward flow
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{f̃t = Θ ◦ ft} on M̃ similarly acts on the transverse form θ̃ to define a 1-cocycle φ̃ over {f̃t}, which
we pull back to a Lipshitz 1-cocycle φ̂ over {ft} which is differentiable along the flow.

The hypothesis that Θ is transversally absolutely continuous implies that there is a measurable
function G : M → R such that Θ∗θ̃ = Gθ. The set X = {p ∈ M |G(p) = 0} is flow invariant as
the holonomy of F is at least C1. The set X cannot be of full measure, as the transverse derivative
integrates back to the transverse coordinate of Θ, and Θ is a homeomorphism. Therefore, ergodicity
of the flow implies X has measure zero, and we can define a measurable function g on M such that
G = exp(g).

The function g satisfies the coboundary relation

φ̂(p, t) = φ(p, t) + g(ft(p))− g(p). (89)

The difference of cocycles φ̂− φ is Lipshitz on M , so by Theorem 2.1 the coboundary g is β-Hölder
for some β > 0. By Theorem 3.1, the foliation F is α-Hölder for all 1 > α > 1− β, so we conclude
from the proof of Proposition 7.7 that gv(F) = gv(F̃). 2

8 Godbillon-Vey Classes for Circle Bundles

Let M be a closed 3-manifold which fibers over an oriented surface Σ with circle fibers, and let F
be a codimension-one C1,α-foliation of M whose leaves are everywhere transverse to the fibers. The
holonomy of such a foliation determines a C1,α-action of the fundamental group Γ = π1(Σ, x0) of the
surface on the S1-fiber over x0. In this section we will give an alternate construction of gv(F) based
on this holonomy action. The formula we obtain generalizes the well-known “Thurston cocycle”
for C2-actions, and is striking for the intuitive feel it gives to the extension of the Godbillon-Vey
invariant. It shows, for example, that the restriction α > 1/2 is dictated by considerations of
Hausdorff dimension for curves in the plane. The geometric construction of this section is also the
original method used to extend the range of definition for the Godbillon-Vey invariant, and has
far-ranging generalizations [31].

We assume that the foliation F is transversally oriented. Fix a basepoint x0 ∈ Σ and an
identification S1 ∼= π−1(x0) of the fiber of π : M → Σ. The holonomy homomorphism (cf. Chapter
5, [7]) of the foliation F is the representation

h = hF : Γ→ Diff1+α
+ (S1). (90)

into the group of orientation-preserving, C1,α-diffeomorphisms of the circle.
The additive Radon-Nikodyn 1-cocycle for a C1-action h : Γ×S1 → S1 is defined as the logarithm

of the volume expansion:

µh : Γ× S1 → R

µh(γ, θ) = log(h′(γ)|θ),

where h′(γ) denotes the derivative with respect to the natural length coordinate on the circle, which
we assume to have total length 2π.
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Integration over the fiber defines a natural isomorphism of cohomology groups

π∗ : H3(M ; R)→ H2(Σ; R) ∼= H2(Γ; R)

where the latter space is the group cohomology of Γ. Thus, the Godbillon-Vey class GV (F) ∈
H3(M ; R) is identified with a group 2-cocycle over Γ.

DEFINITION 8.1 The Thurston cocycle ch for a C2-action
h : Γ× S1 → S1 is the group 2-cocycle defined by

ch(γ1, γ2) =
∫
S1

µh(γ2, θ) ·
dµh(γ1 · γ2, θ)

dθ
dθ ; γ1, γ2 ∈ Γ. (91)

The following is an unpublished result of Thurston (cf. [61, 62]); a detailed proof was published
by Brooks in (Appendix to [6]).

PROPOSITION 8.2 (Thurston Cocycle Formula) Let F be a C2-foliation transverse to the
fibers of π : M → Σ with holonomy homomorphism hF . Then the cohomology class [chF ] ∈ H2(Σ; R)
equals π∗(GV (F)). 2

Let Bα denote the topological space of α-Hölder continuous functions on the circle, with norm
the obvious modification of (75). The method of proof of Proposition 7.2 also establishes the
corresponding result for functions on the circle:

PROPOSITION 8.3 For α, β > 0 with α+ β > 1, there is a jointly-continuous, skew-symmetric
bilinear form

