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1 Introduction

Let F be a smooth foliation on a Riemannian manifold V . A smooth differential form on V is said
to be leafwise harmonic if it is annihilated by the Laplacian acting along the leaves. Let HF denote
the space of leafwise harmonic smooth forms. When F is given by the fibers of a fibration π:V → B
with compact fibers, then a fiberwise Hodge Theorem implies that HF is isomorphic to the space of
sections of a vector bundle H∗(F) → B with fibers isomorphic to H∗(Lx;R) where Lx = π−1(x) is
a typical fiber.

If the curvature term of the Weitzenbock formula for the Riemannian metric restricted to the
leaves is non-negative, then a leafwise harmonic form is also leafwise parallel. This implies that HF

is finite dimensional when there is a dense leaf. The typical example of this observation is for a linear
foliation F of the n-torus with dense leaves, where a standard calculation shows that H∗(V,F) is
finite-dimensional. It has been conjectured that a similar result might hold without assumptions on
the curvature of the leaves, if either the foliation is Riemannian (that is, V admits a Riemannian
metric which is locally projectable along the leaves of F as in a Riemannian submersion) , or totally
geodesic (each leaf must be a totally geodesic submanifold of V ). Such a result would be the analog
of the known finiteness results for the basic and tangential cohomology in ([13, 20, 5]; also, cf. the
appendices by V. Sergiescu and G. Cairns in [25].)

The study of leafwise harmonic forms is motivated in part by the question whether the smooth
(leafwise) foliated cohomology [16, 27] H∗(V,F) can have infinite-dimension for a Riemannian foli-
ation with dense leaves. By the Hodge Theorem for leafwise L2 cohomology, HF canonically injects
into the smooth foliated cohomology H∗(V,F). Thus, if the space of harmonic forms is infinite-
dimensional, then the same is true for H∗(V,F).

The aim of this paper is to give the first examples of Riemannian foliations with dense leaves for
which HF is infinite dimensional. Here is the simplest example:

THEOREM 1.1 Let M be a compact surface of genus g ≥ 2 with fundamental group Γg. Then
for almost all representations α: Γg → Tq, the corresponding suspension foliation Fα has dense
leaves and the space of smooth leafwise-harmonic tangential 1-forms H0,1 on Mα is infinite dimen-
sional. Moreover, for each linear closed u-form ψ on Tq, there is an infinite-dimensional space
ψ ∧H0,1 ⊂ Hu,1 of smooth leafwise harmonic u+ 1 forms.

The proof of this result, given in section 2, involves first constructing leafwise eigen-distributions
on the ambient manifold V , then using a diffusion operator to smooth the eigendistributions.

Our methods are applicable to the more general case of a foliation geometric operator
DF :C∞(E) → C∞(E) acting on the smooth sections of a Hermitian Clifford bundle E → V .
Examples of such include the Euler operator, the signature operator and the Dolbeault operator (cf.
section 3, [12]). Assuming that there is a holonomy invariant, transverse measure µ for F , then DF

admits a unique self-adjoint extension to a densely-defined operator on L2(V,E, µ) and its spectrum
σ(DF , µ) is a closed subset of the real line. The operator DF is not Fredholm in general, so that
σ(DF , µ) consists of a mixture of pure-point spectrum σpp(DF , µ) corresponding to eigensections
in L2(V,E, µ) for DF , and essential spectrum σe(DF , µ) represented by approximate eigenvalues.
It is interesting to relate these spectral quantities σpp(DF , µ) and σe(DF , µ) to the geometry of
the foliation – the pure-point spectrum roughly corresponds to a transversally isometric part of the
foliation, while the continuous spectrum to transverse dynamical mixing (cf. [36]).

PROBLEM 1.2 Find geometric conditions on a foliation F which imply that σpp(DF , µ) is non-
empty with eigenvalues of infinite multiplicity. Given λ ∈ σpp(DF , µ), when is its eigenspace spanned
by smooth eigensections?
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The two steps used in the proof Theorems 1.1 and 2.1 suggests a reformulation of Problem 1.2:

PROBLEM 1.3 Let DF be a foliation geometric operator for a smooth foliation F.

1. Given λ ∈ R, find geometric conditions on F which imply the existence of non-zero
distributional section ξ ∈ C−∞(E) with DFξ = λξ.

2. Given a non-zero eigendistribution ξ ∈ C−∞(E) for DF , find conditions on F which imply that
ξ is represented by a smooth section.

A complete answer to Problem 1.3.2 is possible for a class of Riemannian foliations:

THEOREM 1.4 Let F be a totally geodesic Riemannian foliation on V . Then every eigendistri-
bution ξ for the leafwise Laplacian is a sum of smooth eigenforms on V .

The proof is given in sections 3 and 4.

The first part of Problem 1.3.1 is the more difficult. In section 5 we develop a general criteria
(Corollary 5.3) using the finite-propagation speed methods of Cheeger, Gromov and Taylor [7], which
suffices to construct pure-point spectrum of infinite multiplicity. Unfortunately, the hypotheses of
Corollary 5.3 are very stringent so that Problem 1.3.1 has to be considered an open question, to
which we contribute some partial progress.

Section 6 develops C∗-algebras which apply in great generality to the study of the essential
spectrum of DF acting on C∞(E). Here is a typical result:

THEOREM 1.5 Let F be a smooth, totally geodesic Riemannian foliation of a compact Rie-
mannian manifold V . Suppose that the leafwise Euler operator DL admits a λ-eigensection, φ ∈
L2(A0,v|L), for some leaf L. Then the spectrum of DF on A0,v is completely pure-point, and λ is
an essential point.

We can use the index theorem for foliations to guarantee the existence of harmonic L2-eigensections
along the leaves, so this theorem is very useful for constructing examples with 0 in the essential
spectrum (cf. Corollaries 6.12 and 6.13).

The last section recalls some of the interesting examples of Riemannian foliations for which the
C∗-methods of section 6 apply. These foliations have very rich dynamics, and our results are just a
first step in understanding their very complicated spectral geometry.

