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1. Introduction

In this monograph, we will put into a unified context three of the real-valued

invariants that are associated to a self-adjoint pseudo-differential operator (y DO)

on a manifold:

a) The relative eta-invariant of Atiyah-Patodi-Singer [6] for a first order, elliptic
differential operator coupled to a trivialized flat bundle.

b) The odd analogue of the Breuer index for a self-adjoint, leafwise elliptic y DO
along the leaves of a measured foliation, as defined by Connes [27, 28].

¢) The odd analogue of the distributional G-index of a self-adjoint differential
operator, transversally elliptic for a smooth G-action, based on the transverse
index theory of Atiyah [1] an Singer [81, 82].
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The unification of these three classes of real-valued invariants is a consequence
of the authors’ study of a long-standing problem posed by I. M. Singer (cf. page 92,
[6] and page 135, [82]):

Problem 1.1. Construct the relative eta-invariant as a Breuer index in an appropriate
von Neumann algebra.

As shown in Sect. 4 below, there are appropriate choices of foliated manifold
and leafwise elliptic data so that the topological formulas for the analytic invariants
of a) and b) above coincide. Pursuit of an analytic proof of this coincidence led the
authors to a solution of Problem 1.1, and the work in this monograph.

Atfirst, it would appear that the transverse (analytic) index invariants of ¢) have
no relation to the index invariants of a) or b). However, one of the main themes
developed in this monograph is that both of the latter invariants can be transformed
into transverse analytic invariants, and in this context the problem of Singer has a
solution. The first point is that the relative eta-invariant can be reformulated as a
distribution on the algebra R_ (Uy) of smooth central functions, where 7, (M) is
represented on the unitary group Uy . Secondly, Cheeger-Gromov estimates for the
absolute eta-invariant and the technique of asymptotic cycles for the dual space Uy
are used to show that renormalization of an appropriate transverse “Toeplitz”
index problem yields a distributional eta-invariant. Finally, a different analysis of
the renormalization procedure applied to the transverse index problem, based on
the Fubini principle and the Weyl asymptotic formula, shows that the transverse
index renormalizes to the Breuer index of a leafwise elliptic operator for a flat
bundle foliation. Thus, we equate the two “longitudinal” invariants a) and b) by
equating them to renormalized transverse invariants. This use of the transverse
index context to prove equality of two different invariants can be viewed as a more
sophisticated version of the method introduced in [23, 24] to prove the index
theorem for almost periodic operators.

To state our main theorem and its corollary, we introduce some notation which
is further explained in later sections:

M denotes a compact, odd-dimensional Riemannian mani-
fold of dimension m without boundary.

D is a geometric operator, operating on sections C*(E) of a
smooth bundle E— M of Clifford modules.

G is a connected compact Lie group.

a: -G is a representation of the fundamental group I' ==, (M).

0:G-Uy is a finite-dimensional unitary representation of G.

E@@oa)y-M is the flat Hermitian C"-bundle associated to g°a.

V denotes the principal (flat) G-bundle associated to gea,

with flat connection V.

F, is the G-invariant foliation of ¥ whose tangential distribu-
tion consists of the horizontal spaces of F*. The leaves of
&, are coverings of M associated to the kernel of a.

O V-MxG is a topological trivialization of the G-bundle V.
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u:V-oUy is the composition of V- M x G-% Uy,

ve is the Hermitian flat connection on eé¥=MxCV->M
obtained by pushing forward V* under ©.

Dy,=D®Iy is the product extension of D to C®(E ®¢").

D,=D®V* is the twisted extension of D to C*(E®¢").

D,=t-D,+(1—1)D,
1

n(D, o, @)= rj(D,)dt
0

D, is the leafwise lift of D®Iy from M to compactly
supported smooth sections of the lift of E®eN to V then
restricted to leaves.

coe HFT2(C™(V)) is the odd degree cyclic cocycle constructed from the
“phase” @ of the leafwise essentially self-adjoint operator
D,.

Ce HMP2(C™(V)) is the odd degree cyclic cocycle constructed by renormaliz-

ing the transverse cocycle constructed from D, viewed as a
transversally elliptic operator for the G-action on V.

After this lengthy list of notations, we can now state our main result.

Theorem 1.2. The longitudinal cocycle cq and the transverse cocycle ¢ are identically
equal as cocycles over C®(V). Moreover, when evaluated on the unitary
[u]e Hyq(C™(V)),

(1.1) co([u) =¢([u))= —n(D,a, O). O

Asisexplained in Appendix B, the left-hand side ¢4 ([#]) of (1.1) can be identified
with the Breuer index of a family {7} of leafwise Toeplitz operators obtained by
compressing the multiplier operator of u to the positive ranges of the leafwise
operators D,. The Breuer index, Ind,(7,"), is calculated by applying the von
Neumann trace, tr,, on the foliation von Neumann algebra W*(V/4#,, u) obtained
from the Haar measure u on G (cf. [26]), to the operator

m+1 m+1
{(P—T.,*T.,) 2 _(1*-T,T,) ° }

Thus, we obtain an analytic proof of

Corollary 1.3.

m+1 m+1
(1.2) —ﬂ(D,fX,9)=Indu(Tu)=Tf,.{(1+—T.aT..) P -(*-T,T, ? } o

We give next an overview of the contents of the rest of this monograph, which
will serve also as a more detailed overview of the proof of Theorem 1.2.

Section 2 gives the details and sets notation for the basic geometric constructions
used throughout the monograph. The material is standard for the fields from which
1t is drawn, but for the reader’s convenience we gather it together here, and give
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where possible additional insights into their use later in the monograph. The reader
is encouraged to consult the basic references [28], [15] and [63].

Section 3 constructs the longitudinal cyclic cocycle for D,. In one sense, the
material in this section is also standard, for this section is basically an ellaboration
upon Sects. 2 and 7 of Connes’ fundamental paper [30] in the measured foliation
context. With this said, the casual reader will probably not recognize immediately
this correspondence. Thus, Sect. 3 gives full details on the construction of the
longitudinal cocycle. It begins by introducing the class of longitudinal (or leafwise)
differential operators, then discusses the construction of ¥ DO parametrices with
controlled supports for these operators. This material is based in part on Chapter
VII of Moore and Schochet [67]. After these preparations, we obtain (bounded)
pre-Fredholm modules from D,, then use either the 2 x 2 trick (even case) or the
4 x 4 trick (odd case) to convert the pre-Fredholm module to a Fredholm module, in
the sense of (Appendix 2, [30].) The 4 x 4-trick is the “Clifford version™ of the
2 x 2 trick, and we are indebted to 4. Connes for providing the preliminary version
[29]in which the details were worked out in full. Given the Fredholm module of D,,
the longitudinal cocycle is defined via a simple formula.

Section 4 is incidental to the proof of Theorem 1.2, but we include this material
as it has strong related interest. We first discuss the topological formula for the
measured foliation index of the Toeplitz operators {7,}. This relies on some
calculations relegated to Appendix B and Connes’ foliation index theorem. The
second result of this section shows that the topological index formula for {7} agrees
with the topological formula for the relative eta-invariant. The proof of this uses
some observations about the construction of transgression forms for flat bundles. J.
Cheeger pointed out that Theorem 4.7 below is a generalization of (Theorem 8.15,
[20]).

Section S introduces the concept of a sharp parametrix for a transverse operator.
This idea was developed in conversations with John Roe, and plays a key role in
renormalization. In the Connes construction of a transverse Chern character, a key
step is the construction of a transverse parametrix which is a 1y DO on the ambient
manifold V. In contrast, the sharp parametrix is only a y DO when restricted to the
leaves of an auxillary transverse foliation. Moreover, the transverse sharp cocycle
requires for its construction two transverse Riemannian foliations, and a leafwise
elliptic y DO along one of the foliations. Renormalization requires that the other
foliation be taut in the sense of [59], [80].

Given a sharp parametrix, the construction of the transverse sharp cocycle
follows the algebraic formalism developed by Connes for the even case. Both the
sharp transverse cocycle and the Connes transverse cocycle, denoted respectively by
c* and ¢®, are cyclic cocycles for the convolution algebra C* (£,) of smooth kernels
along the leaves of the foliation &, to which the given operator is transverse. The
last result of Sect. 5 shows that these two cocycles are cohomologous.

Section 6 gives the fundamental new material of this monograph. We show that
the sharp transverse cocycle behaves well with respect to a carefully chosen sequence
of approximate units in C*(#,). The renormalization procedure lifts the cocycle ¢ *
from the convolution algebra C*(#,) to the commutative algebra C®(V). We
develop a criterion, which unfortunately is fairly narrow, for when a general cocycle
over C°(#,) can be renormalized. A key result of this section is that the Weyl
asymptotic formula implies that renormalization of ¢* transforms it into the
longitudinal cocycle cg of Sect. 3. This yields the relation described previously
between the longitudinal index invariants b) and the transverse index invariants c).
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Section 7 reformulates the eta-invariant of D with twisted coefficients as a
distribution on the central functions R (G). The basic observation is that the map

o—n(D ®Ve°*) extends to R (G) as a consequence of an estimate of Cheeger and
Gromov [17, 18] and Ramachandran [71]. The flat bundle techniques of Sect. 4
reappear in this section, when we show that the eta-distribution can be equally
defined using the operator D,, considered as an operator on V. This reformulation
of the eta-distribution sets the stage for the proof of Theorem 1.2 in Sect. 8. The
distributional eta-invariant was first introduced for finite groups by Atiyah, Patodi
and Singer [5]. (The corresponding G-index theorem for manifolds with boundary
was proven by Donnelly in [36]). The extension of the finite group case to the non-
trivial, compact connected group case given in this section requires foliation
methods.

The final Sect. 8 shows that the distributional relative-eta-invariant applied to
[e]le R (G) agrees up to sign with the renormalized sharp transverse cocycle
applied to [u]e HX,(C*(V)), which is the pull-back via @ of the odd class
[e]e HY 4 (C*(G)). The proof of this uses two observations. First, we introduce the
Folner condition, which states that the approximate units in C°(G) obtained from
the heat kernel of the invariant Laplacian define a sequence of “‘Folner sets” in the
dual G. We then observe that the renormalization procedure is equivalent to the
convergence to Plancherel measure of the measures determined by this Folner
sequence on L?(G). This is the group-theoretic interpretation of the Weyl
asymptotic formula for L2 (G), using the Peter-Weyl theorem. The second key step is
to use the Kasparov formulation of the odd index theorem to prove that before
renormalization, the values of the sharp transverse cocycle and a spectral flow
distribution agree. The argument is concluded by invoking the estimate of Cheeger
and Gromov from Sect. 7 to show that the renormalized spectral flow converges to
the eta-distribution. We have then established the correspondence

co([ul) ¢ ([u])
(1.3 «renormalized ¢* ([u])
< renormalized spectral flow

«—eta distribution ([¢])

which proves the equalities of Theorem 1.2.

We conclude this monograph with four Appendices. The first, A, elaboratesona
remark of A. Connes that Theorem 1.2 justifies calling a certain K-homology class
in K*,,(BU) the “KK-eta-invariant”. This is also discussed in (§4, [9]). Appendix B
calculates c4 ([#]) as a longitudinal index. The material of this appendix is developed
more fully in [45]. Appendix C contains a technical result giving estimates of the
eigenvalues of D ® V2°* which are uniform in the dimension N of the representation
0. Finally, in Appendix D we discuss the development in index theory in the 1970’s
which played a role in the present work.

A preliminary version of the results of this monograph was announced in a
plenary address by the second author at the conference on “Operator Algebras” at
the Mathematical Sciences Research Institute, Berkeley, in June 1985. The M.S.R.I.
preprint {[42] announced the main theorem with the additional hypothesis that I' is
amenable. The special case of this program for G=U(1) was developed in [43],
where the Fourier Transform on L?(S*) was used to simplify many of the technical
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arguments used in this monograph. The group structure on G enables one to give a
more traditional presentation of the Folner set ideas of Sect. 8. Other aspects of this
program have appared in [39, 40, 41], [53, 54, 55], [60] and an announcement of
Corollary 1.3 was made in [44].
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special program on “Operator Algebras” during 1984-85, which enabled this collaboration to
take place.
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2. Basic foliation geometry

Let & denote a C*-foliation of a connected manifold ¥ without boundary. Let m
denote the dimension of the leaves, and n the codimension of #. Let I=(—1,1) be
the open interval, and p, : I™*"—I™, respectively p, : I™*"—I", be the projection
onto the first (respectively second) factor in the product I™*"= 1" x I". A foliation
chart for & is a coordinate chart, ¢ : U—-I™"", with Uc V open, such that the level
sets

@.1) P()=(p2°$) '(»); yel"
are the connected components of the restrictions of the leaves of & to U. The sets
P(y) are called the plaques of # in U.
A covering of V by foliation charts {(U;, ¢;)|je 3} is said to be good if the
covering is locally finite and each non-empty intersection
U.

ign=Up0...0U;,
is a contractible space.

A Riemannian metric, g, on TV determines an orthogonal decomposition
TV=F®Q, where F=T% is the sub-bundle of vectors tangent to leaves of #. For
each leaf LcV, g restricts to a Riemannian metric, g;, on TL=FL. The inner
product on the bundle Fis denoted by gr. We make the basic assumption that there

is a metric g for which:
2.2) Each leaf L is a complete Riemannian manifold for the metric g, .

2.3) There is a positive lower bound on the injectivity radius of V. That is, there
exists a constant ¢, >0 so that for all xeV, the exponential map
exp: T, V- Vis an injective diffeomorphism on the ball B(0, c,) = T, V of
radius ¢, about the origin.

2.4 V and all leaves L of # have uniformly bounded geometry (cf. §4, [19] or
§2, [74)).
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A foliation chart ¢ : U—I™*" is regular if ¢ has an extension ¢: U—(—1—¢,
14¢)"*" &>0 where Uc U, ¢|U= ¢ and the level sets (p, > ¢) ' (p) are connected
subsets of leaves of #.

A cover {U;|je3} of V has Lebesgue number ¢, >0 if for any set X<V of
diameter less than c;, there is an index je 3 for which X< U;.

We say that a covering {(U,, ¢,)|i€ 3} of V by foliation charts is ¢, -regular if the
coveringis good, each chart ¢, : U;— I™ *"isregular, and there is a Lebesgue number
¢, >0 for the cover.

Lemma 2.1. With the hypotheses (2.2), (2.3) and (2.4) on (V, Z, g), there exists c,-
regular foliation covers for some c, >0.

Proof. Set ¢; =c,/4(m+n). For each xe V, there exists a regular foliation chart
¢, : U, —»I™"""such that U, contains the ball of radius 2 ¢, about x, and foreach y e I"
the plaque P, () is convex (in the leaf metric) and contains the leafwise ball of radius
2¢, about ¢ ~1(0,y)e U,. Choose a countable subset of points {x;|je I} = ¥ such
that every point ye V is within distance ¢; of some x;, and for j+j’ we have
dist, (x;, x;) >3 ¢;. (Such a set is called a c,-net in V.) For each j set U;=U,,
¢;=d,,. The collection {U;|je 3} is good, as the plaques in each U; are convex, so
all multiple intersections will be convex, hence contractible. Let X = V be a subset of
diameter less than ¢, . For y € X, there exists je 3 so that dist, (y, x;) <¢; , and hence
XcB(x;,2¢))<U;. O

A transversal to & is a compact #-manifold 7, possibly with boundary, and an
immersion f: T— V whose image is everywhere transverse to the leaves of #. Two
transversals, (7, f,) and (7, f;) are said to be holonomy related if there exists a
smooth vector field on V, everywhere tangent to the leaves of # and with a time t=1
flow h, : V-V such that h, o fy=f;.

A transverse measure, u, for & is a countably additive measure defined on the
Borel subsets of the transversals to #. Given a transversal f : T— J and Borel subset
EcT, the value of u(E,f) depends only on the image f(E) of E and we write
u(f (E)) for this value. The measure u is finite if u(7, f) is finite for all transversals.
We say that u is holonomy invariant if given any two holonomy related transversals
(T,fy) and (T.f;), and a Borel subset EcT, then u(f,(E))=u(f;(E)). (This
definition of holonomy invariance is equivalent to the original definition of Plante
[70]).

For each positive integer N, let oy = M (N, C*(V)) denote the algebra of Nx N
matrices with entries in the complex-valued smooth functions on V. There is an
isomorphism of this algebra with the smooth maps from ¥ to M(N), where M(N)
denotes the N x N complex matrices. A self-adjoint idempotent, e € oy, determines
a complex vector bundle E,— ¥, where the fiber over xe V is the subspace of C¥
spanned by vectors in the range of the projection e(x) e M (N), viewing E, as a sub-
bundle of ¥ x C¥. Conversely, each complex vector bundle E— V determines a self-
adjoint idempotent € : ¥— M (N). This correspondence implements, on the positive
elements, the isomorphism of K-groups K,(C°(V))=K°(V).

Let Uyc= M (N) denote the N x N-unitary subgroup, such that for 4 e Uy then
A-A*=1d, where 4* is the conjugate transpose of 4. Each element [u]e K! (V) is
represented for some N by a smooth map u: V- Uy, which is well-defined up to
homotopy. The map u is equivalent to a unitary element i e Uy(C®(V)), and thus
determines a class [iZ] € K, (C°(V)). The correspondence [u]—[#] implements the
1Isomorphism K'(V)=K,(C°(V)), (cf. [61)).
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We next briefly describe the convolution algebras associated to a foliation.
Extensive treatments are given in [27, 28] and (Chapter 6, [67]).

The graph %4 of & is the set of triples (x, y, y,,) where x, y e V are on the same
leaf of &, and y,, is a leafwise path between them, which is well-defined up to
holonomy along the path. A basic open set U, in %4 consist of data

x3,z,7);  (yz)el™xI"xI"
and y is a continuous family of leafwise paths such that:
2.5) There are foliation charts (U,, ¢,) and (U;, ¢;)

(2.6) p:ImxI"xI"x[0,1]- ¥ such that y, , . :[0,1]-V is a leafwise path
from ¢g ' (x,z) to ¢, ' (¥, 2), and y,,, ,, depends continuously on (x, y, z).

The leafwise metrics g, and the foliation charts of (2.5) determine Riemannian
metrics g; , on the plaques P;(y), and hence metrics on the coordinates /™ x {y}. Let
dv(g; ,) denote the smooth volume form on I™ x {y} determined by this metric.

For a compactly supported continuous functionk =k (x, y, z) on I"™ x I" x I", we
define on a basic open set U, a basic kernel k, by

k,(x,y,2,7)=k(x,,2).

There is an involution on these kernels:

@7 k¥ (x,y,2,7)=k(y,%,2).

The algebra C*(V/# ) consists of formal finite sums of basic kernels and their
products. The sum is subject to the relation that if k , and k ,, are basic kernels on the
same open set U, , then k, +k,, is the kernel defined by the sum of functions k, +k,
on I™ x I x I". The product is defined by the convolution rule for basic kernels: let
k, onU, k, onU,, begiven, and suppose that the chart ¢{ : U{ —I"*"for U, is the
same as @3 : UZ—>I™*" for U,,. We then define as basic open set U, ,,, with first
open set (U, ¢pd), second open set (UZ, ¢7) and with y, * 7, the concantenation of
the paths y, and y,. Then for (x,y,z)eI™ xI™ x I",

(2.9 ky ok, (x,y,2,9,%p,)= [ ki(x,w,2)k,(w,p,2)dv(g] ).

welm

If the sets U} and U are disjoiﬁt, then the product, k, ok, is defined to be
identically zero. The general product of two elements in C®(V/# ) can be reduced
to a sum of basic products satisfying one of these two cases.

If n: V— M is a fibration whose fibers define the foliation # = &, on V, then we
let C2(n)=CX2(V/#,). The graph is the fiber pull-back

\ Gy 5 V
(2.9) s] I
V = M
The leaves of &, have trivial holonomy, so that points of %4 are described by pairs
Y5={(z,2)eVxV|n(z)=n(z)}.
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The source and range maps satisfy
s(z,z)=z,;, r(z,z')=z.

An element of C*(x) is a compactly supported smooth function k on the closed
subset ¥z < V' x V. We use the notation k =k (z, z'), and observe that the product of
two elements is

kioky(z,2")= 5 ki(z,2")k, (2", 2" dv,(2")

z’en1(z)

where dv, is the Riemannian volume element along the fibers of z.

A diagonal basic open set in 5 is a basic open set U, where U=U,=U,,
¢=do=¢, and y, , . is the geodesic path in the plaque P(z) between x and y, for
(x,y,z)el™xI™"xI". We adopt the notation Uf for these sets, as they are
determined by the chart (U, ¢). For k on I™xI™xI", the diagonal kernel it
determines is denoted k} : U¥ —C. A transverse invariant measure u for # definesa

linear functional on diagonal kernels,
(2.10) Tr, (k3= | { [ k(x,x, z)dv(gz)} du*(z).
Imn m

The measure du* is the induced measure on the transversals, xel™,
¢(x, )~ 1: ">V, where du* is independent of x by the holonomy invariance of u.

Lemma 2.2. (cf. Corollary 6.28, [67]). Let k ,, and k ,, be basic kernels with the
compositions k , ok, both defined and diagonal. Then

.11) Tr,k, ok,)=Tr,(k ,°k,). O

Corollary 2.3. The map Tr, extends to a linear functional on C*(V|F ) which satisfies
(2.11) for arbitrary pairs in this algebra. 0O

For the foliation &, the choice of a Borel, locally finite measure u,, on M
determines a holonomy invariant transverse measure for &, , denoted by u,. Given
a transversal (7, f), we define

1 (B, [)=py{nf(E)}.

The resulting trace on C° (1) will be denoted by Tr, , where the measure u,, will be
assumed given so there is no ambiguity of notation.

For each leaf L < V, there is a *-representation of the algebra C*(V/#) on the
Hilbert space of the leaf (for the Riemannian volume on L.) The C*-algebra of #,
denoted by C*(V/#), is defined to be Banach *-algebra completion of C*(V/#)
with respect to the uniform family of semi-norms determined by the leaf representa-
tions.

Given the trace functional Tr, on C(V/#), we can also define a completion
with respect to the norm:

2.12) Ik lz=Tr(k* k).

The yields the von Neumann algebra of #, W* (V| %, u), which can also be obtained
as the completion of C*(V, &) with respect to the norm (2.12). (See Chapter VI,
[67] for more details, and also [26].)
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A special class of foliations plays a particularly important role in the develop-
ment of this paper. Let M denote a compact closed manifold with fundamental
group I' =7, (M, x,) which acts on the universal cover M via deck transformations
(on the right). Let X be a complete Riemannian manifold with bounded geometry.
The isometry group of X will be denoted by G, which acts on X on the left.
Associated to each representation a: I'>G, there is a fiber-product manifold, ¥,
with a pair of transverse foliations %, and %,. On the product M x X, there are
foliations:

(2.13) F, with leaves {M x {y}|ye X}
(2.14) F, with leaves {{£} x X|¥eM}.