I : Bα × Bβ → R (92)

which extends the natural pairing

I(f, g) =
∫
S1
f · dg

for C1-functions f and g. 2

Let h : Γ× S1 → S1 be an orientation-preserving C1,α-action on the circle. For α > 1/2, define
the extended Thurston cocycle:

cIh(γ1, γ2) = I(µh(γ2), µh(γ1 · γ2)). (93)

Each function µh(γ) ∈ Bα, so the formula is well-defined by Proposition 8.3. The pairing I is
invariant under C1 change of variable, so the usual proof [6] that cIh is a cocycle on Diff2

+(S1) works
as well for Diff1+α

+ (S1).
The fundamental class [Σ] ∈ H2(Σ; R) corresponds to an integral group 2-homology class for Γ,

which can be written

[Σ] =
p∑
i=1

ni{γ1,i × γ2,i}

for integers ni and group elements {γk,i}. The proof of Proposition 8.2 can be adapted to show:
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PROPOSITION 8.4

gv(F) = cIhF ([Σ]) =
p∑
i=1

ni c
I
hF

(γ1,i, γ2,i) 2 (94)

The purpose of this section is to give an alternative, more geometric definition of the extended
cocycle cIh(γ1, γ2). This is based on Thurston’s “remark” (cf. page 40, [6]) that for C2-actions,
cIh(γ1, γ2) is the algebraic area inside the C1-plane curve

BTh : S1 → R2 (95)

θ 7→ (µh(γ2), µh(γ1 · γ2)) .

Let us consider the problem in a more general framework. Given functions f, g : S1 → R, define
C(f, g) : S1 → R2 where C(f, g)(θ) = (f(θ), g(θ)). Identify S1 with the boundary of the unit
disk D2 = {(x, y)|x2 + y2 ≤ 1}. If f and g are differentiable, then we can choose a differentiable
extension of C(f, g) to D(f, g) : D2 → R2. Thurston’s remark is based on an application of Stokes’
Theorem: ∫

S1
f · dg =

∫
S1

C(f, g)∗(xdy) =
∫
D2

D(f, g)∗(dx ∧ dy)
def
= A(f, g)

where A(f, g) is the “algebraic area” enclosed by the C1-curve C(f, g). The general problem is
then to determine the degree of regularity on functions f and g necessary to define a well-behaved
“algebraic area” enclosed by the curve C(f, g).

The first remark is that the value α = 1/2 is special for maps of the circle into the plane:

LEMMA 8.5 Let f, g : S1 → R be Cα-continuous functions. The the Hausdorff dimension of the
image set X(f, g) = {C(f(θ), g(θ)|θ ∈ S1} is at most the minimum of {1/α, 2}. 2

To define the algebraic area inside of a curve, it is natural to reguire that the curve have area
zero, or Hausdorff dimension less than 2. This corresponds to the values α > 1/2. The estimate
in Lemma 8.5 is sharp, as it is easy to give examples of functions f and g based on Fourier series
expansions with the given α-Hölder condition and Hausdorff dimension as close to the estimate as
desired. It was a surprising discovery to find that this condition was also sufficient.

PROPOSITION 8.6 Let f, g be Cα-functions on the circle. For α > 1/2, there is a well-defined
algebraic area, A(f, g), enclosed by the curve C(f, g). Moreover, this area is independent of Lipshitz
reparametrizations of the circle, and depends continuously on f, g in the α-Hölder norm.

Proof. Represent the circle S1 as the interval [0, 2π] with the endpoints identified. Let T =
{y1, y2, · · · , yN} ⊂ S1 be a finite set of points, N > 1, given in increasing order, 0 ≤ y1 < y2 <
· · · < yN < 2π, with yN+1 = y1 for notational convenience. Let f, g : S1 → R be given Cα-functions
for α > 1/2. Define piecewise-linear functions fT , gT : S1 → R by requiring fT (yi) = f(yi) and
gT (yi) = g(yi) for i = 1, . . . , N , and fT , gT are linear between the points of T . We then obtain a
piecewise-linear curve

C(f, g, T ) = C(fT , gT ) : S1 → R2

Let A(f, g, T ) denote the algebraic area enclosed by C(f, g, T ).
Let T0 denote the given finite set, then define Tn+1 inductively as the barycentric subdivision of

Tn.
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LEMMA 8.7 1. For fixed T0, the sequence {A(f, g, Tn)|n = 0, 1, . . .}
is Cauchy;

2. The limit
A(f, g) = lim

n→∞
A(f, g, Tn) (96)

is independent of the choice of initial set T ⊂ S1.

