
Rigidity for Cartan Actions of Higher Rank Lattices

S. Hurder∗

Department of Mathematics (m/c 249)
University of Illinois at Chicago

P. O. Box 4348
Chicago, IL 60680

A. Katok†

Department of Mathematics
Pennsylvania State University

University Park, PA 16802

J. Lewis‡

Mathematical Sciences Research Institute
1000 Centennial Drive

Berkeley, CA 94720

R. J. Zimmer§

Department of Mathematics
University of Chicago

Chicago, IL 60637

June 1, 1991
Revised: October 26, 1991

∗Supported in part by NSF Grants DMS 89-02960 and DMS 91-03297
†Supported in part by NSF Grant DMS 90-17995
‡Supported in part by an NSF Postdoctoral Fellowship
§Supported in part by NSF Grant DMS

i



1 Introduction

The natural action of the determinant-one, integer n × n matrices SL(n,Z) on Rn preserves the
integer lattice Zn, hence for each subgroup Γ ⊂ SL(n,Z) there is an induced “standard action” on
the quotient n-torus, ϕ : Γ × Tn → Tn. It is a basic question whether for every Anosov action of a
higher rank lattice Γ, is there a subgroup of finite index Γ′ ⊂ Γ so that the restricted action to Γ′ is
smoothly conjugate to a standard linear action (cf. [27, 28, 6])? Such a conclusion would be a type of
non-linear version of the Margulis arithmeticity theorem for lattices.

In this paper the authors prove that volume-preserving Cartan actions of a higher rank lattice must
be smoothly conjugate to an affine action. We also prove that a perturbation of a volume-preserving
Cartan action preserves a smooth volume form, so the hypotheses of our main theorem are stable
under perturbation. The standard actions for many subgroups of SL(n,Z) are Cartan (cf. Example 1
below), so these results imply their smooth rigidity under C1-perturbations.

A finitely-generated group Γ is a said to be a higher rank lattice if Γ is a discrete subgroup of a
connected semi-simple algebraic R-group G, with the R-split rank of each factor of G at least 2, G
has finite center and G0

R has no compact factors, so that G/Γ has finite volume.
A Cr-action ϕ : Γ × X → X of a group Γ on a compact manifold X is said to be Anosov (cf.

[9, 7]) if there exists at least one element, γh ∈ Γ, such that ϕ(γh) is an Anosov diffeomorphism of X
(cf. [1, 23]). We then say that γ is hyperbolic for the action. (Recall that for the standard action of
a subgroup Γ ⊂ SL(n,Z) on the torus Tn, the action of γ ∈ SL(n,Z) is Anosov exactly when γ is a
hyperbolic matrix; that is, one with no eigenvalues on the unit circle.)

A Cr-action ϕ : Γ × X → X is said to be Cartan (cf. [9]) if there exists an abelian subgroup
A ⊂ Γ generated (not necessarily freely!) by ∆ = {γ1, . . . , γn} ⊂ Γ, such that each ϕ(γi) is an Anosov
diffeomorphism of X, and the strongest stable foliations of the diffeomeorphisms {ϕ(γ1), . . . , ϕ(γn)}
form a trellis for X. (See section 2 for further details.)

THEOREM 1 Let ϕ : Γ×Tn → Tn be a Cartan Cr-action on the n-torus Tn, for r = 1,∞ or r = ω
in the real analytic case. Suppose that Γ is a higher rank lattice and the subgroup A ⊂ Γ generated
by ∆ is a cocompact lattice in a maximal R-split torus in G. If the action ϕ preserves an absolutely
continuous probability measure on Tn, then ϕ is Cr-conjugate to an affine action.

Our second result states that the volume-preserving hypothesis is stable under C1-perturbation,
with the weaker hypothesis that the action is Anosov:

THEOREM 2 Let ϕ : Γ × X → X be an Anosov Cr-action on a compact n-manifold X without
boundary, for r = 1,∞ or ω. Suppose that Γ satisfies Kazhdan’s property T, and the action ϕ preserves
an absolutely continuous probability measure on X. Then there exists ε > 0 so that if ϕ1 is ε-C1-close
to ϕ, then ϕ1 also preserves a Cr-volume form on X.

Proposition 2.17 of [9] proved that the Cartan condition is stable under C1-perturbations, and D.
Stowe’s Theorem A, [24] implies that the origin is a stable fixed-point for the standard action of a
higher rank lattice. So together with Theorems 1 and 2 we obtain:

COROLLARY 1 Let ϕ : Γ × Tn → Tn be a Cartan Cr-action on the n-torus Tn, for r = 1,∞
or r = ω in the real analytic case. Suppose that Γ is a higher rank lattice and the subgroup A ⊂ Γ
generated by the ∆ is a cocompact lattice in a maximal R-split torus in G. If the action ϕ preserves
an absolutely-continuous probability measure on Tn, then there exists ε > 0 so that if ϕ1 is ε-C1-close
to ϕ, then ϕ1 is Cr-conjugate to the action ϕ.
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The section 7 of examples in [9] gives an extensive list of higher rank lattice groups whose standard
actions on Tn are Cartan, and examples of affine, non-standard Cartan actions are given in [8]. We
extract a short list of these groups to illustrate the corollary.