We obtain from a a diagonal left action of I' on M x X, where y-(X,y)
=(%'771,a(y)-y). Both foliations &%, and &, are I-invariant, so descend to
foliations denoted by #,, and &, on the quotient

V=V,=MxX.

There is a fibration map = : V- M with fibers diffeomorphic to X, and £, is the
foliation by fibers of =.

Each leaf of &, is transverse to the fibers of n, so that = restricted to a leaf is a
covermg map of the base M. For yen™'(x,), the leaf L, of &, through y is the
covering associated to the subgroup

(2.15) I,={yella()(»)=y}.

Given an isometric identification, X=~n~*(x,), the foliation %, determines the
representatlon aupto conjugatlon inG. (cf. Chap. 5, [15]). Thus, we say that (V, &,)
is a geometric model for the conjugacy class of a.

The Riemannian volume dvy on X is invariant under G, so the transverse
measure to %, on M x X determined by dvy descends to a transverse invariant
measure du for #,.

The foliations #, and &, are transverse, so lead to a natural class of Riemannian
metrics on TV. Fix a Riemannian metric g,, on TM, and let g, be its lift to a leafwise
metric on %, via the covering property of the leaves. The Riemannian metric on #
x TX descends to a fiber wise metric g, on the leaves of &#,. We then obtain a metric
g on TV by declaring that the distributions F,=T%, and F, = T#, are orthogonal.
Note that g is projectable with respect to both foliations, so the pairs (£#,,g,) and
(#,,9,) are both Riemannian foliations of V in the sense of [72].

A G-trivialization of (V, #,) is an isomorphism @ of principal G-bundles,

P()=Mx G=MxG.

We introduce the notation a=(a, @). Since V= P(x) x X, the map @ induces a
trivialization P
. e X V-o-MxX

of the bundle ¥— M. The image of &, under @ is the product foliation with leaves
X. The image of &, under @y is a foliation of M x X, denoted by &z, whose leaves
are everywhere transverse to the X-factor. However, the leaves of & ; are not, in
general, strictly horizontal and exhibit complicated dynamics. The existence of a
G-trivialization, @, is a topological property of o (cf. Appendix A).
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Z,admits foliation charts of a special type which are called cylindrical. Let xe M
and U,< M be a contractible open neighborhood of x. The image foliation &% ;
restricted to U, x X has a trivialization

H;:Uyx X-U,x X,
which satisfies

(2.16.1) H; covers the identity map on U,
(2.16.2) Hgz:{x} x X—{x} x X is the identity
(2.16.3) For each yeX, H7 ' (U, x {y}) is a plaque of #;|U,x X.

The construction of Hj is standard, and based on the remark that the restriction
FUyx X is a transverse foliation without holonomy, so admits a global
trivialization over the base Uj,.

A cylindrical foliation chart(U,¢) for &, is obtained by choosing a
chart ¢ : Uy—1I™ on M, and a coordinate chart ¢, : U; —»I" for X. Then let

U=H; ' (U, x Uy)
U=065"(0)

and set ¢ to be the composition

2.17) U8, g, yyx U, ot s,

Observe that a cylindrical foliation chart for &, can also be considered as a
foliation chart for &, by reversing the factors I™ x I" in the range. This follows from
(2.16.1) which implies that the preimages ¢ ~* ({x} x I") are plaques for #,|U. Fora
pair of foliations (%,, #,) as above on V, the proof of Lemma 2.1 goes through with
cyclindrical foliation charts (U,, ¢,) which will then yield charts regular with
respect to both &, and 4%,. Naturally, such a cover for V will then be called
¢,-biregular for the pair (£,, #,).

A special case of the above construction is to take X =G, where G is a connected
Lie group acting on itself on the left, with a left-invariant Riemannian metric, g4. In
addition, we require that

(2.18.1) g is right H-invariant, for H<=G a fixed maximal compact subgroup.
(2.18.2) G is unimodular with the volume form of g, right-G-invariant .

Condition (2.18.2) implies that the suspension foliation (£,, g,) is taut in the
sense of [59], [80].

We conclude with one last observation about the geometry of %, for X=G.
The right and left actions of G on itself commute, so there is a well-defined right
G-action on the quotient ¥ of M x G by the left I'-action. The right G-orbits are the
leaves of &, . Moreover, the right G-action preserves the leaves of &#,, and as the
action is transitive, all of the isotropy groups I', are the same, and isomorphic to
the kernel of a.
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3. The longitudinal cyclic Chern character

Let & be a given foliation of a connected manifold ¥ with a holonomy-invariant,
transverse measure u. In this section, we construct a Chern character for leafwise-
elliptic pseudo-differential operators on &, with values in the cyclic cohomology of
the algebra C (V) of compactly supported smooth functions on V. Our method
uses the construction of Connes (§7, [30]), which for graded operators yields even
degree cocycles. These pair with the projective e associated to vector bundle E— V'
to give the foliation u-index of the leafwise operator coupled to E. For self-adjoint
ungraded operators, the Chern character yields an odd degree cocycle, which pairs
with unitary-valued maps u: V- Uy, to give the foliation u-index of the Toeplitz
operator associated to the compression of multiplication by u to the positive ranges
of the leafwise operators (cf. Appendix B).

Fix a Riemannian metric, g, on TV with corresponding distance function
d,: VxV—|0,00). Choose, and fix, a good covering of V' by foliation charts
{(U;, ¢,)j€3} for which the cover {U;} has Lebesgue number ¢, >0. Choose also a
partltlon-of-umty (p.o.u.) {4;|je3} subordmate to this cover.

Let C*(F) denote the % -tangential vector fields on V. Thus, Xe C®(F) is a
smooth vector field on ¥ which is everywhere tangent to the leaves of . Let E—»V
be a smooth Hermitian vector bundle with connexion V£ compatible with the inner
product. Each Xe C®(F) defines a first order differential operator

Vi C*(E)»C*®(E).

Let M(E)— V denote the bundle of fiberwise endomorphisms of E; so if E has rank
k, then the fibers of M (E) are isomorphic to the k£ x k complex matrices, M (k). A
section pe C®(M(E)) defines a linear operator, M,, on C*(E) via pointwise
multiplication.

A leafwise differential operator on C*®(E) is defined to be any operator obtained
by taking finite sums of products of operators Vi—, for X e C®(F), and M, , for
e C®(M(E)). Let 2(E, ¥) denote the resulting algebra of differential operators.
This algebra is independent of the choice of connexion on E, since two connexions
differ by a 1-form with values in M (E). Each element D e 2 (E, # ) can be written in
the form

=; M, Vf’,

I =(,...,i) some s=0

3.1
G Vi =Vgo.°V

each )?,.jeC‘”(F).

We say that D has order p if D can be written as a sum with all / appearing in (3.1)
having s<p, and p is the least integer with this property.

For each leaf Lc V' of ZF,let E,— L denote the pull-back bundle of E under the
inclusion. Each section X'e C®(F) restricts to a vector field X, along L, so V'3 galso
restricts to an operator on C*(E;). As multiplication operators obviously restrict to
submanifolds, each De 2 (E, ) has a restriction to a leafwise operator

3.2) D, ;C*(E)-»C>(Ep).
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The bundles E; inherit an Hermitian inner product, and TL has a Riemannian
metric obtained from g on TV, so there are well-defined Sobolev spaces of sections
of E for each seR, which are denoted W*(E,). Evidently, if D e 9 (E, # ) has order
D, then for each leaf L we have a bounded operator

(3.3) D, :W3(E)-»W°"P(E)), seR.
(cf. page 218, [67]). For the special case s =0, we abuse notation by suppressing E
and denote

H =W (EL)

for the Hilbert space of L2-sections of E; .
The operator D is leafwise elliptic if each restriction D, is elliptic of order p. That
is, the symbol of D, given by a fiberwise map

op,: T*L—->M(E;)

is required to be invertible on non-zero elements & e T7* L. We often abuse notation
by writing ¢, for o, . Typical examples of leafwise-elliptic, first-order operators are
obtained by making a leafwise construction of the geometric operators of Gromov-
Lawson ([49], see also [74]) where E will be a Clifford module over the leafwise
Clifford bundle C(F)— V, with connexion V¢ defined only along leaves of & . (For
details on this construction, see Chap. 4, [56]).

It is necessary to also introduce the algebra P, (E, #) of leafwise pseudo-
differential operators acting on C®(E), and its filtration into subspaces 9 (E, #)
of operators of order p, for all p e R. This algebra is constructed in detail in (Sect. A,
Chap. 7 of [67]). An element Pe Df(E, ¥ ) is determined by its restrictions to the
leaves of & . For each leaf L, the restriction

3.4 P, :C*®(E)—C>(E))

is a pseudo-differential operator of order <p, with distributional kernel kp,
supported in a uniform ¢-neighborhood of the diagonal A; = L x L, for some ¢>0
independent of L. Moreover, for each smooth function A with support in a
coordinate neighborhood U;, the kernel for M, Po M, restricted to a plaque
P;(y)= U; varies continuously (in the uniform topology on distributions) as a
function of the transversal parameter yel". Let C*°(E) denote the space of
sections of E which are compactly supported in ¥, smooth along leaves, and their
restrictions to leaves vary continuously in the transversal parameter. Then P defines
amap P:C*°E)>C>°(E).

An element Pe D (E, #) is said to have exactly order p if some restriction P,
has exactly order p, and no restriction P; has larger order. For such P, the leafwise
elliptic estimate implies that each P, defines a bounded operator

(3.5) PL: W (E)— W P(E,).

We introduce a subspace of the algebra 9, (E, #) which satisfies additional
regularity.

Definition 3.1. For each § >0 and integer />0, let 2} (E, #,6,1)denote the subspace
consisting of Pe @ (E, #) which satisfy

(3.6SA) For each leaf L, P, is a symmetric operator for the L?-inner product on
CX(EL), and P, admits a unique closure to a self-adjoint (possibly unbounded)
operator on s, . That is, P, with domain C*(E,) is essentially self-adjoint.
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(3.68) The distributional kernel kp, on L x L has support contained in a é-neigh-
borhood of the leaf diagonal 4,, for all L.

(3.6]) For each je3, the distributional kernel of the restriction to a plaque
P;(y)< U; of the compression M, o Po M 4, depends C 'on yeI", where we use the
uniform topology on distributions.

Note that standard local theory of pseudo-differential operators implies that
each kernel kp_ is smooth off of the diagonal 4, , and the strength of the singularity
along 4, is precisely given by the symbol o, . The reader is referred to Taylor [87] as
a basic reference for the theory of pseudo-differential operators used here.

As an example, if ¥ is a compact manifold, then all leaves of & are complete in
the induced Riemannian metric space structure, so all of the leafwise geometric
operators associated to this metric are in 9,,} (E,#,6, ) for all § >0 by results of
(81, [49]). For an arbitrary Pe 9} (E, # ), evenif P, is symmetric, the condition that
P, be essentially self-adjoint is an additional regularity hypothesis.

Observe that Pe 9 (E, #,6,1) defines an operator from C}® (E) to itself by
(3.66) and (3.6/).

One of our motivations for introducting the leafwise pseudo-differential
operators is the following result, whose proof is a minor modification of that given
for (Proposition 7.12, [67]), and so is omitted.

Proposition 3.2. Let Pe 9 (E, #, 6,1) be leafwise elliptic. Then there exists a leafwise
parametrix Qe 9, *(E, #,6,1) such that

PQ=1d-S5,
3.7
3.7 {QP:Id—S1
where S,, S, € 2, ' (E, #,28,1). O

A fiberwise, self-adjoint involution ¢ € M (E) induces an orthogonal decomposi-
tion, for each leaf L,

(3.8) Ho=H] DH]

into its { + 1} eigenspaces. An operator Pe 9,,(E, # ) is e-graded if P+ Pe=0, and
the pair (P, ¢) is called a graded leafwise operator. The operator P decomposes into

0 P~
=l ]

with respect to the decomposition (3.8). If P has a self-adjoint closure, then the
leafwise restrictions

P #E-H

have unique closures which are adjoints of each other. If P is elliptic with para-
metrix @, then without loss we can assume that (Q, ¢) is also a graded operator. For
the purpose of establishing notation, we record the identities

P Q*=1d*-5§;
PrQ =Id" -85
Q P*=Id* -8}
Q*P =Id"—58;

(3.9)
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For < ¢’ there is an obvious inclusion
(3.10) Dy(E, F,0,)= Dy (E, F,0',1).
There is a retract to this map, constructed using cut-off functions.
Lemma 3.3. For 6 <0’ there is a continuous linear map
3.11) 2(0,6"): Dy (E, #,0',)>2D,(E, #,6,])
which is the identity on the image of (3.10) for §/2.

Proof. Let @(6) be a monotone decreasing smooth map from [0, o) to [0,1]
satisfying

if r<6/2

if r=6

1
qo(é)(r>={0

Foreachleaf L,letd, : L x L—[0, c0) be the leafwise Riemannian distance function.
The compositions ¢(d) > d,, is continuous on L x L with support in a d-uniform
neighborhood of the diagonal A4;, and is identically 1 on a §/2-uniform neigh-
borhood. If ¢ is less than the injectivity radius of L, then ¢@(d)°d; will also be
smooth, and bounded geometry of the leaves implies that there are uniform
estimates (over L x L) on all of its derivatives. If § exceeds the injectivity radius, then
bounded geometry of the leaves implies there exists a smooth approximation to
@(0) o d; with all of the above properties. Moreover, these approximations can be
chosen to depend C® on the transverse parameter. So without loss, we can assume
¢(0) o d;, has uniform smooth estimates.

Define the retraction A(d,0') on P by letting P'= (5, 6")(P) be the operator
with distributional kernel on L x L,

(3.12) kpy=¢(8)ody kp, .

Since the kernel kp, is obtained by multiplying by a function which is identically
equal to one on a neighborhood of the diagonal, P’ is again pseudo-differential.
Clearly, the condition on d-support is satisfied, and continuity of 1(6, 6') follows
from the uniform estimates on the multipliers. [

This lemma is an elementary technical device that is quite useful in constructing
cyclic cocycles. We give two immediate applications of it.

Corollary 3.4. Let Pe 9f(E, #,,1) be leafwise elliptic. For all integers d> 0, there
exists Q,€ D, P(E, #,0,1) such that

.13 PoQ,=1d—5,,
’ Q. P=Id-S,,

where S, o and S; | € D, Y(E,#,28,1). Moreover, if P is e-graded, then Q, can be
chosen e-graded, with S, , and S; , commuting with .

Proof. Let Q be chosen as in Proposition 3.2. Introduce
R;=1d+Sy+S¢+...+8§7*
0,=Q- R,
Q,=4(3,d-3)(Q°R,).



116 R. G. Douglas et al.

Then PQ,=1d —S¢, and from (3.7) we obtain S, P=PS, so that
0,P=Q(1+S;+...+S§Y)-P
=QP(1+S,+...+8{™Y
=Id—S¢.

The multiplicative property of symbols implies that S¢, Sfe 2, *(E, #,(d+1)8,1).

The difference (Q,— @,) is represented by a smooth kernel on L x L, since Q, is
pseudodifferential hence has smooth kernel off the diagonal. Therefore, both
Po(Q,—0,) and (Q,—Q,) > P are represented by leafwise smoothing operators, so

S4,0=Id—Po Q,=S8§+smoothing
84,1 =Id—Q,° P=S{+smoothing

and have support in a 2J-uniform neighborhood of the diagonal.
If (P, ¢) is a graded operator, then we replace @, with £ (Q,—&Q,¢) to obtain a
graded parametrix. 0O

For a self-adjoint leafwise operator P without grading, the construction of a
Chern character is based upon introducing its phase, which will be a self-adjoint
involution. More precisely, since the leaves of & are generally open manifolds, we
must first seek an element ®e ) (E, #,8,!) which represents this phase up to
“lower order approximations”, satisfying ®=1d + S where S has negative order.
This is provided by the next two results.

Proposition 3.5. Let Pe 9f(E, #,6,1) be leafwise elliptic. Then there exists
|P|"'e 2, *(E,#,6,])
(De@,,‘,’(E, F,48,1)

such that for all leaves L of % and non-zero £ T*L:
(3.14) g p|-1(&) is positive definite.

(3.15) 64(&) is a self-adjoint involution.

(3.16) 0p(&), 0)p)-1(&) and 64(&) pairwise commute, and

0o(¢)=01p-1(£) "0p(£).

Proof. For each (e T*L, the fiberwise endomorphisms op(&) are symmetric, so
admit a fiberwise factorization

(3.17) op(8)=Ph(S) - Sc(&)

such that:
all of the endomorphisms in (3.17) commute and are symmetric
Sc(&) is a positive-definite matrix and as a function of ¢ is homogeneous of
order p
Ph(&) is an involution and homogeneous in ¢ of order zero.

The space of positive-definite symmetric matrices is a cone in each fiber of
M(E), so we can choose the factorization (3.17) to be continuous on 7* % < T*V,
smooth along the leaves of # and transversally of class C'.
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Given the hypothesis that the leaves of & have uniformly bounded geometry,
the methods of (§ VIIL, [27]), or (Proposition 7.16, [67]) yield operators

|P|" e, P (E,#,5',])

de D) (E, F,5",1)
for some 6’, 6" >0, and such that for 0&e T*L,

07 +(&)=Se(?)

05(8)=Ph(%).

Then apply Lemma 3.3 to reduce the support of these operators to §. O
Corollary 3.6. #*>=1d — R, where Re 9; ' (E, #,26,1).
Proof. From (3.15), the principal symbol of &% is 63 =1d. 0O

Next, we replace the phase @ above by a perturbation which is an exact
involution. This is accomplished via the ““4 x 4 trick”, which results from applying
the usual “2x 2 trick” to the two-dimensional complex Clifford algebra C(2)
(cf. page 27, [29]; §7 and Appendix 2 of [30]). For L a leaf of %, define
H Z =(#) ®CC4~

A uniformly bounded, complex valued function fe C,(V) acts as a multipli-
cation operator on each #} via restriction of f to LV, then extending to a
function f:L—M(C* via embedding into the upper left diagonal entry. For
h=(hy, by, hy, hy) e A2,

(3.18) fR=(fhy,0,0,0).
Introduce operators on 3,
x=30—-d3
(3.19) y=ld—®?>=R

z=(P3-P)=—-LP-R
so that x=@®—z, and by Corollary 3.6
y,2€ D, (E,#,36,1).

Introduce the exact involution

(3.20) o=\’

0 z -y «x

in 9)(E*, #,36,1), where EXE=EQC*=E®... ®E, k-copies.
For fe C(V), we have

fx fy —=fz2 0
0 0 0 0
SI=10 0 o0 o
00 0 0
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(3.21) of=

cuw &
o O O O
o O O O
O O O O

and so the commutator [/1,f]=1I1f—fII has all entries in 9, ' (E, #,34,1) since
the symbol of & commutes with the scalar f.

For m the dimension of the leaves, fix an odd integer g=m+ 1. Let ¢; > 0 be the

Lebesgue number of the fixed cover of ¥, and let §=(6¢+12)"! -¢,. Fora (g+1)-
tuple of functions f, f;,...,/,€ C°(V), define a leafwise operator
. -(*7H)
(3.22) cn(fos-- - f)=—(=4) II-[11, f)... [I1, £,] .
Proposition 3.7. For g=m, the leafwise operators Cy(fy,...,[,) are represented by
trace-class continuous kernels on leaves, whose supports are contamed ink - c,-uniform
neighborhoods of the leaf diagonals. Moreover, the kernels depend C' on the
parametrization of the leaves by a local transversal.

Proof. 1t was observed above that each commutator [I1, f;] is a leafwise pseudo-
differential operator of order —1, with 3§-supported distributional kernel.
Therefore, the product (3.22) is pseudo differential with order —(p+1)< —m, so
by the Sobolev lemma it is represented by a continuous kernel. There are (g +2)-
kernels appearing in (3.22), so the product has (g +2)3d-support. Finally, each
operator IT depends on C' on the transversal parameter, so the same holds for the
product. O

Definition 3.8. Let g >m be an odd integer, u a transverse invariant measure for &,
and Pe 9f(E, #, 6,0) a leafwise elliptic operator with pseudo-differential phase @.
The cyclic Chern character for the data (V, %, pu, ®) is the (q+ 1)-multilinear
functional on C2(V),

(3.23) Co(fos-- s S)=Tr,(Cnfo,....[0) ;s f;€C2(V).

There is a natural extension of cg to the algebra of matrix-valued smooth
functions
Ay=M(N,CO(V)={m:V->M(N)}.

The operator P has a canonical product extension to C*(E®CY). Each
meM(N,C>(V)) acts as a multiplier on this space, so we repeat the above
construction, using the fiberwise trace on M (E ® C") to extend Tr, to kernels with
values in these endomorphisms. (In the notation of (page 103, [31]) we are forming
the cocycle product cg # Tr).

Proposition 3.9. For each integer N >0, the function c4 is a cyclic g-cocycle over the
algebra o .

Proof. The proposition is an algebraic consequence of two basic properties:
3.24) nm=1d
(3.25) Tr,(SoT)=Tr, (T~ S)



Cyclic cocycles, renormalization and eta-invariants 119

whenever
Se D, (E*N, F,¢,0)

./‘
Te 2, (E*N, #,¢,0)
with s+¢>m.
First, (3.25) implies that for m;e oy

(3.26) o [Il,m]=—[,m] 11
which combined with (3.26) yields the cyclic property of ¢4 :
3.27) Co(My,...,my,mp)=(—1)Tcy(my,my,...,m,).

The bounded linear operator m—[II, m] is a derivation on the algebra /. We
leave it to the reader to check that this observation, along with (3.26) and (3.27)
implies that the cocycle condition dcg=0, where:

q
Ocg(Mg,...,mgp )= (—1Yce(mg,...,mmj,,...,my )
Jj=0

(3.28) +H(—=1)1  cg(myymg,my,...,my)
for my,...,m ey, O
The cyclic cohomology of the algebra C(V) is the quotient space
(3.29) H{(CF (V) =Z{(Cx(V)/BUCT (V)
where
Z4(Cx(V))=closed cyclic g-cocycles
Bi(C>(V))=image under 6 of cyclic
g-linear functionals.

The formulas (3.28) and (3.29) can be applied to any algebra % and integer g to
yield the cyclic groups H{(4). A basic observation of Connes (Corollary 24, page
113, [31]) is that the inclusion C® (V)= = &y into the “upper-left-corner”,
induces a canonical isomorphism of cyclic cohomology. Then the extension cq # Tr
to &y and the cocycle c¢g, determine the same cohomology class under this
isomorphism.