Proof. Let K be a constant such that

max {|f(θ1)− f(θ2)|, |g(θ1)− g(θ2)|} ≤ K |θ1 − θ2|α for all 0 ≤ θ1 < θ2 ≤ 2π.

For an ordered subset set Z = {z1 < . . . < zp} ⊂ S1, define

mesh(Z) = max
1≤i≤p+1

|zi+1 − zi|

Given a larger subset Z ′ containing Z, we order the elements of Z ′ lexicographically. That is, write

Z ′ = {zi,j|1 ≤ i ≤ p; 0 ≤ j ≤ pi}

for integers pi depending on i, and so that

zi = zi,0 < zi,1 < · · · < zi,pi < zi+1

For notational convenience, set zi,pi+1 = zi+1. The following is the key estimate:

LEMMA 8.8 Assume that pi ≤ d for all 1 ≤ i ≤ p. (So that there are at most d points of Z ′

between any two adjacent points of Z.) Then

|A(f, g, Z ′)− A(f, g, Z)| ≤ pdK2 ·mesh(Z)2α. (97)

Proof. Set

~xi = (f(zi), g(zi)) ∈ R2 for 1 ≤ i ≤ p

~xi,j = (f(zi,j), g(zi,j)) ∈ R2 for 1 ≤ i ≤ p; 0 ≤ j ≤ pi

xixi+1 = line segment from ~xi to ~xi+1

xi,jxi,j+1 = line segment from ~xi,j to ~xi,j+1

and let E(i) denote the algebraic area bounded by the segment xixi+1 and the polygonal curve
joining ~xi,0 to ~xi+1,0 via the segments xi,jxi,j+1. (See Figure 1 below.) Then

|A(f, g, Z ′)− A(f, g, Z)| =
∣∣∣∣∣
p∑
i=1

E(i)

∣∣∣∣∣ (98)
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Figure 1: Geometry of E(i)

Let ∆i,j ≥ 0 be the area of the plane triangle with vertices {~xi, ~xi,j, ~xi,j+1}. We use the Hölder
hypothesis to estimate ∆i,j.
First note that |zi − zi,j| ≤ mesh(Z), so that

|f(zi,j)− f(zi)| ≤ K ·mesh(Z)α

|g(zi,j)− g(zi)| ≤ K ·mesh(Z)α.

This yields the estimates

dist(~xi,j, ~xi) ≤
√

2K ·mesh(Z)α ; 1 ≤ j ≤ pi + 1

∆i,j ≤ K2 ·mesh(Z)2α ; 1 ≤ i ≤ p (99)

Combine the estimate (99) with plane geometry to obtain

|A(f, g, Z ′)− A(f, g, Z)| ≤
p∑
i=1

pi∑
j=1

∆i,j

≤
p∑
i=1

pi∑
j=1

K2 ·mesh(Z)2α

≤ pdK2 ·mesh(Z)2α . 2

We take Z = Tn and Z ′ = Tn+1 in Lemma 8.8, with d = 2, p = 2nN and mesh(Z) =
2−nmesh(T0), to obtain

|A(f, g, Tn+1)− A(f, g, Tn)| ≤ 2nN2K2 · 2−2nαmesh(T0)2α

= 2NK2 · 2n(1−2α)mesh(T0)2α (100)

For α > 1/2, this last term is summable in n, hence {A(f, g, Tn)} is a Cauchy sequence.
Let T ′ be another choice of a finite subset of S1, and introduce the union of the initial choices,

T ′′ = T ∪ T ′. Then there exists integers d, d′ so that for all n > 0, the number of points in T ′′n
between any two adjacent points of Tn is bounded by d, and between any two points of T ′n by d′.
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(We say that Tn and T ′′n are comparable subdivisions.) Apply Lemma 8.8 for Z = Tn and Z ′ = T ′′n
to obtain the estimate

|A(f, g, T ′′n )− A(f, g, Tn)| ≤ dNK2 · 2n(1−2α)mesh(T )2α (101)

which tends to zero as n tends to infinity. The similar estimate for T ′n yields that the limit (96) is
independent of the choice of initial set T .