EXAMPLE 1 Let ϕ : Γ×Tn → Tn be a standard action, and suppose that either:

1. Γ ⊂ SL(n,Z) is a subgroup of finite index for n ≥ 3; or

2. Γ ⊂ Sp(n,Z) ⊂ SL(2n,Z) is a subgroup of finite index of the group of integer symplectic matrices
Sp(n,Z), for n ≥ 2; or

3. Γ ∼= Γ0× · · ·Γd ⊂ SL(n,R), where each factor group Γi satisfies one of the two above cases, and
Γ contains a hyperbolic element.

Then ϕ is Cr-rigid for r = 1,∞ and for r = ω.

The development of the rigidity theory for lattice actions on tori began with work of R. Zimmer
[29], who proved infinitesimal rigidity for ergodic actions on locally homogeneous spaces by higher-
rank, cocompact lattices (cf. also [27, 28].) The Thesis of J. Lewis [13] showed that for n ≥ 7, the
standard action of SL(n,Z) on Tn is infinitesimally rigid.

Rigidity of lattice actions under continuous deformation was proved next by S. Hurder in [7, 9].
This work also established that abelian “Cartan” actions with constant exponents are affine (see
Theorem 4 below) - a key step in the proof of Theorem 1 above.

A. Katok and J. Lewis proved in [12] that the standard action of a subgroup Γ ⊂ SL(n,Z) of finite
index is rigid for real rank at least 3, or n ≥ 4. Their methods also extend to cover the case of actions
of the finite-index symplectic lattices in Sp(2n,Z) for n ≥ 2.

J. Lewis and R. Zimmer announced in [31], among other rigidity results, that the cocycle super-
rigidity theorem ([25], and also Theorem 5.2.5 of [26]) and techniques of Anosov diffeomorphisms yields
the C∞-rigidity of the standard action of Γ ⊂ SL(n,Z) on Tn for n ≥ 3.

The principal idea of this paper is that by combining the super-rigidity theorem of Zimmer, with
the classification of Cartan actions in terms of their exponents from [9], one obtains an invariant affine
structure for the action of a higher rank lattice, and hence a classification of such actions. The greater
program is to use the combinations of techniques from differentiable dynamics with the algebraic
techniques inherent in super-rigidity theory to produce global rigidity for lattice actions on manifolds.
For further results in this direction, see the papers [8, 10, 11].

2 Preliminaries

Let Γ be a finitely-generated group, and choose a set of generators {δ1, . . . , δd}. Let X be a compact
Riemannian manifold of dimension n without boundary. ϕ : Γ×X → X will denote a Cr-action of Γ
on X. We will assume either that r = 1 or ∞ for a differentiable action, or set r = ω if the action is
real analytic. All of the results of this paper have counterparts for Cr-actions with 1 < r < ∞, with
an appropriate loss of differentiability due to Sobolev regularity theory. For reasons of exposition we
omit discussion of the intermediate differentiability cases.

Recall first the definition of the C1-topology on the space of Cr-actions on X. Given ε > 0, two
Cr-actions ϕ0, ϕ1 : Γ×X → X are ε-C1-close if for each generator δi of Γ, the diffeomorphism ϕ0(δi)
of X is ε-close to ϕ1(δi) in the uniform C1-topology on maps. The ε-C1-ball about ϕ is the set of all
Cr-actions ϕ1 which are ε-C1-close to ϕ.
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Given ε > 0, an ε-C1–perturbation of ϕ is a Cr-action ϕ1 : Γ ×X → X with ϕ1 contained in the
ε-C1-ball about ϕ.

An ε-C1-perturbation {ϕ1} of ϕ is differentiably trivial if there is a Cr-diffeomorphism,
H1 : X → X, such that for each γ ∈ Γ we have

H−1
1 ◦ ϕ1(γ) ◦H1 = ϕ(γ) (1)

When ϕ is an analytic action, there is the corresponding notion of analytically trivial perturbation,
where we require that H1 be an analytic diffeomorphism.

DEFINITION 1 Let ϕ be a Cr-action of Γ on X, for r = 1,∞. We say that ϕ is Cr-rigid if there
exists ε > 0 so that every ε-C1-perturbation of ϕ is differentiably trivial. If ϕ is a Cω-action, then we
say it is Cω-rigid if every analytic ε-C1-perturbation of ϕ is analytically trivial.

Let G be a locally compact group, and π : Γ → U(H) a unitary representation on a separable
Hilbert space H. Given ε > 0 and a compact K ⊂ G, a unit vector ξ ∈ H is (ε,K)-invariant if

sup {||π(g)ξ − ξ|| | g ∈ K} < ε (2)

If we fix a compact K ⊂ G which generates G, then (2) defines the Fell topology on the space of
unitary representations on the fixed Hilbert space H.

We say that π has almost invariant vectors if, for all (ε,K), there exists an (ε,K)-invariant unit
vector. A locally compact group G has Property T if every representation of G which has almost
invariant vectors, has a non-zero invariant vector. G is a Kazhdan group if it has property T.

We need the following consequence of property T (cf. Proposition 16, page 15 of [4]):

PROPOSITION 1 Let Γ be a Kazhdan group generated by a finite set Γ0, and let δ be a number
such that 0 < δ ≤ 2. There exists a number ε > 0 with the property: for every unitary representation
π : Γ→ U(H) on a separable Hilbert space H which possesses a unit vector ξ that is (ε,Γ0)-invariant,
then there exists a π(Γ)-invariant unit vector η ∈ H such that ||η − ξ|| < δ. 2

Let us next introduce some special dynamical properties that we will use in our study of group
actions in this paper. The first is a special property of hyperbolic elements, which corresponds in the
linear case to γ ∈ SL(n,Z) having a unique maximally contracting direction.