The cyclic Chern character of the data (V, &, u, P) is the cohomology class

(3.30) ch,(P)=[cele H{(Hy),

which by the previous remarks is independent of N (up to isomorphism).

Proposition 3.10. Let {P,|0<t=<1} be a continuous family of leafwise $DO’s
which satisfy conditions (3.6). For q>m odd, the cyclic cohomology classes
ch,(P,)e H{(/y) are independent of t.

Combining Proposition 3.10 with the Poincaré Duality principle (cf. Theorem 2
and Lemma 4.10, [12]) we obtain:

Corollary 3.11. For q>m odd, there is a well-defined homology Chern character
(331 ch,: KO(S*F)->Hi(Ay).
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Remark 3.12. The Chern character (3.31) is the foliated version of the odd ana-
logue of the even Chern character for compact manifolds constructed by Connes
(§6, [30]). There is a topological formula for (3.31), discussed in the next section,
which shows that the deRham character determined by ch, takes values which are
exotic classes of the pair (&, p) in the sense of the u-classes of [52]. Itis also shown in
the next section that for special suspension foliations, the values of ch, agree with
Cheeger-Simons transgressed classes, hence are secondary in the customary sense.
In this regards, the Chern character (3.31) exhibits new geometric information not
present in the previously considered cases (cf. [11], [30]). O

Proof of (3.10). Let {®,|0=t<1} be a continuous family of leafwise elliptic
operators in 9 (E", #,6,0) constructed from {P,|0<¢<1} via the process of
Proposition 3.5, such that @2 =1d — R, with each R, of order —1 or less. It will
suffice to show that ch,(Py)=ch,(P;). The space of yDO’s with self-adjoint
principal symbol is locally smoothly contractible, so the dependence of P, on ¢ can
be regularized to obtain a path from P, to P, in this class which is smooth in ¢.
Correspondingly, we can choose a smooth family {®,|0<7<1} and hence obtain a
smooth family of involutions {II,|0<¢<1}. Then set

d
(3.32) ' L'=E (I1,)e 2)(E*N, #,36,0).

Note that for fixed ¢ and fe oy
(3.33) (1,,f1e 2, ' (E*N, #,36,0).

Thus for each 0 <t <1 thereis a quasi-homomorphism ¢, constructed from I1, as in
the proof of (Proposition 4b, page 72, [30]). Moreover, the operators L, are

d
bounded so that for g >m the same proof applies to show that 7 (cg,) is exact for
each z. It follows that the cohomology class ch,(P,) is independent of £. O

Proofof (3.11). We define the map ch, on vector bundles, then extend it formally to
K°(S*#). Let £ »S*F be a complex vector bundle of fiber dimension k. Choose
an inverse bundle # and an identification ¢ ®@n=¢" for some N> 0. Introduce a
fiberwise involution on &V by declaring ¢ to be the bundle of positive fiberwise
eigenvectors, and » the bundle of negative eigenvectors. There is a leafwise DO,
D neD) (&N, #,6,0) whose principal symbol over S*# consists of this in-
volution, constructed as in (Proposition 7.16, [67]). Define ch,[{] to be the
cohomology class of the cocycle cg ;).
We must show that

(3.34)  ch,[¢] is unchanged when ¢ is replaced by & @¢ for />0
(3.35)  ch,[¢]is unchanged when 7 is replaced by #n @¢' for />0
(3.36) ch,[&]is indepéndent of the choice of isomorphism & ®n=e".

It will then follow that ch, formally extends to all of KO(S*F).

For the proof of (3.34), note that we assume given an identification & @y e,
and then use the natural extension to (¢! ®&) @y xe'™N. Let m;: &' " ¥—¢' ¥ be the
fiberwise projection,

(3.37) V2 @V {0} ce' eVt
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Extend @ (¢, ) to an operator on sections of ' "V >~ ' @ ¢V by letting it act trivially on
the first summand. We can then take

(3.38) PEDEN=m, @D, 7).

For this choice, the commutators in the formula (3.22) used to define cg( ¢,y
decompose into /x/ and Nx N blocks along the diagonal. The operator =
commutes with sections of &, so applying the trace yields an equality of cocycles
(3.39) Coctoem™Coem:

The cohomology class of ¢, depends only on the homotopy class of the principal
symbol of @ by Proposition 3.10, so we obtain

ch,[e ®¢1=[coe o en]
=[co(m]
=Chu [é ] .

The obvious modification of the above proof also proves (3.36).
Property (3.36) follows from (3.35), Proposition 3.10 and some homotopy
theory. Let two isomorphisms be given,

I, I : E@Dn=e.
For each />0 we extend these two isomorphisms
(3.40) I 1 ED@e) e @elze .
!Jemm?l 3.13. For [ sufficiently large, the isomorphisms I, , and I, ; are smoothly
isotopic.
Proof. The identifications (3.40) are equivalent to specifying smooth maps
Iy, I ;: Vo G(N+1k)

where G(N +/, k) is the Grassmannian of complex k-planes in CV *!. For each / there
isa “stabilization” induced inclusion G(N+1, k) c G(N+/+1, k) and it is a classical
fact that }1_1‘9, G(N+[,k)=G(o0,k) has the homotopy type of BU. Hence, the

smooth homotopy classes of fo,z and fl’, for [ large are determined by the bundle
isomorphism class of £&. O

To conclude the proof of (3.36) and of Corollary 3.11, note that for @,, P, the
involutions obtained from the two given identifications, we can stabilize then in the
n-bundle without changing the cyclic cohomology classes of the cocycles cg,, cq, -
Then by Lemma 3.13 the symbols of @, and @, are homotopic, hence by Proposition
3.10 the cocycles are cohomologous. [

For a graded leafwise operator (P, ¢) there is an analogous construction of an
even degree, cyclic Chern character. Choose a parametrix, via Corollary 3.4,

Qe "(E, #,6,Q)

so that PQ=1-S,, QP=1—S, where S,, S; have order —(m+1+|p|), hence are
represented by leafwise smooth kernels. For the even case, a ““2 x 2-trick” is used to

make a compact perturbation of P and Q so that they are exactly inverses (cf.
Appendix II, [30]).
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For each leaf L, let #; =5 @ # be the graded Hilbert space associated
to . Define a new Hilbert space #; = #;, ® ¢ C?, with grading £ which on a vector
h=(h,, h,) acts via £(h,, h,)=(eh,, —¢h,). This decomposes #; into a direct sum

H L+ =H [ CESY
H=H, @A
The module action of C,(¥) on J#, is given by f-(h,,h,)=(f"h,,0).
Extend the operators P and Q to

(3.41)

~ TP So
3.42) d “[81 —(51+Id)Q]
_ (Id+S;) S
(3.43) Q_[ s, _P]

Lemma 3.13. I_,_et Pe@,,{’(ﬁ, Z,6,0) with p=0.

a) PoQ=0°P=Id on #,.

b) For any smooth function f:V—C, the leafwise operator
O[P,fle 2, " (E* #,65,0).

Proof. a) follows from the relations (3.13) and the identities PSy=S,P and
08,=5,0.
For b), we must show that the order is — 1. Explicit calculation gives
5 I+S)QI[P,f1+82f (I+5,)0QfS,
(3.44) Q[P,f]=[
SolP.f1=PS, f SofSo

in which each entry has order at most — (m+ 1) except for the term Q [P, f] of order
—1, since [P, f] has order (p—1). O

Corollary 3.14. Let q=21>m. For all (q+1)-tuples f,,...,f,€ C*(V), the leafwise
operator

(3.45) ép.ofor-- s f)=Qmi)-11-O[P,£,]...0[P, f,]

is represented by a leafwise continuous kernel supported in a 6(q+ 1)d-uniform
neighborhood of the diagonal. 0

The Chern character for compact manifolds in (§6, [30]) extends to a foliation
Chern character using the operators P and Q defined above.

Definition 3.15. Let g > m be an even integer, u a transverse invariant measure for #
and (P, ¢) a graded leafwise elliptic operator, with parametrix Q as above. The cyclic
Chern cocycle for the data (V, &, u, P, Q, ) is the (¢ +1)-multilinear functional on
) ‘

(3.46) cp(Jor- > JP)=Tr, (€ Cp o (o, 0) -

As in the odd case, ¢, admits a canonical extension, cp # Tr, to the algebra «/y. By
abuse of notation, we call all of these extensions cp.

Proposition 3.16. For (V, %, u, P, Q, ¢) as above,
a) The linear functional cp is cyclic and closed for the coboundary (3.29).
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b) For all N=1, the cohomology class
ch, (P, e)=[cple H{(y)

is constant when (P, ¢) is continuously deformed through self-adjoint, leafwise elliptic
graded pseudo-differential operators of order p. [

The proof of part a) is an easy calculation, while that of b) is essentially identical
to methods of (§6, [30]), so is omitted.

4. The longitudinal de Rham Chern character and Cheeger-Simons classes

We apply the foliation index theorem [27] to obtain a de Rham homology
interpretation of the odd cyclic Chern character for the data (V, %, u, P). In the
special case of the geometric models (V, #,) of a group representation a, we prove
that the secondary contribution to the longitudinal index formula agrees with a
Cheeger-Simons transgressed class for the flat unitary bundle associated to o and g.

We begin by recalling a theorem of Connes that interprets cyclic cocycles over
C*(V) as de Rham currents on V. Let Q4(V) denote the Frechet space of
compactly-supported smooth g-forms on ¥, and C{®)(V) its topological dual space
of complex-valued g-currents on V. Also, let 6 be the transpose of exterior
differentiation, X{® (V) the closed subspace of closed g-currents and H{® (V) the
quotient homology group. The homology de Rham theorem (cf. [73]) identifies
H{® (V) with the locally-finite singular chain homology H}/(V; C). In addition, a
closed g-current canonically defines a linear map on H2(¥) and there is induced an
isomorphism

@.1) H™(V)—Hom (H(V),C).

For V oriented, this latter group is identified with HJ.5" (V) by Poincaré duality.
For [c]e H{* (V) and [w]e H{(V, C), we denote the map (4.1) by

el el
where ¢, [c]) ([w]) =<[w], [c]).
Theorem 4.1. (Theorem 46, [31]). For g=0 and N=1 there are isomorphisms
(4.2) Hi(A)=ZP(V)OHZ,(V)OHZ,(V)®. ..
Moreover, the induced mapping
Hi(Ay)~Z2(V)

is canonical, while the maps to the other summands depend upon choices (cf. Remark
47a), [31]).

Corollary 4.2. The cyclic Chern character of (3.31) yields a total de Rham homology
Chern character,

(43) Ch*(Pa ﬂ)': i Chq—-ZI(P’ l"')
1=0
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Here, ¢ >m is even or odd corresponding to whether P is graded or ungraded, and
each

4.4 Chq—21(P5 H)EH;O-O)zz(V)

is the homology class determined by the isomorphism (4.2).
The odd topological Chern character

4.5) ch*: K1 (V)~ H*%(V)

associates to a smooth map u : ¥— Uy the cohomology class u*([Tch]). Here, Tch
denotes the differential form on Uy that transgresses the universal Chern form ch on
BU,, and [Tch] is its cohomology class. The map (4.5) is an isomorphism after
tensoring with C, so that the odd homology Chern character (4.3) is determined by
the pairings

(4.6) (ch*[u], ch, (P, > eR

for [u]e K} (V). As remarked in Sect. 3, ue oy via the inclusion Uy<= M(N). Let
u*: V- Uy be the conjugate transpose map. For ¢ odd, we define

co()=co(u,u*,...,u,u*).

The relationships between the pairing (4.6), the measured foliation index theorem of
Connes, and the Kasparov pairings of [u«] and [@] are summarized by the next
theorem, whose proof is given in Appendix B.

Theorem 4.3. Let g >m be odd, u:V— Uy smooth and oriented. Then

(47) C(b(u) = <Ch* [ll], Ch* (P’ [l))
4.8) =Tr,(u]R[2*])
4.9) =(—1)"Y~H(ch* (&) uTd(F) uch* [u], [C,]> .

The equality (4.7) is a consequence of the naturality of the isomorphism (4.2)
with respect to the pairing of cyclic homology and cyclic cohomology [64].

The equality (4.8) involves the Kasparov outer product [u]X [@*] of the
KK-class of the unitary [u] with the KK-class of the involution over C*(V, %)
determined by the leafwise operator @. This is explained in detail in Appendix B.

The equality (4.9) is the odd version of the foliation index theorem. Here, &
denotes the bundle over S* # of positive eigenvectors for the symbol of @, and y ~*
is the inverse Thom isomorphism. Td(F) is the Todd class of the complexified
foliation tangent bundle F®C. Finally, [C,] is the Ruelle-Sullivan de Rham
homology class associated to the transverse measure u. The derivation of (4.9) from
(4.8) is given in Appendix B.

When the normal bundle to & is also oriented, so that V" has an orientation, the
class [C,] has a Poincaré dual, denoted by [du]. (If uis defined by integration against
a transverse closed g-form w, then [du]=[w].) In this case, we can rewrite (4.9) as

(4.9 co(W)=(—1)"Y ™! (ch* (&) W Td(F) uch* [u] U [dpl, [V]) .

For a suspension foliation %, on V=M x G associated to « : I'>G, there is a
second interpretation of the term ch*[u]u[du] which appears in (4.9'), as a
Cheeger-Chern-Simons class for the representation o. Assume a trivialization
@ : V—-M x G is fixed and a representation ¢ : G— Uy, is given. Define u=u(g) to be



Cyclic cocycles, renormalization and eta-invariants 125

the composition
(4.10) V- MxG2G6-%5 Uy.

Let = A ~'dA denote the left-invariant Maurer-Cartan matrix-valued form on
Uy. For any base space, B, we also let  denote the product connection on the
product bundle B x Uy— B with horizontal spaces {Bx {4}|4 e Uy}. The homo-
morphisms ¢ and v induce gauge automorphisms of G x Uy—G and V' x Uy— V by

@.11) a(g,A)=(g.0(9)™'4); (9,4)eGx Uy

(4.12) d(x,A)=(x,u(x)"*4); (x,A)eVxUy.

The product connexions 6 pull-back to twisted connections denoted by
(4.13) ¢=¢*(0)=0+¢do*

4.14) 04 =a*(0)=0+u-du*.

Introduce the composition
O,=1,°00:V-MxG-G.
Then u=¢° @, and @} (0% =06

Lemma 4.4. The horizontal spaces of 0° are the graphs {(g,0(g) A)|geG} for
A€ Uy. The horizontal spaces of 0* are the graphs {(x,u(x)A)|xe V}, for Ae Uy.

Proof. ¢ and i maps these graphs into the level sets G x {4} and V' x {4}, which are
horizontal for . O

Let B denote a smooth manifold, and assume that the product bundle B x Uy
has a given flat connection 6!. Extend 6! and the trivial connection 6 to connection
forms on BXxR x Uy, then define a family of connections:

4.15) r=(1—0)0'+1-6.
The associated curvature 2-form on Bx R
4.16) Q'=d(6")+1[6',6']
takes values in u(N)c M (N), and we set
=) —1 1
4.17) ch(Q)=Y Tryw (—Q') .
1=0 2m

Let i(6/0t) denote the contraction operator, from forms on B x R to forms on B,
against the parameter vector field 6/0t. The Cheeger-Chern-Simons form of the data
(6%, 0) is the closed, odd-degree form on B (cf. [20])

(4.18) Tch (01, 0)=} {i(8/dr)ch(Q")}dt.
0

Note that interchanging ' and 6 is equivalent to reversing the z-parameter, so that
(4.19) Tch(#*,0)= —Tch(6,6").
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For 6" the connection on Uyx Uy—Uy obtained from the identity map
Id: Uy— Uy, we obtain a closed form Tch(6', 0) on Uy. The basic property of this
form, proved by H. Cartan (based on a letter of Weil [16]) is that:

Proposition 4.5. The cohomology class [Tch(0', 0)]=[Tch] in H*(Uy). O

By the functoriality of the construction (4.18), we obtain as a corollary the
identification

Corollary 4.6. For u: V- Uy as above,
(4.20) ch*[u]=[Tch(6*, 0)]
in H*(V).
Proof. ch* [u] =u*[Tch]=u*[Tch(0", §)]=[Tch(6%, 6)]. O
We now apply the above discussion to the particular case of the flat bundle
4.21) Poea)=M x ,Uy—»M

associated to goa: I'- Uy. The G-map @ induces a Uy-map O, such that the square
commutes

"P(goa) = VxGUN—eb MxUy

(4.22) ) I m
V - M

The product connection § on M x Uy, descends to a flat Uy-connection on P(g© a),
denoted by 6¢°%, which pushes forward under @, to

(4.23) 0°°%=(0,), (6°°%)

on M x Uy.
Define the Cheeger-Chern-Simons character for P(g e «) with trivialization @,
to be the odd-degree cohomology class

(4.249) ch(&, @) =[Tch(0°°%, 0)]e H**(M).

Theorem 4.7. Let V, #,, O, ¢ and dy be as above, with 7. V— M the fibration map.
Then in H*(V),

(4.25) ch*[u]u [du]=n*(ch(4, ¢)) U [du].

Proof. For the adjoint u* : V- U, of u, we have ch* (1) = —ch(u*) as [u*] is the K-
theory inverse of [u]. For the adjoint connection

(4.26) 0 =0+u""-du

associated to u* by (4.14), we then have by (4.19) that ch* (u) is represented by the
differential form Tch(6, *), so it will suffice to show the equality

4.27) Tch(8, 0*") A dp=n*Tch(0°°%, ) Adu

of differential forms. The second factor dy is transverse to the leaves of &, in V, so
we need only show that the first factors agree when restricted to leaves of 9" Each
leaf is covered by a slice of M x {g}e M x G, via the quotient map 1dent1fymg
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(%-7,9)~(X, a(y) - g), so it suffices to show the forms agree when pulled-back to
M x {g}. This will follow from identifying the connection forms appearing in (4.27).

The connection form 0¢°* on M x Uy— M lifts to the product connection on
M x Uy— M under the compositions

Mx Uy e Pgoa) 25 Mx Uy

(4.28) ! L !

M — M — M
where =,,, is the quotient map for the I" action on M x Uy. Also introduce the
quotient map 7, : M x G—V and the covering map n.: M—M. We then have a
commuting cube which exhibits all of the relationships of the various flat bundles
under construction:

Mx U, T2 P(ooq)

/ 1

(4.29) MxGxUy — P(a,0°0)

I, oM
MxG —— 14

The flat bundle P(o,gca)—>M is associated to the product representation
(a,0°0): -G x Uy, and (4.29) exhibits this flat bundle as a pull-back over the map
n: V—>M. We now make several deductions based on (4.29).

The bottom square of (4.29) commutes, so the lift of 62°* to M x {g} is the lift of

the product connection on M, hence is the product connection, now denoted by § on
M {g}.

The composition
(4.30) Oon,: MxG->MxG

is a right G-map, so there exists a smooth map ¢:M—G, defined by @(%)
=0 om,(X, e) where ee G is the identity. This satisfies

(4 31) {@onZ(i’g)=(nr(_'x~’ (P(f'g)))
p(xy) =eX) aly)
The flat bundle P(p - ) is associated to V= P(a) by g, so we similarly have that

@Q ° T[QOG(X’ A)=(7rr(ia Qe° (p('f)A))
(4.32) ¢ R
e p(X-y)  =goo(X) eoal(y)
Introduce a u(N)-matrix-valued 1-form on A1
(4.33) 0,=(e°p)"!-d(e°p).

Then the product connection §=4"'-d4 on M x Uy pulls back to M x {4} as
(4.34) (0,°Mp0)*0=A"10, A=Ad(4)(0,).
Finally, under the diagonal map on the left face of (4.29),

(%X,9)—(%,0(9)),
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this form pulls-back to g(g) ~* 0, 0(g)on M x {g}. Thus, Tch (96‘07’ 0) pulls-back to
the form

Tch (8, Ad(e(9))6,) on Mx{g}.

The second form, Tch (8, %) on V, is constructed from the product connection 8
and 0* =0 +u~'duon V x Uy. The product connection pulls-back to & on # x {g}
under =,.

The composition u~

(4.35) U™t o, (%,9)=(0°m,° @°m, (%, ¢) !
=(e°9(®)-e(g9) ™"

so that 6*" pulls-back to the connection

(4.36) 3 (0)=0+(0° @) d(e°9).

The restriction of 7*(0*") to M x {g} is then Ad(g(9))0,, and the pull-back of
Tch(0, 0™) is the same as the pull-back of Tch(6¢°% 6). O

By combining Theorems 4.3 and 4.7, we obtain the main result of this section:

Yom, is equal

Theorem 4.8. Let M be a compact oriented manifold of dimension m=2[—1,and V,
Z,, ©, g and du as above. Then for u=gomn,° @,

(4.37)  cou)=(—1)"<Y~ch* (&)U Td(F)un*(ch(@ @) v[dul, [V]). O

5. The sharp transverse cocycle

Fix a representation o : I'—G and let &, and &, be the foliations on ¥ obtained via
the suspension construction. The sharp transverse cyclic Chern cocycle, c*, will be
defined on the smooth convolution algebra C° (r) using either a ““sharp transverse
parametrix”, or a “sharp phase function”. The terminology “sharp” is used to
indicate that the transverse parametrices are not pseudo-differential on V. The
formal procedure for constructing ¢ * is exactly parallel to Connes’ construction of a
transverse cocycle, denoted by c®, detailed in (§8, [30]). Both c¢* and c* yield the
same cohomology class in H{(C° (r)). However, ¢! is constructed from a transverse
parametrix that is pseudo-differential on V. This difference is reflected in the way
that c* and c® behave as distributions on C (n), so that c* is renormalizable while
c® is not, as discussed further in Sect. 6.
Fix the following data:

(5.1) M is a compact, orientable manifold without boundary; X is a connected
Riemannian manifold with bounded geometry; G is a unimodular Lie group with
an inclusion G<lsom(X); #, is the suspension foliation for a representation
o:I'-G on the quotient V=M x X; &, is the foliation by fibers of n: V—>M;
O:P(x)>MxG is a right G-isomorphism with induced fiber-preserving map
Oy : VoM xX; %; is the push-forward foliation from &, to M x X.

(5.2) (V,#,, #,) has a fixed c;-biregular covering by cylindrical foliation charts
(U, 9)lie3}.
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(5.3) For some 0<d&<%c; (with ¢; to be fixed later) there is an elliptic pseudo-
differential operator P,, of order p=0 acting on sections C®(E),) of Ey— M,
with support of P,, contained in a d-neighborhood of the diagonal in M x M. For
E=n*(E\y)-V,

Pe 9} (E, #,,0, )

is the lift of P, to a leafwise operator along #,.