A Lipshitz change of coordinates Θ for S1 has a constant K ′ so that for all n > 0, there is an
estimate

mesh(Θ(Tn)) ≤ K ′ ·mesh(Tn)

and similarly for the inverse. Therefore, we can find a uniform d as in above so that Tn and Θ(Tn)
are comparable subdivisions. As above, this implies that the limit of {A(f, g,Θ(Tn))} equals the
limit of {A(f, g, Tn)}, which proves that A(f, g) is an invariant of Lipshitz coordinate changes. 2

We now define the geometric extended cocycle, cAh , for a C1,α-group action h by replacing the
skew-product I of (92) with the area functional A of (96). Our final result of this section is that
this geometric extension of the Godbillon-Vey invariant agrees with the previous analytic extension
of the Godbillon-Vey invariant.

PROPOSITION 8.9 Let h : Γ × S1 → S1 be a C1,α-action by orientation-preserving diffeomor-
phisms. Then cIh(γ1, γ2) = cAh (γ1, γ2) for all γ1, γ2 ∈ Γ.

Proof. It suffices to show that the pairings I and A agree on the topological space Bα × Bα. The
pairings I and A agree on piecewise smooth functions, so for f, g ∈ Bα we have that I(fTn , gTn) =
A(fTn , gTn) for all n > 0. The result then follows from continuity of the pairings in the appropriate
Hölder norms and the estimate:

LEMMA 8.10 Let f ∈ Bα for 0 < α < 1, and Z ⊂ S1 a finite subset. Then

‖ f − fZ ‖α ≤ 4 ‖ f ‖α ·mesh(Z)α (102)

Proof. For 0 ≤ x < y < 2π, we will estimate

|{f(y)− fZ(y)} − {f(x)− fZ(x)}| ≤ |f(y)− fZ(y)|+ |f(x)− fZ(x)| (103)

Let zx ∈ Z be a point closest to x, and zy ∈ Z a point closest to y. Then

|f(x)− fZ(x)| ≤ |{f(x)− fZ(x)}+ {f(zx)− fZ(zx)}|
≤ |f(x)− f(zx)|+ |fZ(x)− fZ(zx)|
≤ ‖ f ‖α {|x− zx|α + |z′x − zx|α}
≤ 2 ‖ f ‖α ·mesh(Z)α

where z′x ∈ Z is the closest point to x in Z such that x lies between zx and z′x. A similar estimate
for y yields (102). 2
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9 Mitsumatsu Defect and Rigidity

The geodesic flow for a surface of variable, strictly negative curvature is a very special example of a
smooth Anosov system. In this section, we will show that the Godbillon-Vey invariant for the weak-
unstable foliations of such a flow is given by a formula whose terms are derivable from the curvature
of the metric. This Formula of Mitsumatsu has surprising consequences, as originally noted by
Mitsumatsu [53]. The formula is straightforward to derive for C2-foliations, and establishing it for
C1,α-foliations requires a (non-trivial) technical modification.

Let (Σ, g) denote a closed orientable surface with strictly negative Gaussian curvature function
k(g) : Σ → R for the Riemannian metric g. Let π : M → Σ denote the unit tangent bundle to Σ,
with {ft(g)} the geodesic flow and ξ = ξ(g) the geodesic spray. The group S1 acts on the fibers
of π by the counter-clockwise angle rotation in the tangent bundle, so we can introduce a uniform
parameter φ on fibers, so that each fiber has length 2π. Let w = ∂/∂φ be the corresponding unit
tangent vector field to the fibers.

The weak-unstable foliation of the flow {ft(g)}, denoted by Fg, is C1,α for all 0 < α < 1, so
in particular has a well-defined Godbillon-Vey invariant gv(g) = gv(Fg). Note that as the weak-
stable and weak-unstable foliations of the flow are conjugate by the π/2-rotation, there is only one
secondary-type invariant for the flow.

The Ricatti Equation along the flow (18) has a unique bounded positive solution which extends
to a continuous function on M , denoted by
H : M → R. The function H is actually as smooth as the weak-stable and weak-unstable foliations
of the flow, so will be smooth along weak-stable and weak-unstable foliations, and transversally C1.
In particular, the Lie derivative wH is continuous.