Recent joint work of the first author with Gilbert Hector [3] has introduced many new techniques
to construct foliations for which the space of leafwise harmonic forms is infinite dimensional.

This work was started during the first author’s visit to the University of Illinois at Chicago, with
the partial support of the NSF, and completed during the second author’s visit to the University
de Santiago de Compostela, made possible through the generous support of the Departamento de
Xeometria e Topoloxia at Santiago.
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2 Pure-point spectrum for suspensions

Set Γ = Zq for a fixed q ≥ 1. Let M be a compact Riemannian manifold without boundary, and
M̃Γ →M a normal covering with Galois group Γ. For a representation α: Γ → Tq, form the quotient
manifold

Mα =
(
M̃Γ × Tq

)
/

{
(~mx, ~θ) ∼ (x, α(~m)~θ) for ~m ∈ Γ

}
(1)

with Riemannian foliation Fα whose leaves are the images of the sheets M̃Γ × {θ}. The projection
π̃: M̃Γ × Tq → M̃Γ descends to a fibration π:Mα → M , and the restriction π|L →M to a leaf L of
Fα is a covering map, whose Galois covering group is a quotient group of Γ.

Let DM :C∞(EM ) → C∞(EM ) be a first order geometric operator on EM → M . For each leaf
L of Fα, there is a natural lift of DM to the covering π|L → M . These lifts combine to yield a
smooth foliation geometric operator DFα

:C∞(Eα) → C∞(Eα), where Eα = π!EM → Mα. We also
introduce the “universal” covering operator, DΓ:C∞

c (EΓ) → C∞
c (EΓ) for EΓ = π!

ΓEM , on compactly
supported smooth sections over the covering space M̃Γ.

Both DFα
and DΓ are symmetric operators, and hence are essentially self-adjoint with respect to

the Hilbert space inner products defined using the smooth Lebesgue measure. Let σpp(DΓ) denote
the pure-point spectrum of the densely-defined operator DΓ on L2(EΓ) and likewise let σpp(DFα

)
denote the pure-point spectrum of the densely-defined operator DFα

on L2(Eα).

THEOREM 2.1 Assume there is given a smooth λ-eigensection φ ∈ L2(EΓ). Then for almost all
representations α: Γ → Tq, there is a corresponding infinite-dimensional space Hφ ⊂ C∞(Eα) of
λ-eigensections for DFα

. In particular, there is an inclusion of spectral subsets σpp(DΓ) ⊂ σpp(DFα
).

The surprising aspect of this theorem is that Fα has the same holonomy group action on S1

as the foliation by planes Rq on Tq+1, for which each eigenspace is explicitly one-dimensional for
generic α. The underlying idea of Theorem 2.1 which distinguishes it from the planar case is best
seen by assuming that φ ∈ L2(EΓ) is compactly supported. Then φ determines a distribution on M̃α

which has support in a compact subset Kφ ⊂ Lx of a leaf of Fα. Each such compact set Kφ admits
a foliated product neighborhood Kφ ⊂ Uφ. The restriction of C∞(Eα) to Uφ is a tensor product
of leafwise sections with normal sections, and the product structure respects the action of DFα

.
Thus, the compactly supported section generates a “local fibration structure” within the spectral
analysis of DFα

, and this property gives rise to an infinite dimensional space of λ-eigensections
for DFα

independent of the global holonomy of Fα. (This remark is formalized in section 3.) An
eigensection φ may not be compactly supported, but we show that for almost all α there is a quotient
distribution which generates an infinite dimensional space of λ-eigensections for DFα

for essentially
the same reason.

Theorem 1.1 of the introduction is easily derived from Theorem 2.1. Take M to be a Riemann
surface of genus g > 1, with fundamental group Γg. A representation α: Γg → Tq can be factored
Γg → Γ → Tq. There are at most countably many homomorphisms Γg → Γ, so it suffices to

prove that for a fixed Γ-covering M̃Γ → M , the conclusion is true for almost every representation
α: Γ → Tq.

Take DM = d+ δ to be the Euler operator on forms on M and let DΓ be the lift to an operator
acting on the smooth L2 forms on M̃Γ. The Atiyah index theorem for coverings [4] implies that DΓ

has Γ-index equal to the Euler characteristic of M , which is negative. Therefore, the Γ-dimension
of the space of harmonic L2 1-forms on M̃Γ is non-zero, and so 0 ∈ σpp(DΓ).

A representation α: Γ → Tq corresponds to a choice of vector ~θ = (θ1, . . . , θq) with angles
0 ≤ θ1, . . . , θq < 2π. For all totally irrational θ, the suspension foliation Fα has dense leaves. Then
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by Theorem 2.1, for almost every ~θ (possibly a proper subset of the irrational θ), the space of smooth
leafwise-harmonic 1-forms for the suspension foliation Fα on Mα is infinite dimensional. 2

The proof of Theorem 2.1 occupies the remainder of this section, and has two steps. First, we
show that each smooth λ-eigensection φ ∈ L2(EΓ) gives rise to an infinite-dimensional space of
λ-eigensections for the densely-defined operator DFα

on L2(Eα). The second step is then to show
that these L2-eigensections are smooth on Mα (which is not immediate, for the operator DFα

is not
elliptic on Mα.)

For each representation ρ: Γ → U(1), introduce the Hermitian flat bundle

Cρ =
(
M̃Γ × C

)
/ {(~m · x, z) ∼ (x, ρ(~m)z) for ~m ∈ Γ}

Given φ ∈ L2(EΓ) define the formal sum

φρ =
∑

~̀∈Γ

ρ(−~̀)φ(~̀ · x) (2)

If φ ∈ L2(EΓ) is integrable, then (2) converges for every representation ρ. However, for M̃Γ non-
compact, a typical φ ∈ L2(EΓ) need not be integrable. The main technical result of this section,
Proposition 2.6 below, asserts that the sum in (2) converges for almost every ρ. The key idea is
to use that the Fourier transform for abelian groups extends from L1(Γ) to L2(Γ). We need to
introduce some preliminary notions first.