The condition on P is equivalent to stipulating that for fe C® (E,,) with support
ina ball of radius less than - ¢, L Valeaf of #, and f; =f° (n|,) the lift of f to L,
then the restriction of P to L satisfies:

(5.4) PL(fL)z(PMf)L'

The operator P acting on C*(E)is notelliptic (for X not a point), and is not even
pseudo-differential unless P=D is a leafwise differential operator. We use the
notation P, to denote that P is considered to act on C®(E). Nonetheless, the

integrability of &, allows the construction of parametrices and phase functions
for P, .

Definition 5.1.

a) A sharp parametrix for P is an &,-leafwise parametrix
Qe2,*(E,#,,0, )

(chosen as in Corollary 3.4) which is the lift of a parametrix Q,, for P,,, considered
as an operator on C°(E).

b) A sharp phase operator for P is an & ,-leafwise phase
De ) (E,F,,0,0)

(chosen as in Proposition 3.5) which is the lift of a phase @, for P,,, considered as an
operator on C*(E).
Introduce also the notation:

Py, Oy and @, for P,Q, ® considered as operators on C*(E).
I, for the operator on C® (E*) obtained from the involution IT as in (3.20).

P, and 0, for the operators on C° (E?) obtained from P and  as in (3.43)
and (3.44).

The bundle E has a natural parallelization along the fibers of 7, so we can define
the action of a kernel ke C®(n) on a section f: ¥—E by convolution:

(5.5) kxf(z)= | k(z,2)f(2")dv,(2')
z’en~1(z)

(cf. Lemma 2, §8, [30]). The action (5.5) is extended to C®(E?) and C®(E*) by
letting k act trivially on the second summands in E2~E@®E and E*~E®E>.
Finally, we extend these actions via linearity to the tensor products C®(E2")
2C*(E*) @C" and C*(E*M)=C>(E*)®CN.

The following result for sharp parametrices corresponds to (Lemma 3, § 8, [30])
where it was proven for pseudo-differential (on V) parametrices.
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Proposition 5.2. If ke C>(z), then the operators
a) [My,k] on C(E*)

b) Oy [Py, k] on C°(E?)

are in the Schatten (m+ 1)-class.

Proof. We give the details for a) and indicate the modifications necessary for b). It
suffices to consider basic kernels k& which have support in U, for which both the
domain ¢, : U,—I™ x I" and range ¢, : U, »I™ x I" are cylindrical sets of diameter
less that (4m+4n)~'¢,, with a common base n(U,)=n(U,) in M. There is then a
coordinate chart (U, ¢) on M containing the d-neighborhood of n(U,). Use (U, ¢)
to define a cylindrical chart, U,, on ¥ that contains the supports of IT, ok and
koII,. By (5.4), IT, in local coordinates (U, , ¢;), i=0, 1, is given by operators on
plaque sections C®(I™ x {y} x C**), denoted by IT,. (However, note that IT, is
independent of yandi.) Letk : I™ x I" x I"— C also denote the coordinate expression
for k.

The m-torus T™ is obtained from I™ by identifying opposite sides, and similarly
T" from I". As k is compactly supported, it admits a smooth extension to the
product T™x T™x T". Similarly, the operators II, ok and k-II, extend to
operators on C®(T™ x T™ x C**), and it will suffice to show that [IT,, k] is in the
Schatten (m + 1)-class on the Hilbert space closure

Hp=L2(T™ " x C*)

We follow the usual approach of estimating the trace of a power of the self-adjoint
operator [I1,,k]*[Il,,k] by introducing an orthonormal basis of #;, then
calculating the appropriate sum of powers of the norms of [II,, k] applied to the
vectors in the fixed basis.

For I=(i,...,i,) e Z™, let

(5:6) ¢1(x)=exp (ni(I - x))

be the character on T™ corresponding to 7 via the identification 7™~ Z™. Similarly,
for J=(jy,....J,) € Z", let

(5.7 Yy (»)=exp(ni(J-y))
be the character on 7" for Je Z"=T".

The extension of k to T™ x T" x T" is smooth so admits a Fourier expansion
(5.8 k(xay’yl)=2aIJJ'¢I(x)'//J(.V) Y, ()

where the norms |a,;; | are rapidly decreasing with respect to the index
5.9 "I,J, J'||2= Z @+ Y G+ G
=1 =1 1=1

A function ¢ e C® (T™) defines a multiplication operator on ;. by first lifting ¢
to T™ x T" by declaring it constant along T, and then letting ¢ act on sections via
the module structure (3.18) extended to C**.

Let A:1™—[0, 1] be a smooth function with compact support that is identically 1
on a d-neighborhood of the I™-support of &, so that

k(x,y,}")A(X)Ek(X,y,y')Ver"'.
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Let ﬁ =111, A be the compression of the plaquewise-operator II, where now we
let A act dlagonally on C*, Then H extends to an order zero pseudo-differential
operator [T, on C®(T™ x T" x C‘“‘) so that

(5.10) keoll,=k-1II,.
For each Jand J' € Z*, introduce the rank-one operator on C* (T™) with kernel
(5.11) ki YY) =y (DMNYy ().

These operators extend to 3 via the product structure on 7™*" and the module
action (3.18) on C**.

Lemma 5.3. On #;
(5.12) [ﬁV’klzzal.lJ’[ﬁ)n drlokyy .

Proof. The restrictions I1, commute with the operators k;., so (5.12) follows from
(5.8) and (5.10). O

From (5.12) we estimate the Schatten (m+ 1)-norm of [II,, k] by
(5.13) ” [HV’k]||m+1—z‘aIJJ P “ [Hy’d’I]HmH
Since the |a;;;.| are rapidly decreasing, the proof of a) follows from:

Lemma 5.4. There is a constant c, >0 depending only on II, the chart U, and A such
that

(5.14) Ity 1) msr =

. where I]P=3 ()
1=1

Proof. It will suffice to prove (5.14) in a coordinate chart on T™ for the compression
of IT , and ¢; by a smooth function compactly supported in the coordinate
nelghborhood Letp(x, &) e SY o(R™, C**) be a symbol of order 0 which is compactly
supported in x such that the Yy DO, p(x,D), on C®(R™ C*) represents the
compression of [1,. (We use the notation and results of basic y DO theory, as given
in Chap. 2, [87].) Let ¢ e CX(R™) be a test function for which we must estimate the
(m+1)-Schatten norm of [p(x, D), ¢]. This commutator is again a ¥ DO of order
~1, with symbol denoted g(x, £)e S;§ (R™). If ¢>0 is a constant such that

(5.15) lg(x, O Sc-(A+[EP~" V(x, &) e T*R™,

then a well-known consequence of the Sobolev Lemma is that the Schatten (m+1)-
norm of g(x, D) is estimated by a fixed multiple of c.
To obtain an estimate (5.15), observe from direct calculation that

q(x, &)= | p(x,z+8)e™*$(2)dz~ P(x)p(x, &)

R™

5.16 s 2
G190 = [ {p(x,z+8O)—p(x, O)}e™ " $(2)dz
Rm

where we use that p(x, &) and ¢(x) commute, and

(5.17) BE =g | € b0
.
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is the Fourier transform of ¢. The symbol p (x, £) has a partial asymptotic expansion

(5.18) p(x,8)=po(x,0)+p-(x,8)

where p,(x, ) is homogeneous of order 0, and p_ (x, ) has order —1. Using the
decomposition (5.18) and the differentiability of p,(x, &), there is a constant ¢’ so
that

1
(5.19) wcnz+f»44%c»§c“1iﬂgm
Combining (5.16) and (5.19) we obtain
c’ ~
(5.20) lg(x, é)léﬁm Fa+|zp-1é@)ldz.

For ¢ the compression of ¢, to a coordinate chart, elementary estimates yield a
constant ¢” such that

[a+]zD1d@ldz=e" (1 + 1]
so that we can take c=c’-¢”"(1+||I|)) in (5.15). O

The proof of b) reduces as above to estimating the (m+ 1)-Schatten norm of
0, [P,, k] supported in a cylindrical foliation chart. This, in turn, follows from a
uniform estimate along plaques of the type

(5.21) 10,18,, d:lllmsr S5 (A+ 1],
which is proved by the same methods as used for Lemma 5.4. O

The reader familiar with the proof by Connes of (Lemma 3, §8, [30]) will
recognize that the above proof follows the same outline, but the technical details
differ as IT, and Q, are not yDO’s necessitating the use of Lemma 5.4.

For odd g=m, by Lemma 5.2 we can define for any k,,...,k,e C°(n):

c*(ko,...., k)=
ISIC )
Proposition 5.5. The (q+1)-multilinear functional ¢* is a cyclic g-cocycle over the
convolution algebra C>(m).

Proof. I =1d on C*®(E*), and by Lemma 5.2 the trace law holds,
Trp(SeT)=Trp(T-S),

where S is a product of /-commutators, and T is a product of (g+1—1/)-
commutators. Therefore, the algebraic methods which prove Proposition 3.9 also
establish that ¢* is cyclic and closed. O

(5.22)
Trp{lly [y, ko]... [y, kq]}

For g=2I/=m, given a graded operator (P,¢) we define a cocycle for
ko,....k,eCP(m):

(523)  c*(kose. k)= —Qmi) 1! Trp{&- 0y [Py, kol...0y [Py, k,]} .

We next consider the relation between the cocycle ¢* and the cocycle ¢t of
Connes. Recall that c? is defined using the same formulas as ¢*, but Q, and IT,, are
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required to be y DO’s on ¥ whose symbols are specified for £e T* V vanishing on
Trnc TM as discussed below. There is a natural identification n* : T* M — T*(n) of
the cotangent bundle to M with the sub-bundle of cotangent vectors on ¥ which
vanish along the fibers of 7. For the principal symbol o, on T*V

(5.24) op(n*(l)=0p,(5), CeT*M.

A yDO on V is transversally elliptic for &, if its symbol is invertible for all
0+ &e T*(n) (cf. [1], [81], [30]). If P,, is a diferential operator on M, then P willbe a
Yy DO on V, and (5.24) implies that P is transversally elliptic to #,.

For (P, &) a graded operator, Connes observes in (§ 8, [30]) that there is a graded
parametrix (Q, &) which is ¥ DO of negative order on ¥V, and

(5.25) 0o(&) op(§)=1d, LeT*(n).

Similarly, for ungraded P there is a phase y DO, @, on V of order 0. The even
cocycle ¢ of Connes is obtained by using this @ in place of a sharp parametrix in
formula (5.23), and one can similarly define an odd cocycle ¢t by using the ¥ DO,
@, in the construction of ¢ *. The proof of the following was communicated to us by
J. Roe [77].

Proposition 5.7. For g >dim V, the cyclic cohomology classes of ¢* and c* agree in
H{(CF (m).

Proof. We prove only the odd case, and leave the even case to the reader. Introduce a
family {S,|0 <=1} of smoothing operators on L?(X) which satisfy

(5.26) S, is represented by a smooth kernel k, on X x X with support contained
in a t-neighborhood of the diagonal.

(5.27) 8, converges weakly to the identity as t—0.
(5.28)  k, is invariant under the left G-action on X x X.

Each operator S, extends to an operator S;* on the product space L?(U, x X), for
U, M, via the product structure. As ¥ is obtained by identifying product sets
U, x X, via the action of G on X associated to the structure cocycle of P(«)— M, the
operators S* agree on overlaps using (5.28), so define a global operator S}* on
L*(V). We extend S} to also act on L?(E*") via the diagonal action on fibers.

The operators IT and S}* commute, for in a cylindrical coordinate system IT
restricts to plaques of &, and is constant in the transverse parameter; similarly S*
restricts to plaques of &, and is constant in the transverse parameter. Thus, they
totally decouple in coordinates. A second consequence of decoupling is that the
product II,=1I1- S, is a y DO on ¥V of order 0. Moreover,

(5.29) on(§)=op(8), <eT*(m)

so that we can construct a cocycle ¢ using T,, and this represents the odd degree
analogue of the Connes transverse cocycle.

The assumption g > dim ¥ implies that [c¥] and [c!'] are stabilized classes, so are
determined by their pairings with cyclic homology. Consequently it suffices to show
that ¢*(u)=c*(u) for a unitary ue M(N, C®(n)). The algebra C*(n) consists of
leafwise smoothing operators with compact support. Therefore, we can apply (5.27)
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and the dominated convergence theorem to deduce that

(5.30) c*w=1lim ct(u).
t—0

Since ¢’ (u) is independent of ¢ for u a unitary, this proves the proposition. [J

The algebra C*(n) is Morita equivalent to the commutative algebra C*(M).
An operator (P,,g) on C®(E)) determines an even degree Chern character
ch(Py,, ¢)e H{(C*(M)), and one can show using (5.4) that this class corresponds to
[c*] under the isomorphism

(5.31) Hi(C ()= H{(C*(M))

induced by Morita equivalence. Since ch(P,,, ¢) is independent of &, it follows that
[c*] yields no information about &£,.

For an ungraded operator P,, on C*®(E,,), similar remarks apply to the odd
degree cyclic cohomology classes [¢*] and ch(P),), so that the cohomology class of
¢* in C*(m) is independent of o.

6. Renormalization and transfer

In this section we introduce a renormalization procedure for the transverse cocycle
c* constructed in Sect. 5, which produces a cyclic cocycle of the same degree over
the commutative algebra C* (V). Renormalization is a type of transfer process,
corresponding to lifting a de Rham current from the quotient M=V/%,_up to V.
The basic idea is to introduce a family of approximate units {k;|/=1,2,...} c C*(m)
which satisfy the Folner condition (6.5) of Definition 6.1. We use the left-module
action of C* (V) on C*(r) to define a sequence of embeddings 7,: C°(V)—C2(n)
via the {k,;}. The maps 1, are not algebra morphisms, but the Félner condition
guarantees that they are asymptotically so with respect to the relevant Schatten
m-norms. Thus, the cocycle ¢* pulls-back via 1, to cyclic cochains é,, which after
renormalization, converge in the limit /— oo to the renormalized cocycle é. The final
result of this section is that by suitably choosing the {k,}, the limit ¢ is precisely the
longitudinal cocycle of Sect. 3.

We again fix (V, #,, ©, P) satisfying (5.1) to (5.3). On the fiber X, we specify a
class of approximate identities that are suitable for renormalization.

Definition 6.1. A sequence of smooth symmetric real-valued kernels {k,|/=1,2,...}
on X is said to be an FAI (fancy approximate identity) if it satisfies:

6.1) ki(x,y)=0 if disty(x,y)>¢ where lim ¢=0.

-

(6.2) k,* f converges C°-uniformly to f for each fe C®(X), where a con-
volution operator is defined on C*(X) by

kyx f(x) =)§{ ki(x, ) f (»)dvx () -

(6.3) |k sc{k,}, 1>0, for some fixed constant c{k,}.
Let || 4|, denote the Schatten p-norm of a linear operator 4 on L?(X).
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(6.4) For Ae C2(X) and integers [,/,,...,1,, 5;,...,5,>0 such that
) P+ (s )=
then as / tends to infinity,
“’l(ksm * .. *ks,z,—kz)ul =0(”}~ Kk ”1)

(6.5) For fe C!(X)and any non-negative function Ae C2(X) which is identically 1
on the support of f,

”[ﬁk,]"1=0(ul-kl”1) as [—-o0.
(6.6) ForallgeG and x,ye X,

ki(gx,9y)=ki(x, ).
(6.7) There exists a sequence of positive constants {d,} such that

lky(x,x)—d)|=0(d)) as I-o0
uniformly in xeX. 0O

We remark on the interpretations and applications of these conditions. (6.1) and
(6.2) specify that the convolution operators {k,} form an approximate identity on
both C?(X) and L*(X).

(6.3), (6.4) and (6.5) regulate the convergence of the {k,} to the identity in the
Schatten 1-norm. The condition (6.4) is a weak type of semi-group property for the
sequence, while (6.5) is called the Folner condition, a notation which will be further
justified in Sect. 8 below.

(6.6) is the condition that the kernels are G-invariant, and hence define elements
of C®(m) via suspension.

(6.7) is a uniformity condition to ensure that the diagonal asymptotics of the k,
are uniform in X. If there exists a dense (or better, transitive) orbit of G on X, then
(6.7) is a consequence of (6.6).

Proposition 6.2. Let X be a connected Riemannian manifold with bounded geometry
(and injectivity radius greater than 2¢, > 0.) If G = Isom(X), then there exists an FAI
Jor X.

Proof. Let A be the Laplacian acting on smooth functions on X, and exp (—t4) the
heat operator for 4. We use the following properties of this family:

6.8) exp (—t4) has norm one on L?(X), and converges weakly to the identity.

(6.9)  There is a continuous family {,|7> 0} of smooth, symmetric real-valued
kernels on X which represent the heat operator.

(6.10)  Isometry invariance of A implies 4,(gx, gy)=h,(x, y) forallgeG, x, ye X.
The bounded geometry and positive injectivity radius of X imply that there
exists constants c,, ¢s>0 so that for all >0, x,ye X

. 2
(6.11) 0<h,(x,y)§c4-t'”/2-exp{————————c5 r(tx’y) }

Where r: X x X—[0, o) is the Riemannian distance function. A proof of (6.11) can
be found in [21]. A stronger version of (6.11) can be proven, estimating the
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covariant derivatives of the kernels {A,}. Corollary 8 of [21] specializes in our
context to yield : Let V denote the covariant differentiation operator on functions.
Then for all /> 0, there exists a constant ¢(/) > 0 so that for all /-tuples of unit vectors
Vy5...,0 €T, T,

. 2
(6.12) [Py, ee Vo b, M S c(l)e 402 exp{— Cs r(txd") }

From (6.11) we see that the kernels {h,} are not compactly supported. We
propose to take for an FAI a sequence of appropriately cut-off heat kernels. Choose
a smooth function 4: [0, c0)—[0,1] such that

1 if s<1
6.13) M”={o if 522,

We can assume without loss that 1>c,>0. Then set
(6.14) ky(x, p) =4 - (x, ) - hyp(x, )

We will prove that the collection {k;|/=1,2,...} is an FAI for X. Note that property
(6.1) for g=2(/"""*) and (6.6) are immediate.

The operators exp(—t4) for >0 all have norm 1, so from the inequality
0=k (x,y)<hy,(x, ) we obtain (6.3) with c({k,})=1.

The estimates (6.2), (6.4) and (6.5) follow from the basic

Lemma 6.3. For all xe X,
(6.15) lim | h(x,y)dvg(y)=1.
t=0 x

Proof. For each test function feC,(X), lim, ok, *f=f uniformly on X. The
manifold X has bounded geometry, so there exists a constant, ¢y, so that forall xe X

(6.16) voly B(x,r)Sexp{cy-r}.

Fix x, and introduce functions
1
fs(y)=l<;-r(x,y)>, 5>0.
For fixed s, we obtain
1 ={iﬁol § b, ) £,(0)dx ()
-0 X
=lim | A, (x,y)dx(»)
t—-0 x
+lim [ {f0)—1} h(x0)dr ().

t=0 X-B(x,s)

The absolute value of the integrand of the last term has an upper estimate, by
combining (6.11) and (6.16), of
rz}dr

° c
) t"'/zexp{cx-r—— 5
s

which tends to zero with ¢. O
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Condition (6.2) now follows from (6.15) and (6.11), using the uniform
continuity of fe C,(X). Details are left to the reader.

Condition (6.5) is based on a simple local estimate. For fe C,(X) and a >0, we
say that f is a-Holder if there exists a constant ¢,(f) >0 with

(6.17) f@)—fIsc, () r(xy)*;  xyeX.

The absolute value of the skew-symmetric operator [f, k,] is bounded above by the
positive operator with kernel | f (x) —f (»)|k,(x, ). If f is a-Holder, then this in turn
is dominated by the symmetric operator

ca(f) <% ’ Co>a kl(x’y) .

From this it follows that

(6.18) |kl = ean (,%) [ k(,)dox )
spt()

<ein)(ma) 1okl

where A, is a non-negative test function as in (6.5), which yields (6.5).
The Weyl asymptotic theorem for compact manifolds has a local version
applicable to open manifolds (cf. Chap. 5, [78]) which states

(6.19) By (x, X) ~ (dt) "2 .
—nf2

) 4
Setting d,=<—l£> we obtain (6.7).

The last property to establish, (6.4), follows from (6.7), (6.11) and the semi-
group property A, * h,=h, . ., which implies that for 1 1,,..., 1, s,,..., s, as given in
(6.4), then

”f h 1 *. =f+hyy ”1 =0.
sily sr r
To establish (6.4), it will thus suffice to show that for integers />0,
(6.20) |/ =KD |y =0(1) as I-o0,

since |, D—l and |k,| <1. But (h,,—k,) is a kernel which vanishes for r(x, )
Scy 171, and otherwise satisfies

1 (x, y) =k (x, PS¢, - 12 -exp { —cs -1 - d(x, y)*}
so that (6.20) follows from (6.16). This completes the proof of Proposition 6.2. O

Assume that an FAI, {k,}, for X is given, and let f, denote the suspension of k, to
an operator along the leaves of &, . Introduce the algebra 2{f;} consisting of
polynomials in the operators {f,} with constant real-valued coefficients. Given a
function fe C*(V) and pe 2{},}, the product f-pe C>(n) since f has compact
supportin ¥ and the {k,} are supported in a uniform neighborhood of the diagonal.
Also note that the elements of 2 {f,} acts as multipliers on the algebra C> (r).

Each pe 2 {1} is a finite sum of products of the f,, so p is represented by a kernel
on V with support contained in a uniform neighborhood of the diagonal. Let r(p)
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denote the least r > 0 so that the support of the kernel p (x, y) of p is contained in the
r-uniform tube around the diagonal.

Introduce the operator |p| in C°(n) represented by the kernel |p(x, y)| which is
pointwise the absolute value of the kernel for p.

For each integer p > 0, introduce the uniform norm for order p-derivatives on

C2(V), given by
(6.21) [£115,=sup S|+ sup |7,(f)|+...
xeV veTV
ol =1
+ sup [V, e Ppe...0 Py ()

Uy,enns v,eT.V
led=1

Let £e CI(C () be a cyclic g-cochain. Recall this assumes that ¢ is a
continuous functional for the Frechet topology on C° (n). We will assume that the
Lebesgue number ¢, of (5.2) satisfies 0 <c; <1.

