AMERICAN MATHEMATICAL SOCIETY Navigate MathSciNet Mathematical Reviews on the Web Jump to Search or Browse Screens

Item: 1 of 1 | <u>Return to headlines</u>

Select alternative format: <u>BibTeX</u> | <u>ASCII</u>

MR1027900 (91c:57048) Hurder, Steven (1-ILCC) Deformation rigidity for subgroups of SL(n, Z) acting on the *n*-torus. <u>Bull. Amer. Math. Soc. (N.S.)</u> 23 (1990), <u>no. 1</u>, 107–113. 57S20 (20H05 22E40 57S25 58F15)

Journal

Doc Delivery

References: 0

Reference Citations: 0

Review Citations: 0

Let Γ be a subgroup of finite index in $SL(n, \mathbb{Z})$, $G = Diff^{r}(\mathbb{T}^{n})$, and $R(\Gamma, G)$ the space of homomorphisms of Γ to G. $R(\Gamma, G)$ has a natural topology as a closed subspace of a Fréchet manifold. Let $\varphi \in R(\Gamma, G)$ be the action of Γ on the *n*-torus coming from the linear action of Γ on \mathbb{R}^{n} . A C^{k} -deformation of φ is defined to be a C^{k} path $t \mapsto \varphi_{t} \in R(\Gamma, G)$, $0 \leq t \leq 1$. A C^{k} deformation φ_{t} is said to be trivial [resp., locally trivial] if there is a C^{k} path $t \mapsto H_{t} \in G$ such that $H_{t}^{-1} \circ \varphi_{t} \circ H_{t} = \varphi$ for $0 \leq t \leq 1$ [resp., for $0 \leq t < \varepsilon$ for some $\varepsilon > 0$]. The author announces and sketches a proof that for $n \geq 3$ and $r = \infty$ or $r = \omega$, every C^{1} -deformation of φ is trivial and every C^{0} -deformation is locally trivial. Counterexamples to this theorem are known for n = 2.

The proof of the theorem proceeds in two steps: first a path of homeomorphisms H_t is constructed which satisfies the above condition; then it is shown that H_t has the desired regularity. The first step is accomplished by observing that there is a dense set of points in \mathbf{T}^n each of which is fixed by a finite index subgroup of Γ . By a theorem of G. A. Margulis [*Discrete subgroups of Lie groups*, Springer, to appear], the first cohomology of the isotropy group of such a point with coefficients in the linear isotropy representation must vanish. Then by a theorem of D. Stowe [Proc. Amer. Math. Soc. **79** (1980), no. 1, 139–146; <u>MR 81b:57035</u>], the fixed points of the isotropy groups persist under deformation. The group Γ contains an element γ_0 which is hyperbolic and therefore $\varphi(\gamma_0)$ is Anosov. Now structural stability yields a path H_t , $0 \le t < \varepsilon$, of homeomorphisms conjugating $\varphi_t(\gamma_0)$ to $\varphi(\gamma_0)$. It is shown that H_t conjugates φ_t to φ on the dense set of points in \mathbf{T}^n described above and therefore on all of \mathbf{T}^n . The proof of the regularity of H_t is more technical, and appeals to recent advances in the theory of smooth Anosov systems along with further cohomological properties of Γ .

The author observes that the triviality of C^k -perturbations (as opposed to deformations) is still an open question. The one place in the author's proof where this distinction is essential is in the

MSN-Support Help Index

application of Stowe's theorem.

<u>Reviewed</u> by <u>Garrett Stuck</u>

© Copyright American Mathematical Society 1991, 2004