DEFINITION 2 An Anosov diffeomorphism f has a one-dimensional strongest stable distribution if
there exists a Df-invariant, 1-dimensional vector subbundle Ess ⊂ E− which satisfies an exponential
dichotomy: that is, there exists

• a Finsler on TX,

• a continuous splitting of the tangent bundle into Df-invariant subbundles, TX ∼= Enss ⊕ Ess,

• constants λ > 1 and 1 > ε > 0

such that for all positive integers m,

‖ D(fm)(v) ‖ > (λ− ε)−m· ‖ v ‖ ; 0 6= v ∈ Enss (3)
‖ D(fm)(v) ‖ < (λ+ ε)−m· ‖ v ‖ ; 0 6= v ∈ Ess.
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The strongest stable distribution Ess is necessarily integrable, and the leaves of the resulting
foliation Fss are Cr-immersed 1-dimensional submanifolds (cf. [5, 3]). While the foliation Fss need
not even be C1, the immersions of its leaves vary Hölder continuously in the Cr-topology on immersions
into X (cf. [op cit]).

The 1-dimensional foliations associated to a collection of Anosov diffeomorphisms f with one-
dimensional strongest stable distributions, are used to construct a very special additional geometric
structure on X, a trellis, which is the technical key to obtaining the differentiable regularity results of
[9] and the results of this paper.

DEFINITION 3 Let X be a compact smooth n-manifold without boundary.
Let 1 ≤ r ≤ ∞, or r = ω for the real analytic case. A Cr-trellis T on X is a collection of 1-dimensional,
pairwise-transverse foliations {Fi|1 ≤ i ≤ n} of X such that

1. The tangential distributions have internal direct sum TF1 ⊕ · · · ⊕ TFn ∼= TX;

2. For each x ∈ X and 1 ≤ i ≤ n, the leaf Li(x) of Fi through x is a Cr-immersed submanifold of
X;

3. The Cr-immersions Li(x) ↪→ X depend uniformly Hölder continuously on the basepoint x in the
Cr-topology on immersions.

T is a regular Cr-trellis if it also satisfies the additional condition:

4. Each foliation Fi is transversally absolutely continuous, with a quasi-invariant transverse volume
form that depends smoothly on the leaf coordinates.

We now recall the precise defintion of a Cartan action (Definition 2.13, [9]):

DEFINITION 4 Let A be a free abelian group with a given set of generators ∆ = {γ1, . . . , γn}.
(ϕ,∆) is a Cartan Cr-action on the n-manifold X if:

• ϕ : A×X → X a Cr-action on X;

• each γi ∈ ∆ is ϕ-hyperbolic and ϕ(γi) has a 1-dimensional strongest stable foliation Fssi ;

• the tangential distributions Essi = TFssi are pairwise-transverse with their internal direct sum
Ess1 ⊕ · · · ⊕ Essn ∼= TX.

We say that (ϕ,∆) is a maximal Cartan action if ϕ is a Cartan action, and for each 1 ≤ i ≤ n,
the stable foliation Fi of the Anosov diffeomorphism ϕ(γi) is 1-dimensional; hence Fi = Fssi .

We say that (ϕ,∆) is an orientable Cartan action if each trellis foliation Fi is orientable, and the
restricted action of each ϕ(γ) on Fi for γ ∈ ∆ is orientation-preserving.

We recall some useful properties of a Cartan action.
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THEOREM 3 (Theorem 2.16, [9])

1. For a Cartan Cr-action (ϕ,∆), the collection of strongest stable foliations T = {Fss1 , . . . ,Fssn }
is a Cr-trellis on X.

2. For a maximal Cartan Cr-action (ϕ,∆), the collection of stable foliations T = {F1, . . . ,Fn} is
a regular Cr-trellis on X.

3. For a volume-preserving maximal Cartan Cr-action (ϕ,∆) with r ≥ 3, each stable foliation Fi
is transversally C1+α for some 0 < α < 1.

For a non-abelian group action, we set:

DEFINITION 5 Let ϕ : Γ ×X → X be an Anosov Cr-action on a manifold X. We say that ϕ is
a Cartan action if there is a subset of commuting hyperbolic elements ∆ = {γ1, . . . , γn} ⊂ Γ, which
generate an abelian subgroup A, such that the restriction of ϕ to A is a Cartan Cr-action on X. We
call (ϕ|A,∆) the Cartan subaction for ϕ.

The existence of a Cartan subaction for a standard (algebraic) lattice action is easily verified for
latices in semi-simple linear subgroups: The theorem of Prasad and Raghunathan [21] implies that
every such lattice intersects some maximal R-split connected Cartan subgroup in a cocompact abelian
lattice. As all such subgroups are conjugate in a semi-simple Lie group G, so it suffices to consider
the standard R-split diagonal subgroup. Then the Cartan action condition becomes the requirement
that the simultaneous eigenvalue decomposition of this subgroup have 1-dimensional eigenspaces, with
eigenvalues not on the unit circle.