Each point ~θ ∈ Tq determines a representation ρ(~θ): Γ → U(1), where ~m = (m1, . . . ,mq) is
mapped to

ρ(~θ)(~m) = exp(2πi~m · ~θ) = exp (2πim1θ1 + . . .+ 2πimqθq) . (3)

We let C
ρ(~θ) denote the corresponding flat line bundle over M .

The space L2(Γ) is naturally a module over the group Γ via the translational action on itself.
There is a dual action on C∞(Tq): given g ∈ C∞(Tq) then for ~m ∈ Γ and ~m · g, define ~m · ~g to be
the function

~m · ~g(~θ) = exp(2πi~m · ~θ)~g(~θ) = ρ(~θ)(~m) · ~g(~θ)
Combine this action of Γ on C∞(Tq) with the covering translation action on the lifted bundle
EΓ → M̃Γ to obtain an action

Γ × {EΓ ⊗ C∞(Tq)} → {EΓ ⊗ C∞(Tq)}
~m(s⊗ ~g)(x) = s(−~m · x) ⊗ ~m · ~g (4)

Form the quotient Frechet bundle

EΓ ⊗ C∞(Tq)/Γ →M

then recall an observation from ([23]; cf. also section 7, [12]):

LEMMA 2.2 For each smooth section φ̂ ∈ C∞ (EΓ ⊗ C∞(Tq)/Γ) and ~θ ∈ Tq, evaluating φ̂ at ~θ

defines a section φ̂~θ
∈ C∞(EM ⊗ C

ρ(~θ)).

Proof: A section s ∈ C∞(EM ⊗ C
ρ(~θ)) corresponds to a section ~s: M̃Γ → EΓ such that

~s(~mx) = ρ(~θ)(~m)~s(x). (5)
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On the other hand, by (4) the section φ̂ lifts to a section ~φ: M̃Γ → EΓ ⊗ C∞(Tq) so that

~φ(~mx)(~θ) = exp(2πi~m · ~θ)~φ(x)(~θ) (6)

If we now fix ~θ and set φ̂~θ
(x) = ~φ(x)(~θ), then by (6) φ̂~θ

(x) satisfies the defining equation (5) for a
section of C∞(EM ⊗ C

ρ(~θ)). 2

PROPOSITION 2.3 Given a countable set Φ = {φ1, φ2, . . .} ⊂ L2(EΓ), there exists a set

GΦ ⊂ Tq of full measure such that for every ~θ ∈ GΦ the sum (2) is well-defined for

• each φi ∈ Φ,

• each representation ρ = ρ(~m~θ) where ~m ∈ Γ with mi 6= 0 for all 1 ≤ i ≤ n,

• and almost every x ∈ M̃Γ.

Moreover, (φi)ρ =
∑

~̀∈Γ ρ(~m
~θ)(−~̀)φi(~̀ · x) descends to an L2-section (̂φi)ρ ∈ L2(EM ⊗ Cρ).

Proof: Define a map
FT :C∞

c (EΓ) → C∞ (EΓ ⊗ C∞(Tq)/Γ) (7)

which assigns to a compactly supported section φ the section FT (φ)(x, ~θ) = φ̂~θ
(x) defined by

(2). FT (φ)(x, ~θ) defines a smooth section of (EΓ ⊗ C∞(Tq)/Γ) by the proof of Lemma 2.2. The

coefficients ρ(−~̀) in (2) are uniformly bounded, so the map (7) extends to L1(EΓ).

The right-hand-side of (7) decomposes into a Hilbert space product

L2
(
EΓ ⊗ L2(Tq)/Γ

) ∼= L2(EM )⊗̂L2(Tq)

The map (7) is simply the Fourier transform on the second factor with respect to this Hilbert space
product, so extends from L1(EΓ) to an L2-isometric isomorphism (cf. Sunada [33])

FT :L2(EΓ) ∼= L2(EM )⊗̂L2(Γ) ∼= L2(EM )⊗̂L2(Tq) (8)
∼= L2(M × Tq,EM ) (9)

For each φi ∈ Φ, the section FT (φi) ∈ L2(M×Tq, EM ) is defined almost everywhere on M×Tq.
The Fubini theorem implies that the set

Gi = {~θ ∈ Tq | (φ̂i)~θ
∈ L2(EM ⊗ Cθ)}

has full measure. Let Bi = Tq \ Gi be the set of bad angles for φi and BΦ = ∪∞
i=1Bi the union of

all the bad sets, which also has measure zero.

The vector space of rational vectors Qq acts on Tq, and we form the countable union

B̂Φ =
⋃

~p∈Qq

~p · BΦ

which has measure zero. Then set GΦ = Tq \ B̂Φ. Clearly, for each ~θ ∈ GΦ the sum φ̂~θ
∈

L2(EM ⊗Cα). It remains to check that this property is stable under forming integer multiples of the

representation θ. Suppose that ~m~θ ∈ BΦ where ~m−1 ∈ Qq is defined, and hence ~θ ∈ ~m−1BΦ ⊂ B̂Φ.
Thus, for all ~θ ∈ GΦ, α = ~m~θ 6∈ BΦ so that the sum φ̂α ∈ L2(EM ⊗ Cα). 2

Note that there is no relation between the L2-norm of φ ∈ L2(EΓ), and that of φ̂~θ
∈ L2(EM⊗C~θ

).

For each ~θ ∈ Tq, extend DM to an operator D~θ
on sections of the twisted bundle EM ⊗C~θ

→M .
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LEMMA 2.4 Let φ ∈ L2(EΓ)be a λ-eigensection for DΓ. Suppose that for a fixed ~θ ∈ Tq, the sum
(2) ∑

~m∈Γ

α(−~m)φ(~m · x)

converges for almost every x ∈ M̃Γ and descends to an L2-section φ̂~θ
∈ L2(EM ⊗ C~θ

). Then φ̂~θ
is

a smooth λ-eigensection for D~θ
.

