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In this interesting and well-written paper the author deals with affine Anosov actions of “large”
discrete groups on tori and compact nilmanifolds. Recall that a compact nilmanifold is a quotient
X = N/C of a simply connected nilpotent Lie groupN by a latticeC ⊂ N . A diffeomorphism
f :N/C → N/C is said to be affine if there exist elementsσ ∈ Aut(N) andg ∈ N such that
σ(C) = C andf = Lg ◦ σ∗, whereσ∗ is the automorphism ofN/C induced byσ andLg is the
left translation ofN/C by g. The automorphismσ∗ is called the linear part off . A smooth action
ϕ of a groupΓ on a manifoldX is said to be Anosov ifϕ(γ) is an Anosov diffeomorphism ofX
for someγ ∈ Γ.

Here the author studies the structure of the set of fixed points and the setΛ(ϕ) of periodic points
(= points with finiteΓ-orbit) for affine Anosov actions. Any Anosov action ofΓ = Z on a flat
torus has at least one fixed point. However, the author proves that given any Anosov representation
ϕ0:Zm → SL(n,Z),m≥ 2, there exists an Anosov actionϕ of some subgroupΓ′ ⊂ Zm of finite
index with linear partϕ0 and no fixed points.

Now letΓ be a higher-rank lattice, viz. a lattice in a connected semisimple Lie groupG, where
theR-rank of each factor ofG is at least 2 andG has finite center. Then by a well-known theorem
due to Margulis,H1(Γ, ρ) = 0 for any finite-dimensional representationρ of Γ. By making use
of this result the author proves that any affine actionϕ of Γ on a compact nilmanifoldX has a
dense setΛ(ϕ). Meanwhile, for eachn≥ 2, there exists an Anosov action of some subgroupΓ⊂
SL(n,Z) of finite index onTn with no fixed points.

ReviewedbyAlexander Starkov
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