PROPOSITION 9.1 (Formula of Mitsumatsu) Let (Σ, g) be a closed oriented Riemann sur-
face with strictly negative Gaussian curvature and Euler characteristic χ(Σ). Then

gv(g) = 4π2 · χ(Σ)− 3 ·
∫
M

(wH)2 dvol (104)

Proof. The idea of Mitsumatsu is to find an explicit 1-form θ defining Fg expressed in terms of the
vector fields ξ, w and function H. Introduce the smooth vector field σ = [w, ξ], the Lie commutator
of ξ and w. It follows that σ is orthogonal to w and ξ, and the triple {ξ, σ, w} form an oriented frame
field on M . Let {ξ∗, σ∗, w∗} denote the corresponding orthonormal dual framing of the cotangent
bundle. Then w∗ is the connection 1-form for the metric g, and {ξ∗, σ∗} are the Sölder horizontal
1-forms (cf. [5]). The 3-form dvol = ξ∗ ∧ σ∗ ∧ w∗ is flow invariant, so gives the Liouville measure
for the system.

The connection 1-form satisfies the structure equation

dw∗ = k(g) ◦ π · ξ∗ ∧ σ∗

and therefore the vector fields satisfy the structure equations

[w, ξ] = σ, [w, σ] = −ξ, [ξ, σ] = −k(g) ◦ π · w. (105)
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The dual 1-form ξ∗ is the invariant contact form for the flow, so the strong-stable and strong-unstable
vector fields are written in terms of the framing by

η+ = σ +H+w (106)

η− = σ +H−w

for C1,Λ∗-functions H+, H− on M . The weak-unstable distribution Ewu is spanned by the pair
{ξ, η+}, and the Anosov condition (1) implies that both H+ and H− satisfy the Ricatti equation
(18). Therefore, H = H+ is the unique bounded positive solution, and H− is the unique bounded
negative solution. Thus,

θ = w∗ −Hσ∗ (107)

is a defining 1-form for the distribution Ewu. Use the identities (105) to calculate

dθ = dw∗ − dH ∧ σ∗ − h · dσ∗

= −k(g) ◦ π · ξ∗ ∧ σ∗ − dh ∧ σ∗ +H · w∗ ∧ ξ∗

= η ∧ θ

where
η = −ι(w)dθ = (wH) · σ∗ −H · ξ∗. (108)

If the 1-form η is C1, then we can calculate

η ∧ dη =
{
−2(wH)2 −H2 +H(w(wH))

}
· dvol (109)

The strategy for the case when η is only transversally Cα is to establish an approximate form of
equation (109). This will be based on the observation that differentiating the Ricatti equation yields

w(ξH) + 2H · wH = 0, (110)

from which we deduce that wH = −1/2 ·ξ(log(H)) which is a C1-function on M . Therefore, w(wH)
is a continuous function.

LEMMA 9.2 There exists a sequence of C2-functions {HN |N = 1, . . .} on M such that {wHN}
converges uniformly to wH in the Cα-topology for all α, and {w(wHN)} converges uniformly to
w(wH).

Proof. The space of continuous functions on M decomposes into a Fourier series with respect to
the fiberwise group action of S1. Use this decomposition to write H =

∑
Hn ◦ π · einφ, where each

Hn : Σ→ R is a C1,α-function (cf. [25]). Choose C2-functions {Hn,N} so that {n2Hn,N} converges
in the C1,α-norm to {n2HN}, with uniform estimates on Σ, independent of n, and set

HN =
N∑

n=−N
Hn,N · einφ. 2
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Define 1-forms

θN = w∗ −HN · σ∗

ηN = −ι(w)dθN

= (wHN) · σ∗ −HN · ξ∗

and calculate
ηN ∧ dηN =

{
−2(wHN)2 −H2

N +HN(w(wHN))
}
· dvol. (111)

Mitsumatsu made the observation that the S1-invariance of dvol and the Gauss-Bonnet Theorem
allows rewriting the integral of the formula (111) into the expression (104). The key identity is

0 =
∫
M
w(HN · wHN) · dvol =

∫
M

(wHN)2 · dvol +
∫
M
HN(w(wHN)) · dvol. (112)