Proof: φ̂~θ
is a weak solution of the elliptic equation D~θ

ψ = λψ for ψ ∈ L2(EM ⊗ C~θ
), hence is

smooth by elliptic regularity theory. 2

For each λ ∈ σpp(DΓ) choose an orthonormal basis Φλ ⊂ L2(EΓ) for the solutions of DΓφ = λφ.
The union of these sets is an orthonormal basis for the pure-point spectrum of DΓ, which we order

Φ =
⋃

λ∈σpp(DΓ)

Φλ = {φ1, φ2, . . .}

where λi ∈ σpp(DΓ) is the eigenvalue for φi. Lemma 2.4 shows that each φ ∈ Φλ is a smooth

eigensection φ̂~θ
for the operator D~θ

on C∞(EM ⊗ C~θ
) when ~θ ∈ GΦλ

.

Each ~θ ∈ Tq also defines a representation α(~θ): Γ → Tq by setting

α(~θ)(~m) = ~m · ~θ = (m1θ1, . . . ,mqθq)

The next step in the proof of Theorem 2.1 is to embed the smooth eigensections φ̂~θ
for the operator

D~θ
into the pure-point spectrum of DFα

acting on C∞(Eα) for α = α(~θ).

Let (x, ~θ) 7→ x~θ denote the right action of Tq on Mα. The bundle Eα is invariant for this action,
so the Hilbert space L2(Eα) admits an orthogonal decomposition with respect to the spectrum

Γ ∼= T̂q of the group Tq,

L2(Eα) ∼=
⊕

~m∈Γ

L2(Eα)~m (10)

where s ∈ L2(Eα)~m transforms by the rule s(x~θ) = s(x) · ~θ(~m).

Define a correspondence between C∞(EM ⊗ C
~m~θ

) and C∞(Eα)~m: given a section

sM ∈ C∞(EM ⊗ C
~m~θ

), it lifts to sΓ on M̃Γ × Tq satisfying

sΓ(x, ~φ) = ρ(~m~θ)(~̀)sΓ(x, ~φ).

Multiply sΓ by the character ρ(φ)(~m) = exp(2πi~m · ~φ) to obtain a section s̃~m

s̃~m(x, ~φ) = sΓ(x)ρ(φ)(~m) (11)

Note that s̃~m is invariant under the action of Γ on M̃Γ × Tq:

~̀ · s̃~m(x, ~φ) = s̃~m(−~̀ · x, α(~θ)(~̀) · ~φ)

= sΓ(−~̀ · x) · ρ(α(~θ)(~̀) · ~φ)(~m)

= ρ(~m~θ)(−~̀)sΓ(x, ~φ)ρ(~m~θ)(~̀)ρ(~φ)(~m) = s̃~m(x, ~φ)

so descends to a section s~m ∈ C∞(Eα)~m. The correspondence sM 7→ s~m induces a Hilbert space
isomorphism between L2(EM⊗C

~m~θ
) and L2(Eα)~m, and shows that the smooth sections C∞(Eα)~m ⊂

L2(Eα)~m are dense.
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LEMMA 2.5 ( cf. Proposition 7.5, [12]) The operator DFα
leaves the space C∞(Eα)~m

invariant, and the restriction
DFα

:C∞(Eα)~m → C∞(Eα)~m

is Hermitian isomorphic to the operator Dρ:C
∞(EM ⊗ Cρ) → C∞(EM ⊗ Cρ) for ρ = ρ(~m~θ).

Proof: The lift of DFα
to M̃Γ×Tq acts as the operator DΓ⊗Id on C∞(EΓ)⊗C∞(Tq), and thus the

defining equation (11) for sections of L2(Eα)~m is invariant under the action of DΓ. Hence, C∞(Eα)~m

is invariant under DFα
.

Next, a section s ∈ C∞(Eα)~m lifts to s̃ satisfying (11). The action of Γ on M̃Γ × Tq induces a
transformation of the lift s̃ given by the equation (5) for the representation determined by ~mα. That
is, s canonically corresponds to a section of the bundle EM ⊗ Cρ. This correspondence implements
an isomorphism C∞(Eα)~m ∼= C∞(EM ⊗ Cρ).

Finally, we note that the restriction of the lift of DFα
to the lifted sections of C∞(Eα)~m acts as

DΓ ⊗ Id, while Dρ lifted to M̃Γ acts as the operator DΓ ⊗ Id on C∞(EΓ)⊗C. These two are clearly
the same. 2

We have now established the following result which implies Theorem 2.1:

PROPOSITION 2.6 Let DM be a geometric operator on C∞(EM ), and let Φ be an orthonormal

basis for the pure-point spectrum of DΓ as above. Then for each φi ∈ Φ and ~θ ∈ GΦ there is a
countably infinite orthonormal collection of smooth λi-eigensections for DFα

acting on L2(Eα):

{(̂φi)ρ(~m~θ) ∈ C∞(EM⊗C
ρ(~m~θ))

∼= C∞(E
α(~θ))

~m ⊂ L2(E
α(~θ)) | ~m ∈ Γ with m1 6= 0, . . . ,mq 6= 0}

There is an alternate proof that the L2-sections (̂φi)α are smooth on Mα. Let ∆Tq :C
∞(Tq) →

C∞(Tq) denote the Laplacian associated to the bi-invariant Riemannian metric on Tq. The action

of α = α(~θ) on Tq preserves the metric, so ∆Tq induces an operator ∆T :C∞(Mα) → C∞(Mα)
along the fibers of Mα → M . This extends to an operator on C∞(Eα) as the bundle Eα is the
lift of a bundle from M . Note that the leafwise operator Dα commutes with ∆T as this is true for
their lifts to M̃Γ ×Tq. Form the elliptic, second order operator ∆ = DαDα + ∆T acting on sections
C∞(Eα). The operators Dα and ∆T commute, so we can calculate for φi ∈ Φ with corresponding

(̂φi)ρ(~m~θ) ∈ L2(EM ),

∆
(
(̂φi)ρ(~m~θ)

)
=

(
λ2

i + 4π2(m2
1 + · · ·m2

q)
)
(̂φi)ρ(~m~θ)

Thus, (̂φi)ρ(~m~θ) is an L2-eigenvector of the elliptic operator ∆ so by regularity must be smooth.

