AMERICAN MATHEMATICAL SOCIETY Navigate MathSciNet Mathematical Reviews on the Web Jump to Search or Browse Screens

Item: 1 of 1 | <u>Return to headlines</u>

MSN-Support | Help Index

Select alternative format: <u>BibTeX</u> | <u>ASCII</u>

MR1236179 (94g:58165) <u>Hurder, Steven</u> (1-ILCC) Affine Anosov actions.

<u>Michigan Math. J.</u> **40** (1993), <u>no. 3</u>, 561–575. 58F15 (22E40 58F11)

Journal

Doc Deliverv

References: 0

Article

Reference Citations: 3

Review Citations: 0

In this interesting and well-written paper the author deals with affine Anosov actions of "large" discrete groups on tori and compact nilmanifolds. Recall that a compact nilmanifold is a quotient X = N/C of a simply connected nilpotent Lie group N by a lattice $C \subset N$. A diffeomorphism $f: N/C \to N/C$ is said to be affine if there exist elements $\sigma \in Aut(N)$ and $g \in N$ such that $\sigma(C) = C$ and $f = L_g \circ \sigma^*$, where σ^* is the automorphism of N/C induced by σ and L_g is the left translation of N/C by g. The automorphism σ^* is called the linear part of f. A smooth action φ of a group Γ on a manifold X is said to be Anosov if $\varphi(\gamma)$ is an Anosov diffeomorphism of X for some $\gamma \in \Gamma$.

Here the author studies the structure of the set of fixed points and the set $\Lambda(\varphi)$ of periodic points (= points with finite Γ -orbit) for affine Anosov actions. Any Anosov action of $\Gamma = \mathbf{Z}$ on a flat torus has at least one fixed point. However, the author proves that given any Anosov representation $\varphi_0: \mathbf{Z}^m \to \mathrm{SL}(n, \mathbf{Z}), m \geq 2$, there exists an Anosov action φ of some subgroup $\Gamma' \subset \mathbf{Z}^m$ of finite index with linear part φ_0 and no fixed points.

Now let Γ be a higher-rank lattice, viz. a lattice in a connected semisimple Lie group G, where the **R**-rank of each factor of G is at least 2 and G has finite center. Then by a well-known theorem due to Margulis, $H^1(\Gamma, \rho) = 0$ for any finite-dimensional representation ρ of Γ . By making use of this result the author proves that any affine action φ of Γ on a compact nilmanifold X has a dense set $\Lambda(\varphi)$. Meanwhile, for each $n \ge 2$, there exists an Anosov action of some subgroup $\Gamma \subset$ $SL(n, \mathbb{Z})$ of finite index on \mathbb{T}^n with no fixed points.

<u>Reviewed</u> by <u>Alexander Starkov</u>

© Copyright American Mathematical Society 1994, 2004