For a Cartan action ϕ, let x ∈ Λ be a periodic point, and let Ax be the isotropy subgroup of x.
The linear isotropy representation

Dxϕ : Ax → GL(TxX)

has image in a maximal diagonal subgroup. The choice of a trellis {Fi} for the action defines a basis
in each tangent space TxX for which the action is diagonal. Introduce the abelian (multiplicative)
diagonal group R+ ⊕ · · · ⊕R+, then we can consider the isotropy representations as homomorphisms
Dxϕ : Ax → λn. A Cartan action is said to have constant exponents if there exist homomorphisms

λi : A → R+ for 1 ≤ i ≤ n

such that for each x ∈ Λ and γ ∈ Ax,

Dxϕ(γ) = λ1(γ)⊕ . . .⊕ λn(γ).

The following result is a key ingredient for the proof of Theorem 1:

THEOREM 4 (Theorem 2.20, [9]) Let (ϕ,∆) be a Cartan Cr-action on the n-torus Tn, for r =
1,∞ or ω. If ϕ has constant exponents, then ϕ is Cr-conjugate to an affine action of A on Tn. Hence,
there is a subgroup of finite index A′ ⊂ A whose action is smoothly conjugate to a standard linear
action.
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3 Proofs of Main Theorems

Let us first give the proof of Theorem 2. We can assume without loss that X is an orientable manifold,
and each ϕ(γ) is orientation preserving.

Ω is an invariant density for the C1-Anosov diffeomorphism ϕ(γh), where γh ∈ Γ is a hyperbolic
element. By the Livsic-Sinai Theorem [15], Ω must be a C1-volume form. The C∞-regularity theorem
(Theorem 1.1, [17]) implies that Ω is a C∞-volume form for r = ∞, and similarly Ω must be Cω for
r = ω by Theorem 1 of [16].

LetH 1
2

denote the Hilbert space of 1
2 -densities on X. The action ϕ induces a unitary representation

ϕ̂ : Γ→ U(H 1
2
), for which the invariant volume form Ω determines a fixed vector Ω̂ ∈ H 1

2
. Fix a finite

set of generators Γ0 for Γ, then give the space of unitary representations on H 1
2

the Fell topology. The
representation ϕ̂ depends continuously on ϕ with respect to the C1-topology on actions, so an ε-C1-
perturbation ϕ1 of the action ϕ determines a nearby representation ϕ̂1. In particular, Ω̂ determines an
(ε,Γ0)-invariant vector for an ε1-C1-perturbation ϕ1 of ϕ. Thus, by Proposition 1 there exists ε1 > 0
so that if ϕ1 is ε1-C1-close to ϕ, then there is a fixed vector Ω̂1 for ϕ1. By the compactness of X, the
vector Ω̂1determines an invariant absolutely continuous measure Ω1 for the action ϕ1, which we can
assume to have mass 1.

Let γh ∈ Γ be a hyperbolic element for ϕ. Choose ε1 > 0 sufficiently small so that every ε1-
C1-perturbation ϕ1 preserves an absolutely continuous measure by the above discussion, and so that
ϕ1(γh) is again Anosov. The measure Ω1 is invariant for the Anosov Cr-diffeomorphism ϕ1(γh), so
again by the Livsic-Sinai Theorem and the Cr-regularity theory, Ω1 is Cr . 2

The proof of Theorem 1 will follow from a sequence of Propositions and Lemmas. Our first
preliminary result combines the Cartan hypotheses with cocycle super-rigidity:

PROPOSITION 2 Let Γ be isomorphic to a higher rank lattice. Suppose that (ϕ,∆) is an orientable
Cartan C1-action of Γ on a Riemannian n-manifold X which preserves a continuous volume-form Ω on
X. Then there exist constants {λ∗1, . . . , λ∗n} and Hölder continuous, integrable vector fields {~v1, . . . , ~vn}
on X so that the integral curves of ~vi are the leaves of the trellis foliation Fi and for each γi ∈ ∆,

Dϕ(γi)(~vi) = λ∗i · ~vi (4)

Proof. For each 1 ≤ i < n, choose a unit vector field ~wi on X tangent to the trellis foliation Fi, hence
~wi is Hölder continuous. Choose the last vector field, ~wn tangent to the trellis foliation Fn so that the
collection {~w1, . . . , ~wn} defines a frame field which has fiber-volume one at every point of X. In other
words, we obtain a Hölder continuous section σ : X → P (X) of the right principal SL(n,R)-bundle
of frames with volume 1 in each fiber of TX.

The C1-action ϕ induces a continuous action on frames Dϕ : Γ×P (X)→ P (X). Define a bounded
continuous cocycle α : Γ×X → SL(n,R) using the cross-section σ and the rule

Dϕ(γ)(σ(x)) = σ(ϕ(γ)(x)) · α(γ, x)t (5)

where α(γ, x)t denotes the transpose of the matrix α(γ, x).

LEMMA 1 For each γ ∈ ∆, the matrix α(γ, x) is diagonal for all x ∈ X.
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Proof. The elements of ∆ commute, so for each γ ∈ ∆, the action ϕ(γ) preserves the trellis foliations
Fj . Hence the differentials Dϕ(γ) map the vector fields ~wj into themselves, which implies that the
matrix α(γ, x) is diagonal. 2

The diagonal entries {µ1(γ, x), . . . , µn(γ, x)} of α(γ, x) define cocycles over the abelian group A
with values in the multiplicative group of positive real numbers R∗. The Lyapunov exponents of the
element γ ∈ Γ,

λj(γ) = lim
p→∞

1
p
· log(µj(γp, x))

where the limit exists for almost every x ∈ X (cf. [20, 22]), and is independent of x by the ergodicity
of the Anosov map ϕ(γ).