The Laplacian approach to smoothness is clearly equivalent to the approach via the Fourier
decomposition with respect to the action of Tq, as the Laplacian ∆T commutes with the fiber action
of Tq on Mα. However, we see in the next section that the Laplacian method generalizes to foliation
contexts where there is no group action.
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3 Spectral propagation

The distribution space C−k(E) is the topological dual to the space of Ck-sections Ck(E) for k ≥ 0.
A λ-eigendistribution for the leafwise operator DF is a distribution ξ ∈ C−k(E) such that

〈ξ,DFψ〉 = λ 〈ξ, ψ〉

for all ψ ∈ Ck+1(E). In the proof of Theorem 2.1, the Plancherel theorem was used to produce a
0-eigendistribution ξ ∈ L2(E). It was then observed that ξ is an eigendistribution for an elliptic
second order operator on C∞(E), hence is smooth. In this section, we assume there is given a second-
order elliptic differential operator ∆ which commutes with DF as operators on C∞(E), and show
there is heat-kernel regularization technique to “diffuse” an eigendistribution into a family of smooth
eigensections, exactly analogous to the well-known diffusion process on forms (cf. Sullivan [32]). For
example, an L1-eigensection ξL on an individual leaf L of F determines an eigendistribution, and
the diffusion process smears the support of this section to an open set of leaves. Spectral propagation
refers to this aspect of the diffusion process.

We assume in this section that F is a smooth foliation of codimension-q on a compact Riemannian
manifold V without boundary, and that F admits a smooth invariant transverse volume form.
That is, ν is a smooth closed q-form ν on V whose kernel ker(ν) is the tangent distribution to
F . By a conformal change of the Riemannian metric on V we can assume that ν is the transverse
measure associated to the Riemannian metric.

Let DF :C∞(E) → C∞(E) denote a first order geometric operator along the leaves of F , acting
on the smooth sections of the Hermitian bundle E → V (cf. section 3, [12]). The operator DF

is symmetric, and Lemma 2.1 of Chernoff [8] implies that DF and each of its powers is essentially
self-adjoint. Hence, there is a unique closure to a densely-defined self-adjoint operator on L2(E).
Let σ(DF ) ⊂ R denote the spectrum of DF , and σpp(DF ) the pure-point spectrum.

The main result of this section replaces the geometric hypothesis of Theorem 2.1 that there is
a transverse action of Tq which commutes with the foliation global holonomy, with the analytic
hypotheses that there exists a positive second order elliptic operator ∆ commuting with the given
leafwise operator:

THEOREM 3.1 Let F and DF be as above, and φ ∈ C−k(E) a λ-eigendistribution for DF .
Suppose there exists a symmetric, second order, elliptic geometric operator ∆:C∞(E) → C∞(E)
which commutes with DF . Then φ “propagates” to an subspace Hφ ⊂ C∞(E) such that each ψ ∈ Hφ

is a smooth λ-eigensection for DF . Moreover, if φ is singular then Hφ will be an infinite-dimensional
subspace.

For each leaf L ⊂ V , let EL → L denote the restriction of the bundle E to L and
DL:C∞

c (EL) → C∞
c (EL) the restriction of DF to L, which is is elliptic and essentially self-adjoint

(cf. Chapter 5 of [30]).

COROLLARY 3.2 Let F and DF be as above. Given a leaf L, let φ ∈ L2(EL) be an λ-eigensection
for DL such that |φ| is integrable on L. Suppose, also, that there exists a symmetric, second order,
elliptic geometric operator ∆:C∞(E) → C∞(E) which commutes with DF . Then φ determines an
infinite-dimensional subspace Hφ ⊂ C∞(E) of smooth λ-eigensections for DF .

Proof of Corollary 3.2 Let φ ∈ L2(EL) be a λ-eigensection for DL which is integrable. Then φ
determines a distribution cφ:C∞(E) → C via restriction: for ψ ∈ C∞(E) set

cφ(ψ) =

∫

L

〈φ, ψ|L〉EL
dχL
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where 〈·, ·〉EL
denotes the Hermitian inner product on EL → L and dχL is the leafwise Riemannian

volume form. Self-adjointness of DL implies that the distribution cφ is a λ-eigensection for DF . 2

Proof of Theorem 2.1 The operator ∆ is elliptic, which implies that exp{−t∆}:C∞(E) → C∞(E)
induces a map on the space of distributions, for all k ≥ 0

exp{−t∆}:C−k(E) → C∞(E) (12)

Thus, for all t > 0 we obtain a smooth section φt = exp{−t∆}(cφ) on V . Since DF commutes with
exp{−t∆} on smooth sections, it is immediate that

LEMMA 3.3 DFφt = λφt for all t > 0. 2

We let Hφ ⊂ C∞(E) be the subspace spanned by the sections {φt | t > 0}. The proof of Theorem 3.1
is completed by:

LEMMA 3.4 If φ is singular, then Hφ ⊂ C∞(E) has infinite dimension.

Proof: The distribution cφ cannot be written as a finite sum of smooth sections in C∞(E) as
φ is singular. So choose an orthonormal basis {ξi | 1 = 1, 2, . . .} of L2(E) consisting of smooth
eigensections for ∆. Note that for each λ ∈ σ(∆) the span of the λ-eigensections has finite dimension,
so if λi is the eigenvalue for ξi, we can assume the sections are ordered so that 0 ≤ λ1 ≤ λ2 ≤ · · ·.

The distribution cφ lies in the Sobolev spaces W−k(E) for k > dim(V). The set {ξi} is an
orthogonal basis for W−k(E), as ∆ is symmetric, though each ξi need not have length one in the
Sobolev (-k)-norm. We can thus expand the distribution

cφ =

∞∑

i=1

a(φ)i · ξi

where we identify ξi with the distribution ξ̂i(ψ) = 〈ξ̂i, ψ〉V . Use this expansion to calculate

φt = exp{−t∆}(cφ) =

∞∑

i=1

a(φ)i exp{−tλi} · ξi (13)

The set of non-zero coefficients {a(φ)i 6= 0} is infinite, hence we can choose an infinite subset
Λ ⊂ {i | a(φ)i 6= 0} such that ` 6= k ∈ Λ implies λ` 6= λk.