Definition 6.4. A g-cochain ¢ is normal with respect to an F.A L {k,} if it satisfies:
(6.22) There exist constants ¢(£) and cs >0 so that for all f,,...,f,e C*(V) and
"Pos---» P, €P{L} with r(p)<cs,

then for any non-negative function Ae C°(¥) which is identically 1 on a %¢,-
neighborhood of a compact set K< V containing the support of all of the f, it
follows that

[ESfoPos-- s SaPI S (&) |/ 12,00 [ foll2s 0" TE{A [P0l % ... % [pgl} -

For all g,...,9,e C(n)

(6.23) |é(gofl,g19“'agq)_é(goatlgla'“’gq)|=o(dl)
and for all fe C>(V),
(6.24) (81905915 --s g)l= l|f”200 -o(dy)

uniformly in £, O

The left action of C® (V) on C*(rn) yields a continuous linear map:
7:C2(V) » C2(m)

f - ff

A cyclic cochain ¢ on C*(x) lifts via 7, to a cyclic cochain denoted ¢,. This lifting
does not, in general, preserve cocycles, but asymptotically this will be the case if & is
normal.

(6.25)

Theorem 6.5. Let & be a normal cyclic q-cocycle over C*(n). Then the cochains
{&l1=1,2,...} have a rescaling which admit weak-x limits which are cyclic q-cocycles
over C2 (V).

Remark 6.6. We call £ the renormalization (with respect to {k,}) of £. The ambiguity
of the rescaling process can be removed for X compact and £ Morita equivalent to a
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cocycle &, over C*(M): we require that the push-down =, (£) be cohomologous to
&y, where 7* : C° (M) — C* (V) induces the push-down map 7, on cyclic cocycles.
This property is reminiscent of the transfer in algebaric topology.

Proof. Define a sequence of cyclic cochains
.//S=ds—1'£(q+l)'sa s=1,2,...

For K< V a compact smooth submanifold, let C¥ (V) denote the algebra of smooth
functions with support in K. By (6.22) and (6.7), the family {y,} is uniformly
bounded with respect to the uniform C2-norm on C2(¥). The key point of the
proof of the theorem is to obtain a similar conclusion for the coboundaries.

Lemma 6.7. The family of coboundaries {by } is uniformly bounded with respect to the
uniform C?-norm on CZ(V), for each compact K.

Proof. Let fy,...,f,+1€CZ(V) have support in K. Choose a non-negative
A€ C2 (V) which is identically 1 on K, and set

(6.26) I=(g+1)s; p=(q+2)s.
We will show that
(6.27) B (fos-- s Sy N ={Soll2m - [ a1 ll2, 0} -0(@)

uniformly in f;,..., f,+,, so that the lemma follows by rescaling (6.27) with the
factor d;!. PN

The idea of the proof of (6.27) is to observe that b¢ =0 implies (b¢),=0, so it
suffices to estimate the difference b(¢;)—(b¢),. From (3.28) and using the cyclic
property of £, each term of this difference is typically given by

(6.28) Efofiti ohises S B)
—C(folp* ity Lol foaalp)
=f(ﬂ)ﬂf1,ﬁfz,~~-,f:1+1fl)
=S fo il Lol fraa )
+“fo“2,oo o(d).
The difference T, — (f,+1),)? "' € 2{f;} and by (6.4) there is the estimate
Tr (AT, — (e )* I} =0(d).

By (6.22) we can therefore replace the leading term f, in (6.28) with (f,.1,,)?"! and
introduce an error dominated by

1f6 M2, 1 fa 1]z, 0 - 0(dD)
§{“f0[l2,no Teel? ”fqﬂuz,oo} o(dy).

Then using the cyclic property of ¢ and repeated applications of (6.23) and (6.24) we
arrive at the difference

6.29) (il folioos fysa)
—é(f;).flfp* f(q+1)p’f2fp* f(q+1)p""’fq+1fp* f(q+1)p) .
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Finally, observe that from (6.26),

1+ 1 _1.<q+2)_1
p (g+Dp p \g+1) |
so that Tr, {Alf,—T,* .|} =0(d) and repeated application of (6.22) to (6.29)

yields a zero difference, with error estimated by the right-side of (6.27), which
establishes this estimate. [

The multilinear functions & and b¢ are thus bounded with respect to the uniform
C%-norm on C®(K x ... x K) for each compact K< V. From the weak-* compact-
ness of the unit ball in the dual spaces, there exists a weak-* limit of the pairs
(Y, by} Furthermore, ¥ is paracompact so can be exhausted by a nested sequence
of compact submanifolds. Using a diagonal process we obtain a weak- limit

(6.30) £=1lim y,

defined on all of C*(V x ... x V), for which the sequence {by,} has a weak-* limit
denoted by b¢&. Each i, is a cyclic co-chain, so that £ will be cyclic. Observe that the
uniform C2-norm estimate (6.27) on by, converges to zero uniformly on compact
sets in ¥, so we obtain b =0. The boundary operator b is continuous in the C2-
to;})l\ogy when applied to i, by (6.22), so that as the notation suggests we have b(&)
=(b&)=0. This completes the proof of the theorem. 0O

Remark 6.8. Theorem 6.5 gives one method of constructing a “transfer” between
CX*(m) and C? (V). We will next show that the sharp cocycle, ¢* of Sect. 5, satisfies
the conditions (6.21), (6.22) and (6.23) so that this renormalization method applies
in the cases of interest for this work. It would be very interesting to have a general
theory of the transfer. The above renormalization of ¢* yields a cocycle ¢ over
C2 (V) that incorporates secondary data about the foliation &,, which suggests
that the general analytic transfer is a process related to the construction of Cheeger-
Chern-Simons invariants, wherein, a nonclosed universal transgressed Chern form
on a Stieffel bundle yields a closed odd-degree form by restricting to a precise class
of cycles in the Stieffel bundle. In our context, the existence of an F.A.L is the
equivalent of being able to restrict the Chern form of (¢¥), to such cycles. In this
regards, the remarks on pages 55-56 of [20] are particularly relevant.

Theorem 6.9. For q>m, the cyclic g-cocycle c* of Sect. 5 is normal for the F.A.lL
defined by (6.14).

Proof. We give the proof for the case g is odd and c* is defined by (5.22), and leave
the case ¢ is even and c* is defined by (5.23) to the reader.

The first reduction of the problem of establishing (6.21), (6.22) and (6.23) is
that we can assume f;,...,f,e C(V) all have support in a common compact
subset K< V with diameter (K) <% ¢,. To reduce to this case, first observe that the
bounded geometry of V implies there is a partition-of-unity {1,|aes/'} for V
which is uniformly locally finite with each 7, having support of diameter <c;.
Moreover, by requiring that each 7, have support containing a ball of radius at least
8o €1 » We obtain for each compact set K < ¥ the number of a.€ o ’ such that support
(%o,)nK +¢@ is bounded above by a fixed constant times vol(K). Finally,
we assume that there is a uniform upper bound, & on the family of norms,

{1 Zall2, e 27}
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Given functions {f;,...,f,} with support in a compact set K, write each
fi=Y f.- Note that each f;, has support of diameter <{5c,, and the norm

| £;.ll2, « is uniformly estimated by a constant multiple of &£, -
To begin the estimate (6.22), observe

(631) Ic#(f(.)po"”’f;;pq)l
= Z [Trz [y, fo500P0]--- [HVafq,aqpq]I .

The distributional kernel of IT,, is supported in a 36={10(¢+2)} ! - ¢;-uniform
neighborhood of the diagonal. We also assume the each p; satisfies r(p;)
<cg={10(g+1)} ! -¢,. With these two assumptions, once a choice aye .o’ is
made, then there is a uniformly finite (independent of o,) number of choices of
(¢,..., &) for which the summand on the right-side of (6.31) i 1s non-zero. Hence, it
will sufﬁce to prove (6.22) for all £; with support of diameter <5 c, . In fact, observe
that c* (foPos---»fyp,)=0if any pair of f;,f; have support separated by more than
5 ¢,, so that we can also assume all of the functions have support in acompact set K
of diameter at most $¢,. We assume then that A is identically one on the 2¢;-
neighborhood of K with support (1) of diameter <c,.

Let (U, ¢) be a cylindrical foliation chart containing the support of A. Then each
commutator [IT,, f; p;] and their products have support in U, so that we can reduce
to coordinates to make the estimate (6.22). We follow the notation of the proof of
Proposition 6.2. The operator II, restricts to a family of leafwise operators
11, acting on C*(I™, C**) and independent of yeI". Each p; is represented by a
kernel p;(y,y") on I" which is independent of xeI™. For each i and xeI™, we set
Ji,,(x)=/fi(x,y) in these coordinates. Then introduce operators

(6.32) A4,n=1U,,1,,]
on L?(I™, C**). The operators @ and p, commute, so the perturbation IT,, satisfies
(6.33) ULy, fivd=y, fi]+p;.

We can then use the Fubini theorem and formula (2.10) to estimate

(6.34) lc* (foPos---> faPQ)l

= I Tr{Ao(¥o) * Po* Ay *py *

ImxIn

* Aq * pq(yq,yo) : dv(gyo) “dvy (¥o)

ST {| Ao o) | grs - 140Dl g1 - A Pol # .. % Ip I},

where | |, is the Schatten (g +1)-norm on L?(I"™, C*¥). The proof of Lemma 5.4
estabhshed a slightly stronger statement that we give as

Lemma 6.10. There exists a constant c, depending only on II,, and the data (5.1) to
(5.3) such that for all fe C®(U),

(6.35) I, Mg S 1w

Combining (6.34) and (6.35) yields (6.22) for the local case, and by the previous
remarks we obtain (6.22) in general.
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Condition (6.23) is evident for c*, as @ and each ¥, commute, so computation
yields
1y, g0t 1y, 9,1= 1y, 9] - [ITy, }19,],

and this implies (6.23).
It remains to prove (6.24), which follows from a more precise form of (6.34) and
the calculation

(6.36) Ay, [, 81901 = A1y, 1, Ei19, -

First we remark that the reduction to a foliation chart (U, ¢) used to prove (6.22)
can also be applied here, as r(k;)—0 with /. Thus, we can assume that all 4, f,
Jos-s f3€ C2(U) as before.

There exists a constant ¢’ depending only on (5.1) and (5.2) so that for fe C* (U)
and y, yoel",

(6.37) (P PR W P VRS Y B
Integrate the left-side of (6.34) with respect to /™ to obtain for 4,=[II,,f,],

(6.38)  Ic* ([, 1i)do- 91 9ol S Tro{d 1[4, B]Ixgol » ... * g}

where ¢ depends upon IT,, and appropriate uniform C'-norms of the {gy,...,g,}-
Combining the estimates (6.35) and (6.37), we conclude by (6.5) that

(6.39) Tr, {4y, W)} = |/ ]2, - 0(d))-

Thus, we obtain the more precise form of (6.23), that the limit is o(d;), uniform in
| f]|2, and appropriate C*-norms on the gq.,...,q,. O

Combining Theorems 6.5 and 6.9, we conclude that the transverse cocycle ¢* of
Sect. 5 over C°(n) can be renormalized to yield a cocycle ¢ over C* (V). The proof
of Theorem 6.9 contains the techniques needed to identify ¢ more explicity.

Theorem 6.11. Let {k,} be the F.A.I. given by (6.14). Then the renormalized cocycle ¢
is identically equal to the odd degree longitudinal cocycle, cq, defined by (3.24). In
particular, the weak-* limit (6.30) is unique.

Proof. We must prove that
(6.40) co(fos--s S)=Hm d - c* (fokgirysr-- s fokigenys) -

We can assume that each f; has support of diameter < £ ¢, , and as r(k;)—0, that all
of the supports are contained in a compact set K of diameter <i¢,. We then
introduce notation as in the proof of Theorem 6.9, and also define

a+1
(6.41) Aoy =—(=4" % I, [l,, fo,.)... 10, f,])
a(Yos--+3 V) =Trr2qm{A¥o,...,¥,)}
(6.42) ={!.. Tr{4(¥o.--, )} (x, X)dv(x) .

The key point is to observe that by (6.35) and (6.37), if
[ yi=yoll<e<1 forall 0<i<gq,
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then there exists a constant ¢, so that

(643) Ia(yanl,"'syq)—a(yo9y05"'9y0)| <Cq‘8' “f;)”z,oo ”f;;“Z,eo .

€
Fix /=(g+1)s such that r(k;) <———. Then we estimate
N <G+

6.44) c*(fofi,.... f,T) .
=I" m i a(¥os---»¥9) ‘10> 1) - - Ti(gs ¥0)dvn (Vo5 ¥p)

(6.45) = I a(Yo»--sYo) Li* ... xH,(¥o, -5 Vo) dv, (o)
I'l

te e | follzw 1 folz o Tra(A-Tix ... x¥).

By (6.4) the error term in (6.45) tends to zero with ¢, which tends to zero with /— oo.
By (6.7) and (6.4), the first integral in (6.45) scaled by d,”* tends to

(6.46) § a(yos- s 20) - dva(3o) -

In
Examining the definition of ¢y (fy,..., f,) in a cylindrical flow chart, we obtain that
(6.46) is precisely cq(fo,- .-, f,). Therefore,

(6.47) ds_lc#(fofls---,quz)_’co(fm---,fq)
as was to be shown. [

There is a corollary of the proof above, that will be important for the proof of
Theorem 8.1 below.

Corollary 6.12.
(6.48)  (fos---50y)

q+1

=—(=4) 2 limd; ' Trew(I, [y, fl...[,, fl°1). O

Remark 6.13. The restriction on the support of the sharp phase function @, used in
the construction of ¢ * is primarily for notational convenience. It guarantees that the
supports of all relevant products will lie in an appropriate plaque chart /™. With
some additional restrictions on the geometry of &, this requirement on supports
can be relaxed to allow @, with arbitrarily large, but uniform, support. For
example, if # =, is a suspension foliation on V=M x G for G-compact, then
every leaf of &, is diffeomorphic to the covering M,— M associatedtoa: I'-G. We
can then replace the charts /™ appearing in (6.34) and (6.42) with integration over
the images of diagonal sets in M, x M, which are compact, but contain the supports
of all appropriate products. The estimates of the above proofs depend only on
compactness, so extend in this context. We can thus apply, for example, Theo-
rem 6.11 for these more general ¢* obtained from @, with large support. This will
play a key role in Sect. 8.

We conclude this section with a remark on renormalization. Our choice of using
an F.A L to make the transfer is based on the properties of heat kernels, which can
be applied in the general context of this section. The authors’ original approach to
the transfer applied only to the context where X=G is a compact connected Lie
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group. The Peter-Weyl theorem yields a sequence of finite-rank smooth projections
in L2(G) which converge weakly to the identity. Renormalization can be effected via
these kernels, with slight modifications of the above arguments. The main
differences arise first from replacing (6.4) with the projection law, and second the
Folner condition (6.5) must be proven using fairly tedious representation theory of
a compact group. For the circle case, G=S", this method of renormalization was
carried out in [43], and can be viewed as approximating the longitudinal operator
¢n(fos---»Sy) of (3.23) by its finite Fourier sums in the S'-parameter. The group
methods thus correspond to lattice renormalization, while the approach of this
section via an F.A L corresponds to heat kernel regularization. These ideas appear
also in the recent works [33] and [57, 58].

7. Eta distributions

In this section we introduce the eta-distribution
(7.1) n(Dy,a): R, (G)-R

associated to a geometric operator D,, on the odd-dimensional manifold M and a
homomorphism a : I'-G. We will give two definitions of (7.1); the first is a direct
extension of the usual definition of the eta-invariant, and only mildly uses the
structure theory of the representation ring of a compact Lie group. The second
definition uses the lifted operator D,, acting on sections over the principal bundle ¥,
where D, is transversally elliptic to the G-action.

The main new result of this section is the observation that the eta-distribution is
tempered. That is, there is a constant ¢(D,,) such that for a smooth class function

YeR,(G),

(7.2) 1N (Dyg o0, Y| S c(Dyy) - Za la(y, 0l - N(x)?

X€
with the notation explained below. This will follow from results of Cheeger and
Gromov.

Distributional eta and zeta-invariants have appeared in the literature in several
contexts. For a finite group G, the distributional eta invariant was defined by
Atiyah, Patodi and Singer in (Formula (2.13), page 412, [5]) as part of their study of
index formula for G-manifolds with boundary. Donnelly proved in [36] the relevant
index theorem in this context. Note that for G finite, the manifold ¥V is a finite
covering of M so that the lift D, is also elliptic, hence the analytic subtleties
encountered for non-elliptic operators do not arise in their work.

For G a compact connected Lie group, Subin [86] and Smagin and Subin [84]
introduced a distributional zeta function for D,,, which is now only G-transversally
elliptic. Via the methods of Wodzicki [89], this can be used to define the
distributional eta-invariant. Finally, Donnelly in [37] studied the multiplicative
property of eta-invariants for the fibered manifolds ¥, =AM x -X. The relation
between the eta-invariants of ¥, and the eta-distributions we define is a topic for
further exploration.

For the rest of this section we fix a geometric operator D,, acting on sections
C*®(E,), in the sense of [49]. We assume that M has odd dimension equal m. The
Riemannian metric on TM is that obtained from the principal symbol of D,,, so that
D, has the customary nice properties (cf. § 1, [49]). In particular, D,, is symmetric
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and has a unique self-adjoint closure in L?(E,,). The compact group G and
homomorphism « are also fixed.

There is a unique lift of D,, to a leafwise operator D along the leaves of the
foliation &, on the principal bundle = : - M. As before, we let D,, denote the first-
order differential operator acting on sections of

E=n*(E,)-V.

Using the bi-invariant Haar measure on G, we obtain a Riemannian volume form
on V asin Sect. 2, and use this to give C*(E) an inner product. The lifted operator
D, is symmetric on C*® (E), and it is shown in (Chap. 5, [56], cf. [22]) that D, has a
unique self-adjoint closure in L?(E). In fact, there is a more precise result.

Proposition 7.1. The operator Dy, has real pure-point spectrum (p.p.s.), and for each
eigenvalue L€R, the corresponding eigenspace H,= L*(V) is G-invariant with each
irreducible character ye G having finite multiplicity in H,.

Proof. Let 4; denote the G-Laplacian acting along fibers of n: ¥'— M constructed
in Sect. 6 for X=G. There is a natural extension of 4, to a second-order operator
on C*®(E). The operators D and 4; commute, and their sum 45+ D3 is a sym-
metric, elliptic second order operator on C®(E) which commutes with D,. As
A6+ D} has real p.p.s. and Dy, has a unique self-adjoint extension, this implies
the same for D,,. The standard estimates on the growth rate of the eigenvalues
(counted with multiplicity) of 45+ D2 implies that the multiplicity of ye G in H, is
finite. (Estimates on the growth rate of dim(H,) can also be obtained, as in
Sect. 2 of [1]) O

Let {4;} be the set of eigenvalues of D,,, listed with multiplicity. The eta-function
of D,, is the sum

(1.3) 1Dy, )= Y 47— Y (—A) *+dim(ker D).
A>0 A<0

By general facts from [4], this function is holomorphic in se C for Re (s) >m, and
admits a meromorphic extension to all of C with isolated simple poles at s=m—|,
for natural numbers />0. Moreover, for a geometric operator D,,, 7(Dy, s) is
holomorphic for Re(s)> —2 due to supersymmetric cancellations (cf. [13]). We
define

(7.4) N (D) =1(Dy,0).

Given a unitary representation g : G— Uy, let E(g > o) » M be the Hermitian flat
CM-bundle associated to the flat principal bundle P(g ° «) of (4.17). The differential
operator D,, has a canonical extension to C® (E ® E(g - a)) using the flat structure,
which will be denoted by D,, ® V?°*. This extension is again symmetric and of
geometric type, so it has a well-defined eta-invariant. We set

(1.5) N(Dy, 2, 0) =1(Dy @V°7).

Introduce the vector subspace C/(G) = C*(G) whose elements are finite linear
combinations of characters of finite dimensional representations g. Let G denote the
set of irreducible representations of G, indexed by their characters y. The dimension
of the representation space ¥ (x) for y will be denoted by N(x). A typical element



146 R. G. Douglas et al.
Y € Cl;(G) can then be written
(7.6) Y= N@-ay, 0«

1€G
where at most finitely many of the “Fourier coefficients” a(y, y) are non-zero. Note
that we scale y by N(y) in (7.6), as the basic characters for this work will be those for
the isotypical summands of the right regular representation of G on L*(G).
Recall that the left and right regular representations of G on L2(G) denoted by 4
and g, respectively, are given by

M@ N h)y=f(g™'h)
7.7 for fel*(G) and geG.
e(9)(N)(h)=f(hg)
If we consider ¥ (y) as a right G-space, then the dual V' (y)* =Hom(V(x), C)is a left
G-space and M (y)=V()* ® V(x) is a G x G-module. By the Peter-Weyl Theorem,
there is a G x G-invariant subspace L?(G, x) = L*(G) and an isomorphism of G x G-
modules

(7.8) M()=L*G,y).

Let 4, and g, denote the restrictions of Aand ¢ to L?(G, ), which intertwine via (7.8)
with the fixed left and right G-actions on M (y). Observe then that

Tr(e)=N()x
Tr(A)=NQ) .

The G x G-module L2 (G) admits a Hilbert space decomposition into irreducible
summands

(1.9)

(71.10) 12(G)=® I2(G, 7).

The orthogonal projection P, onto the summand L*(G, x) is given by convolution
with N(x) - y; that is, for fe L*(G)

(7.11) Px(f)(h)=fx(h)=(§; NQ-x(hg™") f(9)dg .

Note that y is a smooth function, so that each fe L?(G, y) is smooth on G.
We introduce the ring of central smooth functions on G,

(7.12) R, (G)={YyeC*(G)y(gh)=y(hg) all h,geG}.

Clearly, Cl(G) = R, (G) and the Peter-Weyl Theorem implies that each yy € R, (G)
can be written as an infinite sum

(7.13) =Y a@, DN 1

where the |a(y, x)| are rapidly decreasing as a function of the weight of the
representation y. We let w(y) denote the weight of y.
For each y € R (G), define a kernel

(7.14) ky(h,9)=y(hg™"),



Cyclic cocycles, renormalization and eta-invariants 147

with corresponding convolution operator on L?(G):
(7.15) Sy =kyxf(h)y= y(hg™") f(g)dg.
G

Combining (7.11), (7.13) and (7.15) we have:

Lemma 7.2. For y e R_(G), fe L*(G)
(7.16) kyxf=Y a@.0) - P(N). O
x
After these preliminaries, we can now introduce the eta-distribution. For
Y € Cl (G), define via (7.5):

(717) ”(DMsa’ W)=Zd(l//,x)‘1’[(DM,d,/11).

The following important property of the functional #(D,,, ) on Cl;(G) defined by
(7.17) is a direct consequence of estimates of Cheeger and Gromov:

Proposition 7.3. There exists a constant c(D,,) such that (7.2) holds for all € Cl(G).
In particular, if each a(y, V) is non-negative real, then

(7.18) (D, 0, Y = c(Dy) Y (e) .