The fact that Fi is the strongest stable foliation of ϕ(γ, x) for some γ ∈ ∆ implies the existence of
a real constant ε > 0 and negative constants {λ̃∗1, . . . , λ̃∗n}, and an ordering {γ1, . . . , γn} of the elements
of ∆ so that satisfy the exponential dichotomies:

λi(γi) < λ̃∗i − ε (6)
λj(γi) > λ̃∗i + ε for j 6= i

The estimates (6) imply the “cocycle Schur’s Lemma” for Cartan actions:

LEMMA 2 Let (ϕ,∆) be a Cartan C1-action as above. Let x 7→ E(x) be a measurable field over X
of vector subspaces of constant rank `, with each E(x) ⊂ Rn, such that

E(ϕ(γ)(x)) = E(x) · α(γ, x) for all γ ∈ ∆ and a.e. x ∈ X (7)

Then there exists 1 ≤ i1 < · · · < i` ≤ n so that E(x) is spanned by the constant basis vectors
{~ei1 , . . . , ~ei`} for almost all x ∈ X.

Proof. Let G(n, `) denote the Grassmann manifold of `-planes in Rn. The framing {~w1, . . . , ~wn}
determines a trivialization TX ∼= X ×Rn, so that the measurable field x 7→ E(x) determines a map
Π : X → G(n, `). The cocycle α : A×X → GL(n,R) defines an action Φ of A on the set of measurable
maps Maps(X,G(n, `)) by

Φα : A×Maps(X,G(n, `)) −→ Maps(X,G(n, `)) (8)
(γ · f)(x) = f(ϕ(γ)(x)) · α(γ, x)−1 (9)

where we use the natural action of GL(n,R) on G(n, `)). The hypotheses of the Lemma imply that Π
is invariant for this action.

Lemma 1 and the exponential dichotomies (6) imply that the action of Φα(γi) on the constant maps
in Maps(X,G(n, `)) has two closed invariant connected components, whose union contains the ω-limit
sets of all orbits: the subvariety of Vi ⊂ G(n, `) consisting of `-planes which contain the vector ~ei, and
the subvariety Wi ⊂ G(n, `) consisting of `-planes in the span of the deleted basis {~e1, . . . , ~̂ei, . . . , ~en}.

We now invoke the following elementary observation, which is a much weaker form of one of the
key observations by Margulis used in the proof of super-rigidity:

LEMMA 3 Let (X,µ) be a Borel measure space, equipped with a µ-measure-preserving ergodic action
φ : Z × X → X. Let α : Z × X → GL(n,R) be a cocycle, and consider the induced action Φα :
A ×Maps(X,G(n, `)) → Maps(X,G(n, `)). Let {V1, . . . , Vd} be a finite disjoint collection of closed,
invariant, connected subsets of G(n, `) so that the ω-limit sets of all orbits under Z of the constant
maps in Maps(X,G(n, `)) take values in the union of these sets. Then for any Φ-invariant map
Π ∈ Maps(X,G(n, `)), there exists an index 1 ≤ j ≤ d so that the range of Π is almost everywhere
contained in Vj.
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Proof. We first assert that the range of the map Π must be everywhere contained in the union
V1 ∪ · · · ∪ Vd. For let U be an open subset of G(n, `) such that its closure

U ⊂ G(n, `) \ {V1 ∪ · · · ∪ Vd}

and suppose there exists a set Y ⊂ X with positive measure such that Π(Y ) ⊂ U . Then by ergodicity
of the φ-action, there exists a µ-conull subset Y0 ⊂ Y so that for x ∈ Y0, there exists a sequence of
integers {nx1 , nx2 , . . .} tending to infinity such that φ(nxi )(x) ∈ Y for all i ≥ 1. Hence, Π(φ(nxi )(x)) ∈ U
for all 1 ≥ 1. By the cocycle invariance, this implies that for each x0 ∈ Y0, the ω-set of the orbit of
the constant map x 7→ Π(x0) ∈ G(n, `) contains points in U , contrary to our assumption.

The space X is decomposed into Borel subsets X = X1 ∪ · · · ∪Xd so that Π(Xi) ⊂ Vi. Each Xi is
invariant under φ, as the sets Vi are invariant under the action of α. Ergodicity of the action implies
there exists an index j such that Xj ⊂ X is conull. 2

The proof of Lemma 2 now follows by applying Lemma 3 to the restriction of the action ϕ to the
Z-actions defined by the powers of the elements γi. That is, we take φ(n, x) = ϕ(γni , x), and note that
the ω-limit sets of the orbits of this action are contained in the disjoint subsets Vi and Wi. 2

Note that for each hyperbolic element γh and for any finite covering X ′ → X, the lift of the action
of ϕ(γh) is still Anosov, and hence ergodic. In particular, the full action of Γ′ on X ′ is ergodic for any
subgroup Γ′ ⊂ Γ of finite index which lifts to an action on X ′.