Use (13) to evaluate the linear functionals {ξ̂` | ` ∈ Λ} applied to the space Hφ:

ξ̂`(φt) = a(φ)` exp{−tλ`}

The collection of functions {exp{−tλ`}| ` ∈ Λ} spans an infinite dimensional space, as the coefficients

in the exponential functions are all distinct. Therefore, the set of distributions {ξ̂` | ` ∈ Λ} restricts
to an infinite-dimensional space on Hφ, which must also have infinite-dimension. 2
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4 Laplacians for totally geodesic Riemaniann foliations

A foliation F is said to be totally geodesic if there exists a smooth Riemannian metric on TV so
that each leaf is a totally geodesic submanifold (cf. [5, 19]; and Appendix C by G. Cairns, in [25].)
Johnson and Whitt [19] observed that a totally geodesic foliation has the remarkable property that

the leafwise Riemannian metric tensor g is transversally parallel. That is, for any vector field ~Y
everywhere orthogonal to F , the covariant derivative ∇~Y

g vanishes on any vector tangent to F .
This implies the leaves of F are locally isometric (Proposition 1.4, [19]).

A foliation F is Riemannian if there exists a Riemannian metric on the normal bundle Q which
is invariant under the transverse linear holonomy along the leaves (cf. [25].) We show in this section
that the transverse Laplacian for a totally geodesic Riemannian foliation commutes with the leafwise
Laplacian on forms. As a consequence, the leafwise signature and Euler operators on such foliations
have the spectral propagation property of Theorem 3.1.

Let Q ⊂ TV be the orthogonal bundle to the tangent bundle TF , and let Q∗ and TF∗ de-
note their dual bundles, respectively. The space of smooth differential forms on V has an induced
bigrading

Au,v = C∞ (∧uQ∗ ⊗ ∧vTF∗)

where A0,∗ is the complex of leafwise forms. The horizontal forms A∗,0 are canonically associated to
F , as they are also determined by the condition that α ∈ Au,0 if and only if i ~X

α = 0 for all vector

fields ~X tangent to the leaves of F . The induced filtration FuA = Au,0 ∧A of A is also canonically
associated to F .

The deRham derivative decomposes as a sum of bihomogeneous components,

d = d0,1 + d1,0 + d2,−1

where the double index denotes the corresponding bidegree. The term d−1,2 vanishes because TF
is completely integrable, and the corresponding term d2,−1 vanishes if and only if Q is completely
integrable. Equating the bihomogeneous terms of the expansion of d2 = 0 yields relations

d2
0,1 = 0 d0,1d1,0 + d1,0d0,1 = 0 d2

1,0 + d2,−1d0,1 + d0,1d2,−1 = 0 (14)

From the decomposition of d we get a decomposition of the co-derivative,

δ = δ0,−1 + δ−1,0 + δ−2,1

satisfying similar properties. On A, we now define the operators

DF = d0,1 + δ0,−1 the leafwise Euler operator

∆T = δ−1,0d1,0 + d1,0δ−1,0 the transverse Laplacian

∆F = D2
F the leafwise Laplacian

∆ = ∆F + ∆T the total Laplacian

Note the total Laplacian ∆ coincides with the metric Laplacian on V if and only if Q is totally
integrable. In any case, both operators have the same leading symbol since d2,−1 and δ−2,1 are both
of order zero.

THEOREM 4.1 Let F be a totally geodesic Riemannian foliation on V . Then the total Lapla-
cian ∆ of homogeneous bidegree (0,0) acting on the smooth forms A∗,∗ commutes with the leafwise
Laplacian ∆F .
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Proof. A form α ∈ Au,0 is basic if the Lie derivative Θ ~X
α = 0 for all vector fields ~X on V tangent

to the leaves of F . Let Au,0
b ⊂ Au,0 denote the subspace of basic forms. Since F is Riemannian, for

α ∈ Au,0
b we have [1, 2, 13]

δ0,−1(α ∧ β) = (−1)uα ∧ δ0,−1β (15)

For any smooth vector field ~X on V , the Lie derivative Θ ~X
decomposes as a sum of homogeneous

components (Θ ~X
)i,−i (where the double index again denotes the bi-degrees.) If ~X is an infinitesimal

transformation of F , then Θ ~X
preserves the filtration FuA, and thus (Θ ~X

)i,−i = 0 for i 6= 0. In this
case we get [

(Θ ~X
)0,0, d0,1

]
= 0 on A0,∗ (16)

by comparing bi-degrees in the formula [Θ ~X
, d] = 0. If ~X is also orthogonal to the leaves then (16)

also implies that [
(Θ ~X

)0,0, δ0,−1

]
= 0 on A0,∗ (17)

since F is totally geodesic.

Choose locally defined orthonormal vector fields {~e1, . . . , ~eq} which are sections of Q and in-
finitesimal transformations of F , and let {ω1, . . . , ωq} be the local dual frame of Q∗. From the
formula

i ~X
d1,0 = (Θ ~X

)0,0

on A0,∗ for ~X ∈ C∞(Q), we deduce that

d1,0β =

q∑

i=1

ωi ∧ (Θ~ei
)0,0β (18)

for β ∈ A0,∗. Then (15),(17) and (18) imply

d1,0 ◦ δ0,−1 = δ0,−1 ◦ d1,0 (19)

on A0,∗. Also, (15) implies that (19) holds on all of A, because each Au,v is (locally) generated by
the exterior products A0,v with basic u-forms. Taking the adjoint of the identity (19), we obtain

d0,1 ◦ δ−1,0 = δ−1,0 ◦ d0,1 (20)

Note that DF and ∆F = D2
F commute, so by equations (14), (19) and (20):

∆TDF −DF∆T = (δ−1,0d1,0 + d1,0δ−1,0)(d0,1 + δ0,−1) − (d0,1 + δ0,−1)(δ−1,0d1,0 + d1,0δ−1,0)