Proof. For the case when D), is the signature operator d * — * d, Theorem 1.2 of [17]
shows that there exists a constant c(D,,) such that for each representation
g:Ir-Uy,

(7.19) N(Dy ®F M| <c(Dyy) "N

Moreover, Remark 4.1 of [18] asserts that (7.19) holds for D,, an arbitrary
geometric operator. A proof of this estimate for D,, a geometric operator is given
more recently by Ramachandran [71]. Clearly (7.2) is a consequence of (7.19), and
then (7.18) follows from noting that Tr(4,(e))=N(y) - x(e)=N(x)*. O

Corollary 7.4. The functional n(D,, o) extends to R (G).
Proof. There exists constants ¢;,, >0 so that the function
PN)=#{xeGIw(<N}<c;o N".

It then follows that the sum (7.17) is uniformly convergent for |a(y, y)| rapidly
decreasing in w(y) by the estimate (7.2). O

The functional n(D,,, «) on R (G) can be reformulated in terms of the spectral
theory of D), acting on C® (E). It is this alternate formulation of #(D,,, &) that is
used to identify the renormalized cyclic Chern character of Sect. 6 with a spectral
invariant of D,,.

The Hilbert space L?(E) is a right G-module, and there is an orthogonal
decomposition into G-spaces

(7.20) L(E)=® LXE )

where L%(E, x) is the closed subspace which transforms by the right representation
0,. Let

(7.21) e(y): L*(E)—~L*(E,y)
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be the orthogonal projection, which is defined by convolution (5.5) with the smooth
kernel N(y) -k} eC®(n),

(7.22) kx(n,y-9)=x(g7"; yeV, geG.

The operator Dy, is G-invariant, thus its closure commutes with each projection
e(x), and the compressions D(y)=Dy e(y) are densely defined on L*(E, y).

Proposition 7.5. For each y€ G, there is a natural isomorphism
(7.23) L*(E, )= [*(Eyy ® E(A,° a))
which identifies D(x) with Dy, ® V*x°°.

Proof. The quotient map M x G—V identifies pairs (X, g)~(Xoy~ta(y) g) for
yel, and commutes with the right G-action. Let E,— M be the lift of E,,, and
E— M x G the lift of E. There is an isomorphism of right G-modules

(7.24) C>(E,0)=C*(Ey)®L*(G, 1)
=C=(Ey) @M ().

For a smooth section se C*(E, y), the lift §e C ©(E, y) satisfies

(7.25) 5(X-7,9)=3X, a(y)9)

=A.ea(y™) 5(%,9)

via the first isomorphism of (7.24). A section of the flat bundle E(4,°a)—>M is
equivalent to a map y : M—C"® such that

YE-p)=Apealy™) (),

since we require that

E 0 YE )~ E 4,0) YE-p)=E ).

By the second isomorphism of (7.24), we can thus identify § with the lift of a section
§e C*(Ey ® E(A,°)). The linear map s—§ is an isomorphism of smooth section
spaces

(7.26) C=(E,)=C~(Ey ®E(4,°0)),

which extends to the isometry (7.23) as (7.8) and (7.10) are isometries.

The isomorphism (7.26) becomes an identification when lifted to # x G, so to
show D,, ® V*x°* and D(y) agree under (7.26), it will suffices to show they agree on
M x G. The first operator, D,, ® V*x°%, which is defined via the flat Hermitian
connection on E(4, * ), lifts to the operator Dy ® Iy, Here, D, is thelift of D), to
C~(E,,), then we extend via the identity map on M (y).

The operator D, on C%(E) lifts to Dy,=D,®Ice on C=(E)
~C~(E,,) ® C*(G). The restriction D(x) thus lifts to Dﬁzx)=5M ® 1), Which
concludes the proof. O

The operator Dy, has p.p.s. by Proposition 7.1, so for se C define
A5;A>0, on A-eigenspace of D,
(7.27) D;*=4q—(4)*; A<0, on A-eigenspace of D,

1; on nullspace of D, ..



Cyclic cocycles, renormalization and eta-invariants 149

Let Try denote the usual Hilbert space trace on L?(E). An immediate application
of Proposition 7.3 yields

Corollary 7.6. For each y€G,
(7.28) Trg(Dy *ce(x)=n(Dy ®V*°%s).

The second formulation of the distributional trace is suggested by formula
(7.28). For each e R, (G), let k} € C*(w) be defined by k} (y - g,y) =y (g). Then
set
(7.29) f1(Dygs %) =Treg(Dy o kf)ls=o-

This is well-defined by (7.28) and Proposition 7.3, and by (7.28) we have:
Corollary 7.7. For e R _(G)
(730) ﬁ(DMs a’ ¢)=’7(DM7‘15 l//) D

For our applications in Sect. 8, we need to extend the definition of #(D,,, ) te
include an auxillary flat bundle. Let 9 : G— U, be a representation; then D,, @ V¢°¢
acting on C®(E,; ® E(¢°a)) is again a geometric operator. We can thus define

(731) n(DM’a7 o, l//)=’7(DM®Vooa’ o, lp)

where the right-hand-side of (7.31) is defined as in (7.17). The estimate (7.18) is
correspondingly scaled by the dimension N of E(goa):

Corollary 7.8. Let e R (G) have all a(y, x) real and non-negative. Then
(7.32) Dy, 0. YN =c(Dy) N-y(e). O

When the representation a defines a topologically trivial bundle P(x) =V, then
the choice of a trivializing G-map @ :V->M x G yields a=(a, @). We use the
definition (7.3) to define a linear functional n(D,,, &, ¢) on R_(G).

The trivialization © induces a product structure,

(1.33) O* :E(gooa)=MxCV=¢V,

which carries the Hermitian flat connection on E(g ° a) over to a connection ¥¢°* on
¢V. The product flat connection on &V will be denoted by V°.

The differential operator D,, has two essentially self-adjoint extensions to
C=(E,,®¢") defined in conjunction with & The first is Dy=D, ®V°, ob-
tained by using the product structure to extend the coefficients. The second is
D, =D, ®V?°* obtained by letting D,, act on the coefficients of parallel sections
for Ve°* of C®(E, ®¢&"). Define a smooth 1-parameter family

(7.34) D,=t-D,+(1—1)D,

of essentially self-adjoint operators on C®(E, ®¢"). The 1-parameter family of
eta-invariants n(D,) varies smoothly in ¢, except for a finite number of integer jumps
[6]. Thus, there is a well-defined derivative #(D,) which depends continuously on ¢,
and moreover rj(D,) is a local invariant of the family {D,}. Define

1
(7.35) n(Dy % Q)=£ n(Dy)dt.
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As discussed in (§6, page 90, [6]) the correspondence
(7.36) (@, @)>n(Dy, & 0)

defines a linear functional on the odd-degree, real-valued K-theory of M. It is this
topological invariant that is naturally related to the foliation index invariants of
Sect. 3.

In the definition (7.39), we can replace Dy with Dy ® V*x°® acting on
C®(Ey ®E(A,°)), for any ye (. The resulting family will be denoted DX, and
we set

1
(7.37) n(Dy, & 0, )= ri(DP)dt.
0
This is a purely formal device by the next result.
Lemma 7.9.
(7.38) 1(Dyy, & 0, ) =N 1Dy, & 0).

Proof. The derivative #(D,) is local, so extending the operators D, to D}
=D, ® V*x°* multiplies this derivative by dimE(4, > «) = N(x)?, as 1j(D¥) depends
only on the local coefficients of D¥. Integrating then gives (7.38). O

Now extend (7.37) to all of R (G) by setting
(7.39) 1Dy, & 0, ¥) =Y, a(y, 1) - 1(Dyy, & 0, %)
X

= {2 N()?-a(y, x)} “N(Dy, &, 0)

=y(e) 'ﬂ(DM’a_’ 0.

The functional n(D,,, &, ¢) can be reformulated in terms of D}, and the formal
extension (7.39) is then seen to be surprisingly natural. Given a smooth map
u: V- Uy, we obtain a multiplication operator on C* (E ®¢V), denoted again by u,
by letting u act pointwise on the left on the coefficients V. Let u* be the
multiplication operator by the pointwise adjoint matrix to u. Extend Dy, to D, ® Iy
on C®(E®¢"), then set

(7.40) D*=uoc (D, ®Iy)ou*

(7.41) Di=t-D*+(1—1t)-D, ®Iy.

The representation g induces a continuous map u(g), defined as the composition
(7.42) VS MXxG—G-SU,y.

Then set

(7.43) De=p"@; De=Dpro,

Proposition 7.10. D¢ is right G-invariant, with essentially self-adjoint restrictions
De(y) to the invariant subspaces C®(E ®¢V, x). There is an identification

(7.44) L(E®e", )= L*(Ey ® E(A,° o) ®€)
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under which D°(Y) is unitarily conjugate to Dy, @ V**°* ® 7357, hence they have the
same spectrum.

Proof. The differential operator D, ® Iy commutes with the constant matrix
multiplier ¢(g) for all ge G, so

R} (DY) =u(e) e(9) Ry (Dy)-o(9)*u(e)*
=u(@) Dy - 0(g9)e(9)*u(o)*
=De.

The projection onto the closed subspace L?(E ®¢", ) commutes with D? so the
restrictions are essentially self-adjoint. The isomorphism (7.44) is a consequence of
(7.23), as G acts trivially on the coefficients &". Finally, to identify D(x), we first
identify the lift D¢ to C*(E ®¢eN) on M x G- V. Our method will basically be a
repeat of the idea of Theorem 4.4.

The lift of © to coverings gives a right G-map @, commuting with the two I'-
actions in the diagram

r r

! l

fxG -8 ixG

(7.45) l l
v -2 MxG
i1 \ / Ty
M
The identity n, - @ (x)==(x) for all xe V implies that
(7.46) (X, 9) =% 0% 9); (*geMxG
where ¢ : MG satisfies
(7.47) P(X-Y) =X ay).
The lift 7i(g) to M x G of u(g): V—U, is given by @l(g)=g°m,° @, so that
(7.48) d(e(%,9)=e(e(®)g)=c(o(X)) e(9).
Thus, D¢ lifts to
i(0) - (Dy ®I) - #(@)* = 0(¢(%)) - Dy ®Ic=() @ Iy) - (@ (N))*

and the restriction D¢(y) is given by
(7.49) D) =020 Dy ®Lyyp ®Iy) 0o o*
acting on C*(E,,®M(y)®e"). Introduce an automorphism A4 of
C=(E, @ M(y) ®¢"), defined as pointwise multiplication on the left on &" by
¢(¢(%)). Thus
(7.50) DO(X)=A °(DM ®IM(1)®IN)°A*

ind\}ces a unitary conjugation between D?(y) and a I'-invariant operator acting on
sections of the form 4* 5, §e C* (Ey, ® M (x) ® &V). A section 4*§ transforms under
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the I'-action as:

(7.51) A*S(X-y)=e(p(X-y)*-§(X-y)
=gea(y™!) e(e(®) 4 oa(y™) - 5(%)
=@®4)oa(y™!) 4*H ().

Hence, A*§is the lift of a section of the flat bundle E((¢ ® 4,) c a) > M. Conversely,
A induces a map from lifts of sections of this flat bundle to sections of
C*(E,,®M(x) ®c"). Thus, A* is a unitary map from C®(E®¢",y) to
C*(Ey ®E((g ®4,)° o)) which conjugates D%(y) to Dy, @ V**°*@Ve°* O

Define (D!)”* acting on C®(E®¢") as in (7.27).
Corollary 7.11. For each xeG‘ and 0=t <1, se C with Re(s)> —2,
(7.52) Nt Dy @V * @V +(1—1)D @Iy Ry, )

=Trgn (DY) *oe (1)}
Thus, for Yy e R (G),

1 d
(7.53) n(Dy, 0, %) =] 7 {Tren (DY) "o k=0 dt. O
0

8. The Folner condition and spectral flow

In this section we relate the distributional relative eta-invariant of Sect. 7 to the
values of the renormalized transverse cocycle ¢ of Theorem 6.11. More precisely, we
show that:

Theorem 8.1. Let M be a compact oriented manifold of odd dimension, and Dy a
geometric operator. For a=(a, @), 9 : G- Uy arepresentation of G andu() : V- Uy
defined as in Sect. 1, we have

(8.1) Eu(@)=—n(Dy, 3% 0).

Remark 8.2. The values of cg4(u(@)), as defined by (3.32), and é(u(g)) agree by
Theorem 6.11, so Theorem 1.1 of the Introduction follows from the definition (7.35)
of n(Dy,, &, ¢) and Theorem 8.1. O

The proof of (8.1) will occupy the rest of this section. The first step will be to
introduce the spectral flow of a family of elliptic self-adjoint operators. While this
spectral flow is infinite, it decomposes into a distributional sum of finite spectral
flows over G and so can be renormalized. The basic idea of the proof is that the
Félner property of the heat kernel F.A.I. of Sect. 6 can be used to relate n(D,,, &, )
to the renormalized spectral flow. On the other hand, the finite spectral flows
associated to characters of G are equal to the indices of certain Toeplitz operators,
which are homotopic to Fredholm operators obtained from a sharp parametrix as
in Sect. 5. Their indices are thus equal, which relates the renormalized flow to the
values of the renormalized cocycle ¢, completing the proof of (8.1).
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Let {D,|/0<t<1} be a smooth family of first-order, self-adjoint elliptic
differential operators on M. The spectral flow of the family is defined to be the sum

1
82 S0 =3 {g ﬁ(D,>dz—n(D,)+n<Do)}.

When an eigenvalue of D, changes sign as ¢ varies, the eta-invariant n(D,) changes
by +2, so that (8.2) is always an integer. In fact, it agrees with the more customary
definition of spectral flow, which is the net flow of eigenvalues through the origin,
counted with multiplicity (cf. page 93, [6]).

Let us recall, for the reader’s convenience, the notation from Sect. 7 that for a
class function Yy e R_(G):

k, denotes the operator in L?(G) with kernel k, (h,g)=y/(hg™" )=y /(g 'h)
k¥ denotes the operator on L*(¥V) with kernel k} (y -g,y)=y/(9g).

We also use this notation for diagonal extensions to operators on bundles over G
and V.

Our first step towards the proof of Theorem 8.1 is to generalize (8.2) to a
distributional spectral flow, using # as in (7.29). For e R (G) and u=u(g), set
(8.3) (Dpr> % w*Yu)=Tr {Dy o u(e)* o kjf o u(@)}ls=o

=Trg{(D?) "ok }s=0
where the last equality follows from (7.44) and Proposition 7.10. Note that u(g) acts
via pointwise multiplication on C® (E ®¢"), and hence does not commute with the
convolution operator k. The distributional spectral flow is given by
(B4)  5f(Dy, %0, ¥)=1(Dpy, &, 0, ) —7(Dyy, 0, u* Y1) + 7 (D, o, )

Recall that the compact group G has a bi-invariant Riemannian metric chosen
on it, with total volume 1. The Laplacian 4 for this metric has heat operators e~
with kernel functions {y,e R (G)|t>0}. As each e™* is strictly positive, the
coefficients a(i,, y) in the expansion (7.13) for , are real and positive. (An explicit
formula for y, is given by Fegan [46].) Consequently, the operator e *4 on L2(G)
has trace given by

(8.5) Tri{e "} =y,(e).
The first step in the proof of (8.1) is provided by:

Proposition 8.3.

(8.6) n(Dy. &, )=lim Vi@~ sf Dy, &0, ¥) -
Proof. By (7.39) and (8.4) it will suffice to prove
®.7) Yo(€) ™! - 17(Dygs o u* ) — 71 (Diyg, 0, Y,)|

tends to zero with £. We consider the kernels k} and u* o k¥ o uactingon C* (E ®¢")
via convolution with the right G-action on V. By (7.22), for ye ¥ and g€G,

(8.8) sy =Y aW, 0 N@-297",
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(8.9) wrkfu(y,y-g)=ule(M)* Y. aWu ) NG - x(g™") ule(»)* - u(e(y9))

X

=Y a@W, ) N x(g™" ule(9)

as u(p) is a right G-map. The calculation (8.9) is the manifestation of (8.3) for the
operator Dy, and implies that the expression (8.7) is the scaled difference between
the eta-invariants of D,, coupled to two families of flat bundles, so that (8.7) is
equal to

(8.10) ()7 X aW, ) {N(Dy ®V*** @V ") —n(Dyy @V *°* @V 9}

4

By the Cheeger-Gromov estimate (7.2), the expression (8.10) is estimated by
(8.11) V(@7 -c(Dy) I Tr {o* ky, 0 —ky }

where k,,_acts via convolution on L?(G, C"), and ¢ is left multiplication on C" by
0(g) for ge G. The Folner condition (6.5) implies that

(8.12) Tr{o* 1y, 0—1,} = |y, ol i =0, (e))
so that (8.10) tends to zero, which completes the proof of (8.6). [

Remark 8.4. A novel point about (8.6) is that the left-hand side is a real number,
while the right-hand side is a scaled (renormalized) integer-valued spectral flow
of eigenvalues of D, through the origin, with the scaling set according to the
G-decomposition. O

Remark 8.5. Let us now justify our notation that (6.5) is a “Folner condition on
L? (G)” For ¢> 0 small, the operator e~ *4 is almost a projection onto the “lower
energy” eigenstates of 4. Introduce the decomposition of G into sets

E(t,e)={xeGle P, 2(1—-¢)P,}
P, a)={xe@|s-Pl<e"" ‘P,<(1—¢)P,}
R(t,e)={xeGle"oP,<c-P,}.
There is a corresponding decomposition
L*(G)=E(t,e) ®P(t,e) DK(t,¢)

and the operator gives “weights’” to each of these subspaces, so that we can think of
e™* as determining a “tile” E(t,¢)<G with penumbra P(z, ¢) in the sense of Roe
[74]. Then the formulas (6.5) and (8.12) imply that the action of the unitary
multlpher 0, 0n L*(G)= L*(G) moves the weighted “tile” ¢~ *4 by an amount which
is negligible relative to the total mass of e~*4 as r—0. This is exactly parallel to the
idea of the Folner condition for foliations (cf. [48], [79]), and should be compared to
Ocneanu’s construction of Félner sets for G when L*(G) is given a co-H-space
structure [68,69]. O

Recall that the densely defined operator D, on the Hilbert space # = L*(E)
extends to #° N = L?(E ®¢") as an essentially self-adjoint operator with pure-point
spectrum by Proposition 7.1. Let P*, respectively P~, denote the projection onto
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the non-negative, respectively negative, eigenspaces of D, in #". Set
(8.13) E=P*—P,

an involution on # ¥. These operators commute with the right G-module action on
A", and hence commute with the operators k¥ for Y e R, (G).

Letg=2r—1>m=dimM. For u=u(g): V- U, considered as a multiplication
operator on # " and y e R (G), set

(8.14) Gy, ¥)=—(=4)7"-& {[6,u][&,u*]} °k} .
Proposition 8.6. The operator (8.14) is trace-class on #N, and
(8.15) Tr[2y (u(e), ¥)1=5/ Dy, & 0, ).

Proof. We first prove that (8.14) is trace-class by restricting to k¥ for ye G, and then
show that (8.14) is equivalent to a y DO of order —q on M, from which the claim
follows from the Sobolev Lemma and standard methods.

With notation as in Sect. 7, the operator D, restricted to L*(E®¢e",y) is
isomorphic to

(8.16) D() @Iy=D, ®V**°*®@F°

acting on C °°(EM®E(A§° o) ®eN) by Proposition 7.5. The conjugate operator
uo D, ou* restricted to L*(E®¢", ) is isomorphic to

(8.17) D))= D, @V @re”

by Proposition 7.10. Both operators (8.16) and (8.17) are elliptic with the same
principal symbols, as they differ only by the choice of a flat connection acting on &".
By ellipticity, all of the opeerators

E() =60k}

E,(x) =uo&ou*okf
P*()=P* ok}
P™()=P~ okj

(8.18)

are pseudo-differential of order 0 on M. Note that & () is the involution associated
to D(y), and &,(x) is the involution associated to D?(y). Thus, &,(x) —&(3) has
order —1 on M, and the same holds for

(8.19) P (0 (60— P (1)

(8.20) P (0 E.0—€E0) P (1).
For the grading of # " induced by &, introduce the matrix notation

4 B, [4a* ¢ 1 o
N T - L P

The identities uu* =Id =u*u imply that
(8.22) AA*+BB*=1d*; CC*+DD*=1d"
(8.23) A*A+C*C=1d*; B*B+D*D=Id".
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In this notation, using (8.22) and (8.23) the operators (8.19) and (8.20) become
(8.24) —2BB*ok}
(8.25) 2CC*ok}

respectively. A symbol calculation as used in the proof of Lemma 6.10 shows that
the Schatten (m+ 1)/2-norms of (8.24) and (8.25) are estimated by a polynomial in
the weight of the character y.

Using the identies (8.22) and (8.23), the operator (8.14) reduces to

(8.26) —{(BB*Y —(CC*)'} ok}
from which the trace class assertion follows using the previous remarks.

Define the difference operator
(8.27) (uoP*ou*—P*)ok¥=K,(3).
By the previous remarks, this is a pseudo-differential operator of order —1 on
C*(Ey ®E(A, > ) ®¢"), hence is compact.

It remains to identify the trace of (8.14) with a discrete spectral flow. Introduce
subspaces

(8.28) {SF* W)= Aur(H#N)”

SF~(w)=(#")" nu*(#")"*

with corresponding orthogonal projections

P} #NSSF* ()
(8.29) {Pu‘ (HNSSF™ (u)
Lemma 8.7.
(8.30) Tr [6, (@), Y)]|=Tr{P; — P} ok}

Proof. Note that the operator
A*=P*oyo Pt oy*o P+

is self-adjoint, is G-invariant as u =u(g) is multiplication by a character of G, and the
restrictions AA4* o k¥ to the range of P* (x) are elliptic. Thus, 44* has pure-point
spectrum, and by (8.22) the same holds for BB*. Similarly, CC* and DD* have
pure-point spectrum.