Let H(α) ⊂ SL(n,R) be the algebraic hull of α [26]. Thus, there is a measurable framing σ̃ : X →
P (X) so that the action Dϕ with respect to the framing σ̃ defines a measurable cocycle α̃ : Γ×X →
H(α); but, there is no measurable framing such that Dϕ takes values almost everywhere in a proper
algebraic subgroup of H(α). Introduce the measurable coboundary g̃ : X → SL(n,R) defined by

σ̃(x) = σ(x) · g̃(x)t for all x ∈ X. (10)

and note the coboundary law relating α̃ with α

α̃(γ, x) = g̃(x) · α(γ, x) · g̃(ϕ(γ)(x))−1 (11)

By passing to a finite covering of X, again denoted by X, we can assume that the algebraic hull of
α̃ : Γ×X → SL(n,R) is the Zariski connected component H0 of H (cf. Proposition 9.2.6, [26]).

Write H0 = L0 |×U where L0 is reductive and U is unipotent. The composition of α̃ with projection
of H onto H/([L0, L0] |×U) is into an abelian algebraic group whose algebraic hull is the whole group.
Since Γ has Property T, it follows from Theorem 9.1.1, [26] that H/([L0, L0] |×U) is a compact group,
and hence the center Z(L0) is compact. We then write L0 = SZ(L0), where S is a center-free connected
semi-simple Lie group.

Let L1 × · · · × Ld be the product decomposition of a finite covering of S into simple factors.

LEMMA 4 Each factor Li is a non-compact simple Lie group.

Proof. Let ` ⊂ sl(n,R) be the reductive Lie subalgebra corresponding to the Lie group L ⊂ SL(n,R),
and let ` = `1 ⊕ · · · ⊕ `d be the direct sum decomposition of ` into simple Lie algebra factors, where
`j is the Lie algebra of Lj . There exists an internal direct sum decomposition

Rn ∼= Rn1 ⊕ · · · ⊕Rnd (12)

which completely reduces the action of `; that is, each simple summand `j of ` acts irreducibly on
Rnj , and the other complementary simple summands of ` act trivially on Rnj .
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Suppose that Lj is compact, for some 1 ≤ j ≤ d. The subspace Rnj ⊂ Rn is invariant under
the action of the covering group Lj , hence for a finite extension of the cocycle α̃, the product bundle
X×Rnj → X is invariant under the action of α̃. The conjugate of this constant field by the coboundary
g̃−1 : X → SL(n,R) yields a measurable field Ej satisfying the hypotheses of Lemma 2. Hence, for
some 1 ≤ k ≤ n the vector field ~wk takes values in Ej almost everywhere on X. Recall that ~wk is
the direction of maximal contraction for the action of γk ∈ ∆, and the action of ϕ(γk) on the vector
field ~wk has Lyapunov exponent λk(γk) < 0. On the other hand, our assumption that the restriction
of α̃(γ, x) to Rnj takes values in a compact Lie group implies the action p 7→ α̃(γpk , x) is bounded on
the invariant subspace X ×Rnk . This implies that the cocycle p 7→ α̃(γpk , x) has zero exponent when
restricted to the vector field ~wk. The cocycles p 7→ α̃(γpk , x) and p 7→ α(γpk , x) are cohomologous and
tempered when restricted to the subspace X ×Rnj , so must have the same Lyapunov spectrum there,
which is a contradiction. 2

Let β : Γ×X → S be the composition of α̃ with the projectionH0 → S. Then β has algebraic hull S,
which is a semi-simple Lie group without compact factors. Apply cocycle super-rigidity (Theorem 5.2.5,
[26]) to each of the simple factors of S to obtain, for a subgroup of finite index Γ′ ⊂ Γ, a rational
homomorphism ρ : Γ′ → S defined over R which is cohomologous to β. Note that the resulting
coboundary h̃ : X ′ → SL(n,R) between β and ρ has range contained in the subgroup

SL(n1,R)× · · · × SL(nd,R) ⊂ SL(n,R) (13)

which preserves the internal direct sum (12).
Let α̂ denote the cocycle obtained from conjugating α̃ by h̃, with formula

α̂(γ, x) = h̃(x) · α̃(γ, x) · h̃(ϕ(γ)(x))−1.

LEMMA 5 There is a re-ordering of the decomposition (12) so that with respect to the new basis of
Rn, the subgroup U is contained in the triangular unipotent matrices.

Proof. U is unipotent, so there is a unique maximal flag of subspaces

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fp ⊂ Fp+1 = Rn (14)

which is invariant under the right action of U on Rn, and the induced action of U on each quotient
Fi/Fi−1 is isometric [2, 18]. L normalizes U so the right action of L must also preserve this flag. It
follows that there is a re-ordering of the decomposition (12) so that

Fi = Rn1 ⊕ · · · ⊕Rni (15)

Next note that the action of Li on the quotient Fi/Fi−1 normalizes the induced isometric action
of U on this quotient. As Li is non-compact and acts irreducibly, this implies that U commutes with
Li hence the induced action of U is diagonal. As U is unipotent and connected, it must act trivially
on the quotient Fi/Fi−1, which implies the lemma. 2

Re-order the vector fields {~w1, . . . , ~wn} so that {~w1·g̃t, . . . , ~wn1 ·g̃t} spans F1, {~w1·g̃t, . . . , ~wn1+n2 ·g̃t}
spans F2, and so forth.