= (δ−1,0d1,0d0,1 + d1,0δ−1,0d0,1) + (δ−1,0d1,0δ0,−1 + d1,0δ−1,0δ0,−1)

−(d0,1δ−1,0d1,0 + d0,1d1,0δ−1,0) − (δ0,−1δ−1,0d1,0 + δ0,−1d1,0δ−1,0)

= (δ−1,0d1,0d0,1 − d0,1δ−1,0d1,0) + (d1,0δ−1,0d0,1 − d0,1d1,0δ−1,0)

+(δ−1,0d1,0δ0,−1 − δ0,−1δ−1,0d1,0) + (d1,0δ−1,0δ0,−1 − δ0,−1d1,0δ−1,0)

= 0

from which DF∆ = ∆DF follows. 2

The leafwise Laplacian has an additional property, that its eigenspaces are modules over the
algebra of basic forms A∗,0

b for F :

COROLLARY 4.2 Let ξ ∈ Au,0
b be a non-zero basic form for F . If φ ∈ A is a λ-eigenform for

the leafwise Laplacian ∆F , then φ ∧ ξ ∈ A is a λ-eigenform for ∆F .

Proof: Calculate using (15)

∆F (φ ∧ ξ) = (d0,1 + δ0,−1)
2(φ ∧ ξ) = {(d0,1 + δ0,−1)

2φ} ∧ ξ = λφ ∧ ξ 2

COROLLARY 4.3 The leafwise Euler operator DF :Au,0
b ⊗A0,∗ → Au,0

b ⊗A0,∗ on a totally geodesic
Riemannian foliation F commutes with the total Laplacian on forms ∆. 2
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5 Existence of eigendistributions

The L2-index theorem for foliation operators gives topological criteria for the existence of
L2 0-eigensections along a set of leaves, but there is no similar theorem for a leafwise operator
DF :C∞(E) → C∞(E). In the next two sections, we establish two approaches for the existence
of global eigendistributions for DF . Corollary 5.3 gives an existence criterion, using the finite-
propagation speed methods of Cheeger, Gromov and Taylor (cf. proof of Propositions 1.1, [7]), but
with stringent hypotheses. In the next section, we use methods of C∗-algebras which apply in more
generality, but with less exact conclusions.

A point λ ∈ σpp(DL) is said to be isolated if there exists an interval (a, b) with a < λ < b so that
σ(DL) ∩ (a, b) = {λ}.
PROPOSITION 5.1 Let L be a complete Riemannian manifold with bounded geometry, and
DL:C∞

c (EL) → C∞
c (EL) a geometric operator with λ ∈ R an isolated point in the spectrum σpp(DL).

Then there exists a λ-eigensection φ ∈ L2(EL) so that the pointwise norm |φ(y)| has rapid decay.

Proof: Let (a, b) ⊂ R be an interval such that σ(DL) ∩ (a, b) = λ. Choose a smooth function
f :R → [0, 1] such that the support of f is contained in (a, b) and f(λ) = 1. Then f(DL) is the
projection operator onto the λ-eigenspectrum of DL. The existence of some ψ ∈ L2(EL) such that
f(DL)ψ = ψ implies that there exists a compactly supported smooth section ψc ∈ C∞

c (EL) so
that φ = f(DL)ψc 6= 0. (For example, f(DL) is a bounded operator, so we can take ψc to be
the compression of ψ to a sufficiently large compact set in L.) The image φ ∈ L2(EL) is then a
λ-eigensection for DL.

The wave operator method of [7] implies that for any ψ ∈ L2(E) with support in a compact

set K ⊂ L, the image φ = f(D)ψ has rapid decay. Let f̂(ξ) =
∫
R f(r) exp{−irξ}dr denote the

Fourier transform of f , and exp{iξDL} the wave operator on L2(EL) associated to DL. Recall that
exp{iξDL} is a unitary operator. Then

f(DL) =
1

2π

∫

R
f̂(ξ) exp{iξDL}dξ (21)

The assumption f is smooth implies that for each power p > 0 the function ξpf̂(ξ) is uniformly
bounded in ξ (cf. Chapter 5, [30]). If ψ is supported in a compact set K ⊂ L, then by the unit
propagation speed of the wave operator exp{iξDL}, the section exp{iξDL}ψ is supported in the
compact set

Pen(K , |ξ|) = {x ∈ L | DistL(x,K) ≤ |ξ|}
Thus,

|φ(y)| = |
∫

|ξ|≥DistL(y,K)

f̂(ξ) · exp{iξDL}ψdξ|

≤
∫

|ξ|≥DistL(y,K)

|f̂(ξ)| · || exp{iξDL}ψ||Ldξ

≤
∫

|ξ|≥DistL(y,K)

|f̂(ξ)|dξ

For a function |f̂(ξ)| with rapid decay, the integral function r 7→
∫
|ξ|≥r

|f̂(ξ)|dξ also has rapid decay,

and the Proposition follows. 2

REMARK 5.2 It should be possible to replace the spectral gap hypotheses of Proposition 5.1
with less stringent estimates on the spectral density of DF near λ ∈ σpp(DL) along the lines of the
Gromov-Shubin invariants of differential operators [15]. It is an interesting problem to determine
the exact conditions on spectral density which suffices.
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Let L be a complete Riemannian manifold with bounded geometry. Define an equivalence relation
on functions f, g: [0,∞) → [0,∞) by declaring f ∼ g if there exists constants a, b, c > 0 so that

f(x)/b− a ≤ g(x) ≤ b · f(x) + a for all x ≥ c.

The growth type of L about a compact set K ⊂ L is the class of the volume function

grL(K , r) = VolL(Pen(K , r)) (22)

The growth type of L is independent of the choice of K for any manifold with bounded geometry.
(For L a leaf of a foliation this is proved in Plante [26]; for more general manifolds, see section 1
of Januszkiewicz [18].) The growth type is polynomial of degree at most p if there exists constants
a, b > 0 and exponent p > 0 such that

grL(K , r) ≤ arp + b

At the other extreme, the growth type is exponential if

lim inf
r→∞

log{grL(K , r)}
r

> 0.