Let 0%ve# N satisfy BB*v=Jv. For A=1,

(8.31) v=BB*v=P* oyo P  ou*o P*(v)

implies that ve (#")* and u*ve(H#N)", or ve SF~ (). For 0<A<1, calculate
using (8.22) and (8.23),

CC*(CA*v)=C(id*—A*A)A*v
(8.32) =1-(CA*v)

so that C4* maps the range of BB* corresponding to A< 1 onto the range of CC*
with A < 1, with kernel SF ~ (u). The adjoint AC* has kernel SF* (u), so that the trace
of (8.26) is the difference of the traces of P, ok} and P, ok}, proving (8.30). O
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To conclude the proof of Proposition 8.6, we recall the definition of spectral flow
from (§7, [6]) and show that it is equivalent to the right-hand side of (8.30). Let

(8.33) D,(n=t-D°()+(1~1)DQ) ®Iy
=D()®Iy+1t K,(2)

be the family of self-adjoint operators used to define sf(D,,, &, ¢, ) in (8.4). This
family is unitarily conjugate to a smooth family of elliptic differential operators on
C*(Ey ®E(A o) ®¢V), so we can continuously label the eigenvalues

(8.34) {.0sAo1(0), A (2), A, (D),...}
where

4-1(0)<0=40(0)
®39 {ii(O) S4i+1(0)

and the corresponding orthonormal eigenvectors {...,v_,(t),vy(t), v,(¢),...} also
depend continuously on ¢.
Define subsets of the integers,

(8.36) I* () ={iz0]4,(1) <0}
I~ (0 ={i<0]4,(1)20}

The difference in cardinalities,

(8.37) #I"(0—#1" (1)

counts the number of negative eigenvalues of D(y) which turn positive in D?(y),
minus the number of positive eigenvalues which become negative. The sets
{v;(0)|ieI* ()} are clearly bases for the ranges of P; o k*. Thus, we obtain

(8.38) Tr[éy(u(@). V1= aW, D {#I" () — #I" (0}

from (8.30). On the other hand, the discussion of (§ 7, [6]) identifies the negative of
(8.37) with sf(Dy,, &, @, x), which concludes the proof of (8.15). O

For =y €@, the right-hand side of (8.15) is an integer called the essential
codimension of uo & ou* ok} relative to & ck}. This invariant was introduced by
Brown, Douglas and Filmore [14], and rediscovered in a context similar to the
present discussion by Wojciechowski (§4, [90]). Finally, the essential codimension
can be formulated as the integer-valued index for appropriate Kasparov bimodules,
which is the key to the final step in the proof of (8.1).

Let {k,} be the F.A.I. for G constructed from the heat kernels i, =exp(—/"* - 4)
by multiplying with a symmetric cut-off function. Then there exist central functions
Y€ R, (G) so that k,=k,,. Combining Propositions 8.3 and 8.6, and Corollary
6.12, formula (8.1) follows from:

Lemma 8.8.
(8.39) Em y,(e) ™! Tren{€([&, u] [&, u*]) ok}
[ Ead]

=llim Yi(@) ™! Trpan {1, ([T, u] [IT,, u*])" kw:} .
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This is a consequence, in turn, of

Lemma 8.9. For yeG,
(8.40) Troon{8(18, u][6,uM]) ok} = Trun {IT, (UTy. u] [ITy, u*]y o k¥} .

Proof. The two sides of (8.40) are algebraically identical, but differ in the Hilbert
module structure and the choice of involution. The idea of the proof is to identify
each side of (8.40) with the index of a Kasparov bimodule, then show the defining
data for the two bimodules agree modulo compacts, so that they have the same
indices.

Recall the definition of the Hilbert modules over C*(V):

(8.41) {W(1,®IN)—=—L2(EM®8“®E((/1,®1N)°0<))
' H (4, ®0) =L*(Ey ®c* ®E((2,®0)° %))

In the following, let “- denote either the representation (4, ®Iy)oa or
(4, ® ) o a. The module action of C* (M) on # (*) is the natural fiberwise diagonal
action on L?(E,, ® E,,(*)) extended to # () by the rule (3.19) with respect to the
factor &*.

The operators D,, and its “phase” @,, acting on C®(E,,) extend to essentially
self-adjoint operators on C*® (E,, ® E(+)), denoted respectively by D(-) and &(+). To
define these extensions, note that it suffices to do so locally. For a section s sup-
ported in an open set C = M of diameter % - ¢, , we can choose a contractible open set
U containing C so that U contains a } - ¢;-open neighborhood of C. The flat bundle
E(-) has an Hermitian trivialization over U, so that D,, and @,, extend diagonally to
define D(:)(s) and &(-)(s). Their support is again contained in U
by our requirement on the supports of the distributional kernels of D,, and @,
(cf. the detailed construction in Appendix B.) We leave it to the reader to check that
via the isomorphisms of Proposition 7.10, the operators D, and @, restrict to
C*(Ey ®E(")) to give D(-) and &(-), respectively.

Let I1(-) denote the involution of # (-) constructed from & (+) via the 4 x 4 trick
of Sect. 3, with corresponding eigenspace projections IT * (+).

Let P*(-) denote the projections onto the non-negative (respectively, negative)
eigenspaces of D(+), acting densely in L?(E,,; ® E(-)). Define projections on () by

PE() 0 0 0
0 P¥() 0 0
0 0 P*() 0
0 0 0 PE()
and set £(-)=&*()—-& ().
Note that both @(+) and the involution P* (-)— P~ (+) are y DO’s of order 0 with
the same principal symbol. Thus, by formula (3.20) the difference IT(-)—&(-) is a

¥ DO on s#(:) of order —1.
Introduce the C°(M)-module

(8.43) H(Le)=H A, QI DH(4,®0).

Proposition 7.10 implies that multiplication by u=u(g) defines an isomorphism
from # (4, ®Iy) to # (A, ® @). Extend the projections &% (-) and IT* (-) to act on

(8.42) Er=
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the appropriate summands in 3 (y, ¢). Then define
(8.44) To=6"(1,®0)° M,>E" (4, ®Iy)
(8.45) Ti=II1"(4,®@ M, II" (A, ®Iy).

Use the grading ¢, (respectively ¢,) of # (y, ¢) induced by & (respectively IT) to
define for i=0 (respectively i=1)

0o T*
8.46 F.= i
(#40 7 7]
Lemma 8.10. For i=0 and 1, the pair (# (3, 0), F;) determines a Kasparov cycle
(8.47) [ (1, 0), Fil€ Eo(C, C)

and their equivalence classes are equal in KK(C,C)x~Z.

Proof. The self-adjoint involutions & and IT are DO, and their principal symbols
commute with the unitary M,. By standard methods [62] it follows that (8.47) is a
cycle. Moreover, the principal symbols of & and IT agree so that & — IT is a compact
operator, hence (F, — F,) € # (5 (1, 0)) which implies the equality of these cycles in
KK(C,C). O

Finally, to establish (8.40) we remark that the method of proof for Proposition
8.6 also yields (cf. Proposition 5, page 91 and Theorem 5d), page 75 of [30]):

Lemma 8.11. The identification KK(C, C)=Z maps the class of [# (x, 0), F,] to the
left-hand side of (8.40), and maps the class of [# (x, 0), F,] to the right-hand side of
(8.40). O

Appendix A: Classifying spaces and the KK-eta-invariant

In this appendix we discuss the bordism invariance of the longitudinal cyclic Chern
character, and the remark of A. Connes that our main theorem implies there is a
Kasparov KK-class representing the relative eta-invariant. We begin with a
discussion of the topological aspects of flat-bundle classifying spaces. This is
standard material in the foliation literature (cf. pages 58 to 60, [63]). We then discuss
an unstabilized version of the geometric K-homology groups, which has been
further investigated in [55]. Finally, using the Baum-Connes y-map [10] and KK-
pairings, we obtain the promised KK-eta-invariant.

Let G be a connected Lie group, and let G° denote the same group equipped with
the discrete topology. The Milnor join construction for G (cf. [65], [50]) defines a
connected space BG which classifies principal G-bundles. The same construction
applied to G? yields a connected topological space BG® which is a K(G, 1). That is,
n,(BG)=G and n;(BG)=0 for i> 1. The inclusion i : G- G induces a continuous
map Bi: BG?’— BG. As sets, both of these spaces are the same, with the source hav-
Ing a finer topology than the range. One says that this is a space with two topologies
(cf. [66]). The difference in the two topologies is measured by introducing the
homotopy fiber BG. This is defined by first replacing Bi with a homotopy-
equivalent weak fibration over BG, then take for BG (the homotopy class of) the
fiber. The description below of this space is just the first step of the construction of
the Puppe Sequence for Bi (cf. Chapter III, §6, [88]).
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Choose a basepoint * € BG?, and also let * € BG denote its image. The space of
continuous paths in BG with initial point * is denoted by P(BG), where for a path y
the endpoint is denoted e(y) e BG. There is a fibration

(A1) Q(BG)— P(BG)-> BG

where Q(BG) is the space of *-based loops and has the weak-homotopy-type of G.
Define BG via the homotopy pull-back diagram

Q(BG) — Q(BG)

! l

(A2) BG — P(BG)
e

A principal G-bundle, G— P-"> M, over a manifold M is equivalent to giving
an open covering % ={U;|ie 3} of M and for each non-empty intersection, a
continuous map g;;: U;n U;—G satisfying the cocycle law

(A3) gij(rx)'gjk(x)___gik(x) for xeUnU;nU,.

This data defines a continuous map gp: M ~|% |- BG (cf. [50]). If the functions g;;
are locally constant, then gp can be factored through BG? as a continuous map.
A choice of transition functions {g,;} which are locally constant is equivalent to
specifying a flat G-structure on P. Each product U; x G has a G-invariant foliation
by the horizontal slices U, x {g}. The bundle P is obtained from the disjoint union
II U;xG by identifying pairs (x;,g)~(x;,9;;(x;)g) where x;eU; and x;eU;

correspond to the same point x € M. When the functions g,; are locally constant, the
foliations on U; x G are preserved under this identification to yield a foliation &, on
P whose holonomy map «: 7, (M)—G defines the classifying map Bo: M— BG®.
Conversely, given a continuous map Ba : M — BG?, there is induced a represen-
tation a : m, (M) — G and a corresponding flat principal G-bundle, P,= M x G, asin
Sect. 2.
The topological type of the G-bundle P,— M is determined by the composition

(Ad) g.: M2 BG® 2L, BG .

The principal bundle is trivial if and only if g, is homotopic to the constant map
M- », The choice of such a homotopy, say

(AS) {9,,10=121; g, 0(x) =% 9,1 =0}

defines a map g} : M~ P(BG),

(A6) g< () () =4,,x),

and the definition of BG as a pull-back implies there is an induced lift
Ba BG

1

(A7) M — BG’

Ba
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Conversely, a lift B& of Ba in (A7) determines a homotopy {g, ,/0<¢<1} fromg, to
the constant map (directly by the definition of BG!)

One final remark about BG is that a choice of homotopy {g, ,} is equivalent to
specifying a global section of P,. Given a homotopy, for each ¢ there is a canonical
bundle P,— M with Py=M x G and P, = P. Choose a connection on the total bundle
{P,} =M x I, and use the parallel transport over the curves {x} x I'to define s(x) e P,
as the endpoint at r=1 of the horizontal curve starting at {(x, e)} x {0} e P,. The
homotopy class of the section s: M— P, =P is independent of the connection
chosen.

The use of the connection in the above construction avoids the homotopy-
theoretic approach necessary for showing the converse: the space Q(BG) of based
loops is a homotopyequivalent retract of G considered as the canonical paths in the
inclusion of the suspension ZG < BG. A choice of retraction defines a weak-
homotopy equivalence of bundles

G —> Q(BG)

! l

(A8) EG —> P(BG)

l !

BG = BG

A section e, of P,— M isequivalent to specifying e, : M— EG, as P, is the pull-back of
EG via g,. The composition

M-~ EG— P(BG)

induces a section B : M — BG of the pull-back (A2).
The above discussion is the homotopy theoretic basis for writing &= (a, @)
where © : P,~ M x G is the trivialization that induces e, above and hence Ba.
The based loops Q(BG) act naturally on BG via their action on the fiber of
BG— BG®. Given

(A9) Bi:M—-BG and f:M-G~Q(BG)
we can define their product
(A10) Ba’': M— BG x Q(BG)—BG .

In terms of the product structure @, we are composing @ with the gauge auto-
morphism f, : M x G—M x G induced by f. The space of maps {M, G} is called the
gauge group. The countable group

no({M,G})=[M,G]

of pointed homotopy classes then acts on the equivalence classes of trivialized
foliated G-bundles over M. This action has a non-trivial effect on the analytic
Invariants constructed in this paper via spectral flow in the classical sense of [8]. This
is illustrated in an example from [43], which we briefly recall.

Let M=S! with '=Z, choose aeR, and let a:I'->SO(2) also denote the
Iepresentation obtained by sending 1 to the rotation by a«. Then F=Rx S is

abstractly a two-torus, and the role of @ is to provide an explicit realization
VxS§! x §1, under which &, can be assumed sent to the foliation of S* x S* by lines
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of slope . The numbers o and f are related by =« + b, for some integer b. The fiber
preserving automorphism group

[S*, St=Z

is realized in its action on ¥ by the diagonal matrices

{o 1+

acting on R? in the natural way, then passing to the quotient S* x S*. Without fixing
0, the “slope” B is only well-defined modulo Z, while a choice of @ specifies a. All
other choices are obtained from the action of the gauge group. This is the typical
situation for all examples P,— M.

For a topological space X, let QY(X) denote the bordism group of oriented
cycles f: M—X, where M is a closed manifold of dimension m with an almost
complex structure on TM. This determines a SpinC-structure on TM and hence a
(graded, for m even). Dirac operator, ¢ acting on the spinors over M. The
stabilization of QY (X) under “vector-bundle modification” (cf. § 11, [11]) yields the
Baum-Douglas topological K-homology group K{,,(X).

A cycle in QU(BG) is equivalent to specifying a flat principal G-bundle P,— M,
up to bordism of flat G-bundles. The foliation index of a leafwise Dirac operatorisa
bordism invariant, using the cohomological formulation of the index. Thus, by
Theorem 1.1 the relative eta-invariant gives a well-defined pairing for m odd:

(A1) n:QU(BG) x Rep(G)—R.

The invariance of the (odd) chern character under vector bundle modification of a
cycle (M, f) and the cohomological form of the index theorem implies that (A11) is
preserved by stabilization to the group K} (BG).

One application of Theorem 1.1 is that the pairing (A11) is calculated via a von
Neumann index [44], and generalizing this, A. Connes suggested reformulating
(A11) in terms of analytic K-homology (cf. §4, [9]). We first consider a particular
form of this remark. Fix a cycle G— P,— M for QY(BG), with m odd and #, the flat
foliation on P,. The Dirac operator on M lifts to a leafwise geometric operator, @,,
along the leaves of &#,. The construction of Connes-Skandalis [34] yields an odd
KK-class

(A12) [7.€ KK (C°(P,), C*(P,/#,)).

A unitary [u] € K*(G) is pulled-back by the trivialization P,-&» M x G— Uy to give a
class

(A13) [uc @1e KK'(C, C°(P))).
The Kasparov Pairing [62] (cf. Appendix B) defines a class
(A14) -0]m [¢.]e KK°(C, C*(P)
=Ko (CH (P, /7).
Definition A1. The KK-eta-invariant of the cycle (P,—»M, @, D) is the element
(A15) E@u)=[u-0]R[4,]

€Ky (C*(P,/#)). O
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The justification for this definition is that for the trace Tr, on C*(P,/#,)
induced from Haar measure on G, we can calculate the value of Tr,(E(®)) via the
Connes-Skandalis Index Theorem (cf. § 4, [34]). It is seen to be the topological index
side of (1.1), and hence equal to the relative eta-invariant (@, &, ¢) for the trivialized
flat bundle (P,—» M, ©, §) and representation g.

The particular case discussed above generalizes to a universal construction. The
foliation algebra C*(P,/#,) of a cycle in QY(BG) is stably isomorphic to the cross-
product algebra C°(G) xI', and composing with the holonomy induces a map

(A16) hy: C*(Py/F)—>(CO(G) X G) @A .
The induced map on analytic K-homology is denoted 4}, and functoriality yields

Tr, {h}(E(& )} =n(8, 4, 0) .

We thus obtain a universal map, for m odd:

h,QQU(BG)  —Ky(CO(G) xG?)

A17
— {ha(PﬁM, 0,9)=h(E(4 0))

which composes with Tr, to yield the relative eta-invariants of cycles.

Appendix B: Longitudinal index and evaluation of odd degree cocycles

Let ¢q be the odd degree longitudinal cyclic cocycle over C* (V) of Sect. 3. For a
smooth unitary u: V— Uy, set

(B1) co(W)=cq(u, u*,...,u,u*).

We evaluate ¢4 () in terms of the foliation index theorem of Connes, and show that
cp (1) equals the Breuer index of an appropriate Breuer Fredholm operator for the
foliation von Neumann algebra. This will complete the proof of Theorem 4.3.

The first step is to characterize (B1) as the “index” associated to the boundary
map of an extension of C*-algebras. Introduce the field of Hilbert spaces

HN=H#*QCV=L*(E®c* ®cN)
equipped with a scalar action of C°(¥) on #* by (3.18), extended via the diagonal

action on CV. The leafwise DO, II, of (3.20) extends diagonally to s#*V.
Define an extension of C*-algebras

(B2) 0->C*(VI|F)>T 7 SMN,C*(V))-0

where 7 is the subalgebra of bounded operators on the field of Hilbert spaces
H*N generated by C*(V/#) and the leafwise operators of order 0 of the form

(B3) {(T)=I*M,~II"|¢p:V->M(N,C)}.

Of course, IT* =4 (1+IT) denotes the leafwise projections onto the non-negative
eigenspaces of the leafwise operators I1, which forms a projection on V.
The extension (B2) determines a K-theory boundary map

(B4) 0t K*(N)-» Ky (C*(V|F)) .
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Compose (B4) with the foliation trace to obtain
(BS) Pp =Tr, 0% :K*(V)->R.

There is a similar index map, y, , defined using the extension J; generated by
n-=;(1-0).

Proposition B1. For u: V—U(N),
(B6) Y (W)= =7, (U =co().

Proof. Decompose #°*¥ into its +/— eigenspaces for II, then write the multi-
plication operators u and u* in corresponding 2 x 2 matrix form

A B A* C*
= * =
- S |
Note that uu* =u*u=Tis not the identity on #*", due to the peculiar action (3.18)
of functions on J#4, but it is an idempotent. Set
Ti =71 +, 70 I i.
From the definition (3.23) we obtain for g=2/—1,
co() =—Tr,{(BB*)'—(CC*)}}
co(u*)= —Tr,{(C*C)' —(B*B)'}
so that subtracting yields
(B9) 2¢g ()= —Tr,{(BB*)'+(B*B)' - (C*C)' - (CC*)"}.
A modification of Connes’ proof of (Proposition 6, page 88, [30]) shows that the
indices y; ([u]) are calculated by
Y (ul)=Tr, {T*—A4*4) =T+ —44*)"}
e (u)=Tr,{I~ —D*D)'— (I~ —DD*)"}.

(B8) {

(B10)

From u*u=1JT=uu*, we obtain the identities
A*A+C*C=T*=A44* + BB*
D*D+B*B=1"=DD*+CC*

so that (B10) becomes

Bi1 ?; ([u])=Tru{(C*C)‘_(BB*)l}
B {Vu— ([u]) =Tr,{(B*B)! —(CC*)"}

The extensions J; and ,; are inverses in the Kasparov Extension group
(§7, [62]), EL(C(V), C*(V/#)), as Tis an idempotent commuting with the action of
the continuous functions, C(¥), on #*" so we may apply the inverse construction
(cf. page 21, [38]) to I to obtain ;. Thus,

8% ([u)= -0~ ([u) e Ko (C*(V] F))

and so y, ([u])+7, ([u])=0. Subtracting the two lines of (B11) and comparing the
result to (B9) yields (B6). O
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In the above proof we considered the extension (B2) constructed from @ as an
element of Kasparov’s Ext group, E* (C(V), C*(V/#)). There is an isomorphism of
this group with KK*(C(V), C*(V/#)), given by Kasparov (Theorem 1, §7, [62]).
Let [® "] denote the bivariant KK-class corresponding to (B2). Given the leafwise
elliptic order 0 operator @, the construction of Connes and Skandalis (§4, [34])
yields a bivariant class

[@1e KK (C(V), C*(V|F)).

A calculation involving Hilbert bimodules shows that [¢* ]+ [®~]~0 in bivariant
KK-theory, and that [®]~ [® "] —[® ~]. For details of these identifications, see (§ 2,
[45]).

The Kasparov external product defines a pairing
(B12) K' (V)R KK (C(V),C*(VIF ) - K, (C*(V|F)).

In particular, we define via this pairing a KK-theory boundary map

LR [B*1eKo(CHVIF)).
A basic result (Theorem 3, § 7, [62]) identifies the pairing map § * with the boundary

map for the extension (B2), so that d*([u]) =2 ([u]). Then by the KK-foliation
index theorem of Connes and Skandalis, we can identify

(B14) v () =Tr, {3([u))}

with the topological index on the right-hand side of (4.9).

This conclusion can be shown by a direct approach, based on the method of
(§20, [11]). We need only to identify the index of the operator IT* oy IT* in terms
of an element in K,(C*(V/%)).

Let S denote the unit cosphere bundle to the leaves of &, a sphere bundle over
¥V with fiber dimension (m —1). Let E—SZ denote the lift of E— ¥ to S&. For each
(x,&)e S&, the principal symbol 64(x, &) of @ is an involution on the fiber E’(x,,;)
which varies continuously, so defines a continuous direct sum decomposition
E=E* @E~ into +/— eigenspaces. Use the map u to define a new symbol map
o) :SF >GL(E®¢eN) by:

(B13) 0% ([u])

vQu(x)'w, veEl,
VW, veEg

(B15) oy (x, &)@, W)={

Let P be aleafwise y DO of order 0 as in Sect. 3 whose principal symbol is given by
o, . The leafwise operator P is invertible modulo the foliation C*-algebra,
C*(V|F), (cf. Proposition 7.12, [67]). It thus has an “index” defined as an element

Ind(P) e Ko (C*(V]F)).
By abuse of notation, we let [u] ® [@*] also denote Ind (P;"). This is justified by:
Proposition B2.
(B16) Ind(P)=0"([u]).
Proof. Introduce the extension

(B17) 0-C*(V|F)>P, S C(SF)-0
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where 2, denotes the closure of the leafwise, order 0,  DO’s for # (cf. Proposi-
tion 7.16, [67]). The operator P, isalift to &, of the symbol class [6, 1€ K} (SF), so
Ind(P,f)=0]o, ]. Thisindex class can be calculated using any lift of the symbol class
lo].

Consider the leafwise, order 0, y DO for &% defined by

(B18) n*=31+9)

whose principal symbol defines the projection onto E*. By the multiplicative
property of symbols, the operators P, and

(B19) Tr=M*oucll*+1~
both represent lifts of ¢, , so
(B20) Ind(P;)=Ind(T").

Next, note that 0+ ([u])=Ind(T,}), where

(B21)

Tr=MO%"ouoll*
=" DNouo(T-I™).