In the formation of ρ, we passed to repeated extensions for the action of Γ on X, resulting finally
in an action ϕ′ : Γ′ × X ′ → X ′ where X ′ → X is a finite Galois (normal) covering, and Γ′ ⊂ Γ is
a finite index subgroup. Let α′ : Γ′ ×X ′ → SL(n,R) be the corresponding extension of the cocycle
α. For each element γi ∈ ∆, there is an exponent pi > 0 so that γpii ∈ Γ′. The continuous field of
matrices α(γi, x) has a 1-dimensional maximally contracting distribution spanned by the vector field
~wi, hence α′(γpii , x) also has this property for the lifted vector field ~w′i. Let ~ui = ~w′i · g̃t · h̃t the vector
field obtained by transforming ~w′i first with g̃ and then with h̃.
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LEMMA 6 For each 1 ≤ i ≤ n,

Dϕ(γpii , x)(~ui(x)) = µ(γpii , x) · ~ui(ϕ(γpii )(x)). (16)

Proof.

Dϕ(γpii , x)(~ui(x))
= ~ui(ϕ(γpii )(x)) · α̂(γpii , x)t

=
(
~w′i(ϕ(γpii )(x)) · g̃(ϕ(γpii )(x))t · h̃(ϕ(γpii )(x))t

)
·(

h̃t(ϕ(γ)(x))−1 · g̃t(ϕ(γpii )(x))−1α(γ, x) · g̃(x)t · h̃(x)t
)

= ~w′i(ϕ(γpii )(x)) · α(γ, x) · g̃(x)t · h̃(x)t

= µ(γpii , x) · ~w′i(ϕ(γpii )(x)) · g̃(x)t · h̃(x)t

= µ(γpii , x) · ~ui(ϕ(γpii )(x)) 2

Express the matrix α̂(γpii , x) = ρ(γpii ) · n(γpii , x) in terms of the semi-direct product L0 |×U .

LEMMA 7 For each 1 ≤ i ≤ n,

~ui(ϕ(γpii )(x)) · n(γpii , x)t = ~ui(ϕ(γpii )(x)) (17)

Proof. Each vector field ~w′i takes values in a fixed subspace Ei = Enji for some ji, and by our choices
of coboundaries g̃ and h̃, the field ~ui also takes values in Ei, and hence in the flag subspace Fji . The
matrix n(γpii , x) acts as the identity on each quotient of the flag spaces (14), so that

~ui(ϕ(γpii )(x)) · n(γpii , x)t = ~ui(ϕ(γpii )(x)) + ~εi(ϕ(γpii )(x))

where ~εi is a vector field with values in the flag subspace Fji−1. Suppose that ~εi(ϕ(γpii )(x)) 6= 0, then

~εi(ϕ(γpii )(x)) · ρ(γpii ) ∈ Fji−1

also is not zero. But this contradicts Lemma 6, so ~εi = 0 which implies (17). 2

Combine Lemmas 6 and 7 to obtain

COROLLARY 2 For each 1 ≤ i ≤ n, there exists a constant λ∗i such that µ(γpii , x) = (λ∗i )
pi. 2

We have now established that ~ui is a measurable vector field on X ′ which has a constant exponent
of expansion under the action of the volume-preserving Anosov diffeomorphism ϕ(γpi). The Lyapunov
spectrum of a tempered cocycle over p 7→ ϕ(γp) is independent of cohomology, as long as the resulting
cocycle is tempered. Applying this remark to the restriction of Dϕ(γpi) to the spans of ~w′i and ~ui, we
see that λ∗i must correspond to the exponent of maximal contraction for ϕ(γpi), and hence its direction
field is almost everywhere equal to that of ~w′i. That is, we conclude the dynamically obvious fact that
~ui is almost everywhere tangent to the lifted foliation F ′i on X ′.

In particular, there is a measurable function ci : X ′ → R so that

~ui(x) = exp{ci(x)} · ~w′i(x) a.e. x ∈ X. (18)
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LEMMA 8 There exists a Hölder continuous function c̃i : X ′ → R so that ci(x) = c̃i(x) for almost
every x ∈ X ′.

Proof. Form the cocycle equation

Fi(ϕ(γpi )(x))− Fi(x) = λi(γ
p
i , x)− λ∗i (19)

over the action Z ×X → X induced from the Anosov diffeomorphism ϕ(γpii ). The vector field ~w′i is
Hölder continuous on X ′ so the exponent cocycle λi is also Hölder continuous.

Corollary 2 and Equation (18) imply that the measurable function ci is solves the cohomology
equation (19). The measurable Livsic Theorem (Theorem 9, page 1298 of [14]) implies that there then
exists a unique Hölder continuous function Fi which solves (19), and that any measurable solution
of (19) equals a constant multiple of Fi for a.e. x ∈ X. Thus, there exists a constant Ki so that
ci(x) = Fi(x) +Ki for almost every x ∈ X ′. We set c̃i = Fi +Ki. 2

By Lemma 6, Corollary 2 and Lemma 8 we obtain a collection of Hölder vector fields {~u1, . . . , ~un}
on the covering X ′ which are mapped to constant multiples of themselves under the action of the
Anosov diffeomorphisms {ϕ(γpii ), . . . , ϕ(γpnn )}. Let G be the Galois group of the covering X ′ → X.
The action of G preserves the lifted foliations F ′i and their orientations, and commutes with the lifts
of the action ϕ, so we can average each vector field ~ui over G to obtain a G-invariant vector field ~v′i on
X ′ which satisfies Dϕ(γpii )(~v′i) = λ∗i · ~v′i for 1 ≤ i ≤ n. The vector fields ~v′i descend to vector fields ~vi
on X which then satisfy the conclusion of Proposition 2. 2

The proof of Proposition 2 has essentially linearized the action of the abelian subgroup A, and
almost linearized the full action of the lattice Γ, modulo the unipotent factor U . The next result
uses the full force of the hypotheses of Theorem 1 to eliminate the ambiguity posed by the unipotent
radical.