The forms {ηN} converge to η in the Cα-topology, so we use continuity of the pairing I with the
identities (111) and (112) to calculate

gv(g) = lim
N→∞

∫
M
ηN ∧ dηN

= lim
N→∞

{
−
∫
M
H2
N · dvol − 3 ·

∫
M

(wHN)2 · dvol
}

= −
∫
M
H2 · dvol − 3 ·

∫
M

(wH)2 · dvol

Finally, the Ricatti equation and Gauss-Bonnet Theorem imply that

−
∫
M
H2 · dvol =

∫
M
ξH · dvol +

∫
M
k(g) ◦ π · dvol

= 2π ·
∫

Σ
k(g) · dΣ

= 4π2 · χ(Σ). 2

COROLLARY 9.3 (Mitsumatsu) gv(g) = 4π2 · χ(Σ) if and only if g has constant negative
curvature.

Proof. The formula of Mitsumatsu reduces the claim to showing wH = 0 is equivalent to g having
constant curvature. For k(g) = −1, the function H+ = 1 is a positive bounded solution of the
Ricatti equation, so H = 1 and we have wH = 0.

For the converse, first note that the Lie identity [w, ξ] = σ implies that

w(ξH) + ξ(wH) = σH. (113)

Combine equations (110) and (113) to conclude that wH = 0 is equivalent to σH = 0. This last
condition implies that H is constant along the flow of the vector field σ, which is ergodic. Thus, H
is constant on M and the Ricatti equation implies that k(g) ◦ π = −H2 is constant. 2
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10 Some Open Problems

The Anosov class Af of a flow {f} is determined by the numbers Af (p, tp) for periodic orbits by
the Livshitz Theorem. For a geodesic flow, the periodic orbits project to closed geodesics on Σ,
and each such orbit is uniquely determined by a non-trivial free homotopy class of closed curves on
Σ. The set Γ̂ is independent of the metric, being equal to the set of conjugacy classes in Γ. Thus,
the class Af(g) of a metric g determines a real-valued function A(g) : Γ̂ → R, and we say that

two metrics have the same Anosov class Af(g) if their corresponding functions A(g) on Γ̂ coincide.
Obviously, any diffeomorphism of Σ isotopic to the identity, applied to a metric, does not change
the function A(g)

PROBLEM 10.1 Characterize the set of metrics of negative curvature on a closed surface Σ with
the same Anosov class Af(g). More specifically, is this set always finite-dimensional, after factorizing
by the action of the group of diffeomorphisms of Σ isotopic to the identity?

The length function Lg : Γ̂ → [0,∞) of a Riemannian surface (Σ, g) assigns to a closed path
in Σ the length of the shortest geodesic in the free homotopy class of the path. This function
characterizes the isometry class of the metric [8, 55].

PROBLEM 10.2 Find a formula for the Godbillon-Vey invariant gv(g) of the metric in terms of
the length function Lg. For example, can the value of gv(g) derived from the ζ-function of Lg ?

The class of Zygmund functions most commonly arises in the study of singular integral operators,
and defines a natural norm for these kernal operators (cf. [44, 59]). The conclusion that the weak-
stable and weak-unstable foliations of a volume-preserving C3-Anosov flow on a closed 3-manifold
have regularity C1,Λ∗ was a surprise to the authors, which was observed strictly on the basis of
obtaining the optimal conclusion from our techniques.

PROBLEM 10.3 Can the C1,Λ∗-regularity of the weak-stable foliation be deduced from an analytic
principle? For example, when {ft(g)} is a geodesic flow, is there a natural singular integral operator
associated to g, or possibly to the action of the fundamental group Γ at infinity, whose regularity
properties imply those of the weak-stable foliation?

When a volume-preserving, C∞-Anosov flow on a closed 3-manifold has C∞ strong-stable and
strong-unstable foliations, then the flow is algebraic by Ghys [17]. However, this conclusion is not
known if only the weak-stable and weak-unstable foliations are given to be C∞. The examples of
Plante [57] show that an algebraic Anosov flow can be perturbed by a time change, so that it has
C∞ weak-stable and weak-unstable foliations, but the strong-stable and strong-unstable foliations
are not even differentiable.

PROBLEM 10.4 Suppose that {ft} is a volume-preserving, C∞-Anosov flow on a closed 3-manifold
M. If the flow has C2 weak-stable and weak-unstable foliations, show that it is possible to make a
time-change for the flow, so that the new flow has C1 (and hence C∞ by Theorem 2.3) strong-stable
and strong-unstable foliations.
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