With the matrix notation of (3.20), consider the extension of @ to

(B22) d=

(== ]
S O O O
oS O O O
S O O O

and let fT* =1 (T+ &) also denote the extension of /T*. Then by (3.21) and (3.22),
we have
I*oDH=T-M=0"

modulo the operators &, L(E*N, #,36, o0) using the notation of Sect. 3. As these
leafwise operators are in C*(V/%), we have from (B21) that

(B23) Ind(T,}))=Ind(flT* ou-f1")
~Ind(T}),
completing the proof of (B16). O

Observe that (4.8) follows by combining (B6) and (B16). To derive (4.9), we
apply Connes’ measured foliation index theorem (cf. [27, 28] or §4, [76]) to the
operator P,” constructed for the proof of (B16). Recall that the symbol of P, is a
smooth map

(B24) of :SF->GL(E®¢e).
Theorem. (Connes).
(B25) Ind,(P;})="Tr,(Ind(P})

=(=1)"WY ch*(0))VTd(F),[C,]>. O
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The Thom isomorphism

(B26) Y H*(V)->H* " 1(SF)
is a module map over H*(V) (cf. §2, [7]), so that
(B27) Y~ (ch* (o) =y ! (ch*(E*) um*ch* [u])

=y 1 (ch*(E))uch*[u].

Substituting (B27) into (B25) then using the intermediate step (B16) we obtain (4.9).

The last result of this appendix equates c4 (1) with the Breuer index of a leafwise
“Toeplitz” operator. For P=D a first order geometric operator on leaves, this is
discussed in detail in (§4, [45]). For our discussion here, we require the mild
hypothesis that P is a leafwise, essentially self-adjoint yy DO of positive order. The
idea of the following is to observe that for an operator X, € 74 with6(X,) =0, , then
the proof of Proposition B2 shows that

(B28) co()=Tr,[Ind(X,)].

We then use the spectral theorem (leafwise for /) and standard local properties of
elliptic y DO’s to construct a family {X,(¢)]0<t=< oo} such that

(B29) X, () is leafwise DO for >0,
(B30) a(X,())=0, for t>0, and

(B31) X,(r) converges strongly to X, (co), which is the Toeplitz operator associated
to the leafwise positive spaces of P and the multiplier u.

By the normality of the foliation trace Tr, and an estimate on the differences
X,(t)— X, ("), we conclude from (B30) and (B31) that
C(b(u) = Indp,(X(w)) s

the latter being the Breuer index of X(co0) with respect to the state Tr, on
W*(VIZ, w.

We require two facts from the theory of elliptic y DO’s. Let %, (R) denote the
algebra of bounded Borel functions and 4, (R) the subalgebra of functions with
compact support. For fe %,(R), define f(P) via the spectral theorem.

(B32) For fe %,.(R), f(P) is represented by a smooth distributional kernel k; on
the leaves of #. (Caution: the leafwise kernels k , will a priori only be measurable as
a function of the transverse parameter, and within each leaf k, need not have
compact support around the diagonal.)

(B33) Let f be a smooth function on R such that lim f(x)= +1. Then f(P)isa
leafwise Y DO of order 0 with o(F(P) =09,
Choose a smooth function y such that
+1 for x=1
Yy(x)=4 0 for x=0
—1 for x£ -1

and y is monotone increasing for —1 <x<1. For §>0 let ¢(d) be the leafwise
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“kernel cut-off”” function constructed in the proof of Lemma 3.3. Then for s, £ > O set
(B34) D, )=q(s) (- P).

From (B33) and the proof of Lemma 3.3, &(s,¢) is a leafwise DO with
a(P(s, 1)) =04 and the distributional kernel of @ (s, ) is supported in an s-diameter
tube about the diagonals in the leaves of &. Introduce

(B35) M, 0=LU+D(s,1))

(B36) X, (5, 0)=M%(s,t)ouc I+ (s,0)+ 11 (s,1).
Then each I1% (s,t)e T4 and a(X,(s,1)) =04, so that

(B.37) ce(u)="Tr,[Ind (X, (s, 1))].

It remains to show that

(B38) ltim X, (5,0)=X(0)

and the convergence is Cauchy in the Tr, norm. We gather into a Lemma the facts
needed to prove these claims.

Lemma B3.

a) For fe %, (R), |Tr, f(P)|<©

b) For f, g #,.(R) with 0 <f<g and u is a non-negative transverse measure, then
0=Tr,f(P)STr,g(P).

c) Let{f,In=1,2,...} =B, (R)satisfy 0=, ,; <f, and lim f,(x)=0 for all x. Then

n— oo

lim Tr,f,(P)=0.

n— oo

Proof. a) We can assume that >0, so that f(P)=[f"?(P)]>. Then by (Theorem
1.10, [67]) and (B32) we conclude that f(P)islocally traceable. As V'is compact and
P depends continuously on the transverse parameter, the local traces are bounded
Borel functions of the transverse parameter and hence Tr, f (P) exists and is finite.

b) f=0 implies that f(P) is a non-negative operator by the spectral theorem,
and hence has positive local traces. Apply this remark to f, g and (g —f) to obtain b).

c) Let k, denote the leafwise kernel for f,(P). As the f, are non-negative, the
local traces are determined by the restrictions of the &, to the diagonal, hence they
are monotonically decreasing. Using the Gérdings inequality and the Sobolev
lemma, we can conclude k,—0 so that the result follows from the Dominated
Convergence Theorem. [

Returning to the proof of (B38), note that the family
Y@1Y )=y x)—y( x)

satisfies Lemma B3 c) for ¢ fixed and t'—o0. As u is a bounded multiplication
operator, we obtain that the family {X,(s, t)|¢> 0}, is Cauchy in the strong topology
and in the Tr,-norm (cf. Lemma 1.2, [75]).

Finally, for ¢> T uniformly large, the differences ®(s, t) — @ (s’, t) for s,5'>S
large are represented by smooth kernels on leaves, which vanish in the diameter
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S-tubes around the leaf diagonals. The spectral theorem and the Sobolev lemma,
along with (Proposition 5.8, [78]) imply that these smooth kernels are uniformly
locally trace class, hence Cauchy in the Tr,-norm for S large. (As a hint to the
reader, we remark that we must allow the value of S to depend upon ¢, since P is not
differential, its support increases in size as we take powers P'.)

It is then standard, given (B38), that Ind,(X(c0)) exists and is the limit of the
right-hand side of (B37). More details for the case P=¢ are given in [45].

Appendix C: Some uniform eigenvalue estimates

Let M denote a compact Riemannian manifold. For this appendix, we consider D, a
first order, essentially self-adjoint elliptic y DO acting on the smooth sections
C*®(E) of an Hermitian vector bundle E—M. Under a mild hypothesis on the
support of D, for each representation f: I' ==, (M)— Uy we can form the extended
operator D ® I, on E® E(B). Introduce the spectral counting function

B

(C1) E(D, B, A)=dim span {eigenvectors of D ® I,
B

with eigenvalue of modulus <A1}.

In this appendix, we adopt the method of Allard (cf. pages 78-79, [47]) to give an
elementary uniform estimate on this function which is linear in N, and then derive
two important consequences.

Proposition C1. There exists a constant c(D), depending only on D and the Hermitian
structure on E and TM, such that

(C2) E(D,B,A))<N-c(D)-(1+4)*
where d is the least integer with d>dim M)2.

Proof. First we explain the mild hypothesis on D that is required. Fix a good, finite
cover of M by open coordinate charts which are geodesically convex, and thus their
multiple intersections are all contractible. Let ¢, be the Lebesgue number for this
cover. Then we assume that D is represented by a distributional kernel whose
support is contained in an g&,/4d-neighborhood of the diagonal in M x M.

The method of the proof'is to adapt the estimate in Lemma 1.6.3 of [47], based
on Allard’s Trick, to an operator coupled to a flat bundle. For completeness, we
reprove this result in our context, and indicate the one nuance needed to obtain a
bound linear in the dimension N.

Replace D with the power P=D This will have support in an g,/4-neigh-
borhood of the diagonal. Choose a parametrix Q for P as in Sect. 3 such that Q has
kernel supported in an ¢,/2-neighborhood, and (PQ —I), (QP —I) are smoothing.

For a flat bundle E(8)—M, both P and Q admit canonical extensions to
operators on the sections of E®E(B)—»M. There are two ways to define
these extensions, and they are easily seen to be equivalent. First, a section

¢e C*(E® E(B)) can be written ¢ = z ©;, where each ¢; has support in a closed

set of diameter at most &,/4. For each J choose an open set in the cover, U,
Containing an g,/2-neighborhood of the support of ¢;, and a trivialization
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E(B)ly,2 U, x C"
compatible with the flat Hermitian structure. Then define P®Iy(¢;) and
B

o ® Iy(o;) to be the sections over U;, obtained by applying the kernels of Pand Q to

the components of ¢;=(¢},.. ,<PN)
For the second definition of P ®IN and Q ®IN, identify the lift of E(f) to M

(C3) E(B)=MxCN

so that the I'-covering action on E?E) is transformed into the diagonal action on A
x CN. The contractibility of g,-balls in M implies there is a covering map

N(go/2, 4)"> N(&/2, 4)

from the &,/2-neighborhood of the diagonal 4 = M x M to the &,/2-neighborhood
of Ac M x M. Use this covering map to lift the distributional kernels of P and Q
to kernels on A1 x M, defining operators P and 0 on C®(E), where E— i1 is the
lift of E—M. These operators extend naturally to C °°(E ®CN ), and via the
isomorphism (C3) define I'-equivariant operators on C”L@ E(B)). For a section

eC*®(E®E(p)), we lift it to a section ge C*(E®E(B)), and observe that
%@IN((/)) and Q ®Iy(p) are I-invariant, so descend to sections denoted by
P®IN((p) and Q ®I ~(®). The reader can easily check that this definition agrees

w1th the previous one
Let ¢ C*(E® E(B)) be an eigenfunction of P®Iy. The lift ¢ is an

. 8
eigenfunction for P ® I, on M, so in particular each of the component functions ¢
in g=(@',..., #") is an eigenfunction of P. Thus, the second description of P ® Iy

realizes eigenfunctions of this operator as N (generalized) eigenfunctions for th::9 lift
of Pto M
As the bundle E is considered as part of the “fixed” data, we can without loss
reduce to the case where P and Q act on C* (M) via the method of (page 45, [47]).
For fe C*(M), let

Ifleo,0=sup |/ (%)
xeM

|fla =d—Sobolev L*-norm

For our choice of d, we have

Sobolev Lemma. There exists a constant ¢, such that for all fe C*(M),

(C4) flw,0S €1 1fla-

From general elliptic theory we obtain a constant c, such that for fe C*(M),
(C5) 1Oflasc2 " 1flo
(C6) (@P-1d)fl,=c; |flo

where we use that (QP—1d) and Q are Yy DO’s with order <d. Finally, we need:
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Gardings Inequality. There exists a constant c, such that for all fe C*(M)

(&) Iflo+Pfloscs | fla-
Also note that (C5) and (C6) yield a converse estimate to (C7),
(C8) Ifla=(QP—1d) f1,+|QPf 1,

¢ (flo+1Pflo).

With these preliminaries, we can now give the proof of the proposition. Fix
a=0,and let {¢;,..., ¢, } be an orthonormal set in C* (M, E(f)) which are eigen-
functions for P ® I, having eigenvalues

B

n(a)-—
For feSpan{¢,,..., ¢}, the estimates (C4) to (C8) yield
(C9) flooSer IflaSca(1+a)lflo

where ¢, =c¢, ¢,. For any set of constants {c}|1 <j<n(a)}, where the dependence on
will be made explicit in a moment, (C9) implies

n(a) n(a)
(C10) PIRAR 69! ES DI Y
j=1 j=1 ©,0
n(a)
<c(+a)|Y d
j=1

n(a) 1/2
=c,(1 +a)|: Y (cj)z:l .
i=1
Let xe U;, and use the Hermitian trivialization of E(f)|y, to express in coordinates

¢;=(9j,....87).

As the local trivialization is fiberwise Hermitian, we obtain by (C10) the pointwise
estimate, for each 1 </<N,

n(a)

2 ¢ i)

j=1

(C11)

n(a) 1/2
<c,( +a)|: y (cj)2:| .

Fix x and set ¢} =¢}(x), so that (C11) yields the pointwise estimate

n(a) n(a) 2
(C12) ; l$j(x)P<cs(1+a)- [Z I¢,(x)lz]

hence

n(a)

(C13) Y iR sci(1+a).
j=1
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Now sum (C13) over / and integrate over x to obtain

n(a)
(C149 n@=[ Y |o;x|?
M j=1

SN-cZ(1+a)* vol(M).
Substitute a=A"*! to obtain
E(D,B,A)=N-c(D)-(1+21)*

for a new constant ¢(D) depending only on c,, vol(M) and the dimension m
of M. 0O

We draw two corollaries of the estimate (C2). First, introduce the “estimated
eigenvalues” for D® Iy :
I

(C15) {/%* =fy1(n), n>N-c(D)

A¥=0 for 0Zn<N-c(D)
where fy(x)=N-c(D)-(1+x)*%
Lemma C2. Order the eigenvalues of D ® I :

: ]

SA,SA <O0=4hsSA4E.
Then

A=A, n=0,1,2,...
(C16) {,1_,;—/1;:, n=1,2,...

Proof. The function fy(x) is monotone increasing for x>0, so that (C16) for
n> N-c(D) follows from the estimate based on (C2),

néE(D7ﬁ7 in).S_.fN(A'n)
For n< — N -¢(D) a similar estimate holds. (C16) is evident for |n|<N-c(D). O
Taking N=1, we define

(C17) {un =fi '), n>c(D)

Hn=0, n=c(D).
2
Introduce the heat operator exp(—— t {D ®IN} ) on the Hilbert space
B
Hy=L*(EQE(p)).
Corollary C3. For any representation .- Uy,

\ 2 ©
(C18) Tr,[,,;7 {exp(..t.{l)@IN} )}éZN Z o tm?
B

n=0

Proof. The left-hand side of (C18) is estimated by

(C19) Y e g2 Y ont0M?
neZ n=0
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so that (C18) follows from (C19) and the observations that f; (x) is monotone for
x>0, and
A¥=f"*(n/N) for n>N-c(D). O

The estimate (C18) is a weak (global) form of Kato’s Inequality for the heat
operators of the Yy DO’s D®Iy. The standard Kato Inequality compares the

2
pointwise trace of the kernel for exp < —t- {D ®IN} ) with ¢ - N - Tr,exp(—tD?),
B

where the trace is pointwise and ¢ is a geometric constant. Integrating the pointwise
trace over M yields (C18), as the {u,} dominate the eigenvalues of D. The pointwise
estimate depends upon the existence of a “Weizenbock Formula” for D @ I, which

requires that D be a geometric operator. The point of the corollary isﬂ that more
standard elliptic estimates suffice to prove the weaker global estimate (C18).

The proof of the Cheeger-Gromov estimate (7.19) depends upon two estimates.
The first is a pointwise estimate for the heat kernel for small ¢. As discussed in (§2,
[71]), this is a consequence of the Bismut-Freed condition

(C20) Ty, exp(—t ‘ {D@IN}>=o(t1/2)
B

for t—0, and the uniformity of the coefficients in an asymptotic expansion. The
second is an estimate of the trace of the heat kernel of D ® I, for = 1 which is linear

in N. This second estimate can be derived from Kato’s ingquality, asin [71], orin the
context of flat bundles, where we apply the Cheeger estimate, from (C18).

We next derive the second Corollary of Proposition C1, which was cited in
Sect. 8. Recall that D, is the densely-defined self-adjoint operator on L2(V, E)
considered in Sect. 8. For each yeG, convolution with the kernel k¥ defines
projection onto the y-subspace of L2(V, E). Moreover, it was proven in Proposi-
tion 7.5 that the restriction Dy, o k¥ is unitarily conjugate to D (? Iy where =1, 0a.

For a bounded measurable real function § on R, the analysis of y(Dg)°k} thus
reduces to that of y (DM ®IN>.
]
Introduce the functions

>
sign(x)={+1’ x20

-1, x<0

+1, xz=1
-1, x=-1

p(x)= - -
monotone ncreasing

for —1<x<1
@.()=0(t/e)
1, &=12
0, ¢21

monotone decreasing
for 12<¢é<1

v()=
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and introduce ¢, ; characterized by its Fourier transform
o5 (€)= 3(E) Y (&)s) .
The corresponding operators are
& =sign(Dy)
®,=¢.(Dy)
P, =¢.,(Dy).

Lemma C4. There exist estimates
(C21) Trypl(€ — D) o kF|SN(y) - c(D) - (1+e)*
(C22) Trel(P,— D, Jokf|=N(x)-c(D)-0o(1)s).

Proof. (C21) follows from noting that |§#— @, is dominated by the spectral
projection of Dy, in the interval (—¢, ¢) and then applying (C2). The second estimate
follows from observing that |, — @, /| tends to zero in the Schwartz space topology
as s— 00, so the polynomial bound of (C2) implies the uniform bound (C22). O

Corollary C5. For G compact,
(C23) Y@ Trel(6 — D) ok}l <c(D)- (1 +¢)*

(C29) V(@) Trel(@,— P, o kf|=0(1/s)
uniformly in Y € R (G).

Appendix D. Remarks on the development of von Neumann index and eta invariants

In the mid 1970’s, Atiyah, Patodi and Singer introduced and studied, in a series of
papers [3, 4, 5, 6], a new invariant for a self-adjoint elliptic differential operator D on
an odd dimensional manifold M, the eta-invariant #(D). This real-valued invariant
measures, in principle, the positive versus negative spectral asymmetry of D. It
represents a regularized signature which generalizes the signature of a self-adjoint
linear transformation on a finite vector space.

Among the many remarkable properties of (D) is that if one is given a smooth
family of operators, {D,|0 <t <1}, the values n(D,) depend piecewise smoothly on z,
and there is a well-defined continuous derivative 7 (D,). The relative eta-invariant of
the family is defined to be the integral

1
(D1) n({Dz|0§t§1})=£ ni(Dy)dt,

The original philosophy of Atiyah, Patodi and Singer was that there exists a closed
1-form, 1, on the space of self-adjoint Fredholm operators, and the invariant (D1) is
just the path integral of #j over the path determined by {D,|0<<1}. Recently, this
has been made precise by the work of Bismut and Freed [13].

The derivative, #(D,), has a local expression in terms of the complete symbol of
D, (cf. Lemma 1.10.2, [47]). For example, given a complex vector bubdle E— M with
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two flat Hermitian connections F°, P!, we can use these to define essentially self-
adjoint differential operators

Dy=D®V°, D,=D®V!

which are homotopic, and let #(D, V°, ') denote the corresponding relative eta-
invariant. Then the local expression for #(D,) involves the transgression forms
comparing V° and V!, and the resulting topological formula (cf. Theorem 4.4.6,
[47:

(D2) nD,vo,rYH)=(-1" [ Td(M)-ch(D) Tch(V*,V°)
S(T*M)

resembles the usual Chern character of an elliptic operator. However, there is an
additional factor in the integrand, Tch(F!, °), which is a transgression form
representing the “real-K'-theory” data defined by a bundle with two flat Hermitian
connections (cf. § 7, [6]).

A self-adjoint Fredholm operator on a Hilbert space has index zero. However, it
was realized by Baum and Douglas [11] and Kasparov [62] in the late 1970’s that if
this operator arises from an elliptic differential operator on a compact manifoid,
then it still can yield analytic index invariants by appropriately coupling it to unitary
multipliers to obtain nonself-adjoint Fredholm operators, whose indices are
topological invariants. The pairing is realized by taking the integer index of the
compression of the multiplier to the positive eigenspan of the operator, a construc-
tion that directly generalizes the classical construction of Toeplitz operators on the
circle. The Kasparov reformulation of this pairing, which was used in Sect. 8 and
Appendix B above, is not quite as explicit, but allows much greater freedom in the
choice of the defining data (cf. also [51]).

Also in the late 1970’s, the L2-index theorem for infinite coverings of Atiyah [2]
and Singer [82] was extended by A. Connes to the far more general case of a foliated
manifold (¥, #) with a holonomy invariant, transverse measure u. A leafwise-
elliptic, leafwise-iy DO for & then has a p-index, and the measured foliation index
theorem (cf. [27, 28]) gives a topological formula for the index.

Connes’ foliation index theorem is a very broad extension of the remarkable
theory for quasi-periodic operators developed by Coburn, Douglas, Moyer, Singer
and Schaffer [23, 24, 25]. In part of their work, a real-valued Breuer index in a von
Neumann algebra was defined for these operators. This index theory was
subsequently developed extensively by Subin (cf. [85]). The other part of their work
concerned how the index problem can be represented on the Bohr compactification
of the quasi-periodic symbol data. Here, the index is realized in terms of generalized
(i.e., not L?) eigenfunctions of the operator. This second part of their program was
not considered by Connes, but manifests itself in our study of the transverse index
theory in Sect. 5 and Sect. 6 above.

In the context of a foliated manifold (V, &), a leafwise-elliptic, self-adjoint,
leafwise y DO for & determines on each leaf of & a closed subspace of the Hilbert
space domain of the operator, consisting of the non-negative range of the operator.
A smooth map u: V- U, determines a unitary multiplier on each of these leaf
Hilbert spaces, and its compression to the non-negative subspace yields a Breuer
Fredholm operator, which has real-valued Breuer index calculated by Connes’
foliation index theorem. This construction, which is behind the development of
Sect. 3 and Appendix B, generalizes the Toeplitz operators obtained by compress-
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ing a quasi-periodic unitary character on R to the Hardy space in L?(R). The
topological index of these foliation Toeplitz operators are characteristic classes of
the pair (&, p), of the type called “u-classes™ in [52].

For a foliation defined by a minimal flow, Curto, Muhly and Xia [35] made a
comprehensive study of the operator and index theoretic aspects of the above
Toeplitz construction. For foliations with higher dimensional leaves, a study of the
“extension problem” arising from the compressed operators was made in [45], while
[53, 55] investigated further aspects of their index theory.

From the above discussion, the reader will see that many aspects of index theory
from the 1970’s have been incorporated into the present monograph. The original
version of our main Theorem 1.2, announced in [42], required that I' ==, (M) be an
amenable group. This reflected the authors’ dedication to the program of [23, 24].
The subsequent work of J. Roe [76] provided an alternate approach that is heavily
represented in the present treatment.

To conclude our brief history of the index developments from the 1970’s which
are incorporated in this work, we must mention the transverse index theory of
Atiyah and Singer. This theory, introduced in [1] and [81], was extended by Connes
to be a special case of cyclic cocycles constructed from transversally elliptic
operators (cf. § 8, [30]). The self-adjoint version of this theory is developed in [54].
Finally, we note that the outstanding open problem in transverse index theory is to
obtain an “index theorem” for transversely elliptic operators that equates the
distributional index to an explicit topological formula.

Note: This has recently been solved by M. Vergne [9].
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