PROPOSITION 3 The algebraic hull H(α) ⊂ SL(n,R) of α : Γ × X → SL(n,R) is reductive.
That is, the unipotent factor U in the semi-direct product H = L |×U is the trivial group.

Proof. Proposition 2 implies that the cocycle action of the abelian subgroup A generated by ∆ can
be diagonalized by a coboundary taking values in the subgroup L ⊂ H(α). That is, the algebraic hull
of the restricted action ϕ|A is a diagonal subgroup of L. The claim of the proposition will then follow
from the following result extracted from the techniques of the paper [30]:

PROPOSITION 4 Let Γ be a higher rank lattice in a semi-simple connected Lie group G, with
ϕ : Γ × X → X a volume-preserving Anosov action on a compact manifold X. Suppose that β :
Γ × X → H is a cocycle over ϕ, where H is a real algebraic group. Suppose also that there exists
an abelian subgroup A ⊂ Γ which is a cocompact lattice in a maximal R-split torus in G, so that the
restriction of β to the action ϕ : A × X → H takes values in a semi-simple abelian subgroup of H.
Then the algebraic hull H(β) of β is reductive.

Proof. Induce the action of A on X up to an action of Rn by forming the left suspension action

ϕG : G× (G×X)/Γ −→ (G×X)/Γ

Also, consider the induced cocycle

βG : G× (G×X)/Γ −→ H(β)
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and its restriction to βG to Rn. The restricted action ϕG|Rn acts ergodicly on (G×X)/Γ by Moore’s
Ergodicity Theorem (cf. Theorem 2.2.15, [26]), and the algebraic hull of βG|Rn is again diagonal (cf.
proof of Theorem 9.4.14).

As in the proof of Lemma 3.1 of [30], if the unipotent radical Ũ ⊂ H(β) is non-trivial, then we
obtain a nontrivial action of a Levi factor L ⊂ H(β) on a vector space associated to Ũ . We then
note that Lemma 3.3 of [30] applies in the present context, so that this is a contradiction. Hence,
the unipotent radical must be trivial, and the algebraic hull of αG is reductive. This implies in turn
that the restricted cocycle α|Γ also has reductive algebraic hull equal to L (cf. cocycle restriction
technique, proof of Theorem 9.4.14, page 182 [26]), so that U is trivial. 2

We deduce Theorem 1 from Propositions 2 and 3. Take X = Tn, and note first that the given
invariant absolutely-continuous measure must be a Cr-volume form by the first step in the proof of
Theorem 2, where r = 1,∞ or ω.

Let ϕ|A : A × X → X be the Cartan subaction of the given action ϕ. There exists a finite
covering, of order at most 2n, so that the lift of the trellis foliations to X ′ are orientable. There is
then a finite-index subgroup A′ ⊂ A such that the action ϕ|A′ lifts to X ′.

Apply Proposition 2 to obtain a basis {γ1, . . . , γn} of A′ and continuous vector fields {~v1, . . . , ~vn}
on X such that the action of Dϕ(γi) on ~vi is expansion by a constant λ∗i . Thus, the restriction of ϕ|A′
is a Cartan Cr-action by an abelian group, and the action has constant exponents at all periodic orbits.
It then follows that the Cartan action ϕ|A : A×X → X on the base also has constant exponents.

By Theorem 4, there is a Cr-diffeomorphism Φ : X → X such that the conjugate abelian Cartan
action Φ−1 ◦ ϕ|A ◦ Φ is a linear action of A. Define a new action,

ϕ̃ = Φ−1 ◦ ϕ ◦ Φ : Γ×X → X

The proof of Theorem 1 is completed by the

LEMMA 9 ϕ̃ is an affine action.

Proof. Proposition 3 implies that there exists

• a normal subgroup Γ′ ⊂ Γ of finite index

• a finite Galois covering X ′ → X

• a lift ϕ̃′ : Γ′ ×X ′ → X ′ of the action ϕ̃

• measurable vector fields {~w1, . . . , ~wn} on X ′

so that the cocycle Dα̃ with respect to the framing {~w1, . . . , ~wn} is given almost everywhere by the
representation ρ : Γ′ → L ⊂ SL(n,R). The image of the diagonal subgroup A′ in L has uniquely
determined 1-dimensional eigenspaces, so by another application of the Livsic theory and basic linear
algebra, the vector fields ~wi must be the lift of linear vector fields on X. (Recall that the action of
ϕ̃|A′ on X is linear.) Therefore, Dϕ̃ is affine with respect to coordinates lifted from X, and hence the
action of ϕ̃|Γ′ on X is affine.

It remains to establish that ϕ̃(γ) is affine for arbitrary γ ∈ Γ. Note that ϕ(γ) is a C1-conjugacy
between the linear actions on X of the two abelian subgroups of semi-simple matrices, A′ ⊂ Γ′ and
γ−1A′γ ⊂ Γ′. The actions of these groups have unique 1-dimensional strong stable linear foliations,
so ϕ(γ) must conjugate corresponding foliations. It then follows from Taylor’s theorem that ϕ(γ) is
an affine transformation (cf. proof of Proposition 0, [19]). 2
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