COROLLARY 5.3 Let L be a complete Riemannian manifold with bounded geometry and polyno-
mial growth type, and DL:C∞

c (EL) → C∞
c (EL) a geometric operator with λ ∈ R an isolated point

in its spectrum. Then there exists a λ-eigensection φ ∈ L2(EL) ∩ L1(EL).

Proof: The volume of the sets

Ann(K , r) = PenL(K , r + 1 ) \ PenL(K , r)

are bounded by a polynomial function in r, so by Proposition 5.1 and a straightforward estimate,
the summand in ∫

L

|φ| dχL =

∞∑

`=1

{∫

An(K ,`)

|φ| dχL

}

decreases faster than any polynomial in `, and hence converges. 2
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6 Operator algebras and spectral propagation

This section investigates C∗-algebraic techniques for constructing eigendistributions. The main
result, Theorem 6.7, develops a spectral transfer from the leaves to the ambient space, and seems
to yield the strongest possible conclusion for the given hypotheses. We begin with a preliminary
discussion of the action of the foliation groupoid (cf. §2 [12]).

Given a foliation F of V , the holonomy groupoid GF is the set of equivalence classes [γ] of pointed
leafwise paths γ: ([0, 1], 0, 1) → (V, γ(0), γ(1)) for F , equipped with the topology whose basic open
sets are generated by “neighborhoods of leafwise paths” (cf. section 2, Winkelnkemper [34]). The
topology on GF need not be Hausdorff, so that the continuous functions on GF are defined as the
uniform closure of the finite sums of continuous functions, each supported on a basic open set.

The space GF has the structure of a topological groupoid: Concatenation of paths induces a
groupoid product G2

F → GF which is associative up to homotopy. The manifold V embeds into
GF as the subgroupoid of units, where the constant path ∗x is associated to x ∈ V . The source
and range maps s, r:GF → V are defined by s(γ) = γ(0) and r(γ) = γ(1), respectively. The pre-
image s−1(x) = L̃x of a point x ∈ V is called the holonomy cover of the leaf Lx through x. The
characterizing property of L̃x is that the image of a closed curve γ ⊂ L̃x always has trivial holonomy
as a curve in V . Via the source map s:GF → V , the space GF is parametrized as a family of open
manifolds – the holonomy covers of leaves of F – over the base V . The source map s:GF → V is
“fibration-like” when restricted to compacts subsets of GF , but it need not be a fibration.

A transverse measure µ for F is a Radon measure on the Borel subsets of the transversals to
F , which takes finite value on compact subsets [26]. A transverse measure is quasi-invariant if, for
every transversal Z with µ-measure zero, all holonomy transports of Z also have µ-measure zero.
A transverse measure is invariant if the µ-measure of a transverse set Z does not change under
holonomy transport. A transverse measure for F is said to be non-atomic if it has no atoms. That
is, it assigns measure zero to each countable transverse set Z. Conversely, if µ is supported on a
countable collection of compact leaves, then we say µ is atomic.

Fix a Riemannian metric on the tangential distribution to F , then the leafwise volume forms
for define a leafwise Haar system dvF (cf. [10, 11, 28]). Let Cc(GF ) denote the convolution algebra
generated by the compactly supported continuous functions on GF : the product of f, g ∈ Cc(GF ) is
given by

f ∗ g(γ) =

∫

δ∈L̃x

f(δ)g(δ−1γ)dvF (δ)

and the *-involution is given by f∗(γ) = f(γ−1).

For each x ∈ V let
Rx:Cc(GF ) → B

(
L2(L̃x)

)

denote the *-representation given by, for f ∈ Cc(GF ), ξ ∈ L2(L̃x) and γ ∈ L̃x,

{Rx(f)ξ}(γ) =

∫

δ∈L̃x

f(γ−1δ)ξ(δ)dvF (δ)

The C∗-closure of the ∗-algebra Cc(GF ) with respect to the sup-norm defined by the representations
Rx yields the reduced foliation C∗-algebra C∗(V,F).

14



For our applications, we need to allow for operators acting on the leafwise L2-sections of an
Hermitian vector bundle E → V . Assume that E ⊂ V × CN → V is an embedded Hermitian
subbundle of the trivial bundle. Let Cc(GF ,C

N ) = Cc(GF ) ⊗ End(CN ) denote the convolution
algebra with coefficients in the N × N matrix algebra. Each representation Rx extends in the
natural way, so that f ∈ Cc(GF ,C

N ) yields an operator on the leafwise L2-sections L2(L̃x,C
N ).

For each x ∈ V , the fiberwise orthogonal projection ΠE:V ×CN → E induces a projection operator
on the L2-sections over the holonomy cover,

ΠE,x
:L2(L̃x,C

N ) → L2(L̃x,E|L̃x)

Define Cc(GF ,E) to be the subalgebra of f ∈ Cc(GF ,C
N ) such that for all x ∈ V ,

Rx(f) ◦ ΠE,x
= Rx(f) = ΠE,x

◦Rx(f)

The von Neumann algebra W ∗(F , µ) of F can be defined with respect to a quasi-invariant µ
transverse measure µ for F by assembling the leaf-wise representations Rx into a total representation
of Cc(GF ) on the measurable field of Hilbert spaces

Hµ =

∫

V

L2(L̃x)dµ̃(x)

The closure of the image of this representation in the weak-* topology on B(Hµ) is the von Neumann
algebra W ∗(F , µ). When the measure class of µ̃ is equivalent to the smooth Riemannian measure
class on V , then we write W ∗(V/F) for the resulting von Neumann algebra. As before, we write
W ∗(V/F , µ,E) to indicate operators with coefficients in the Hermitian bundle E → V .

Let DF :C∞(E) → C∞(E) be a foliation geometric operator. For each bounded Borel function
φ:R → R use the spectral theorem applied to the essentially self-adjoint operators

DL̃x
:C∞

c (L̃x,E|L̃x) → C∞
c (L̃x,E|L̃x)

to define a family of bounded operators φ(DF ) = {φ(DL̃x
)| x ∈ V } which satisfy for all x ∈ V

DL̃x
◦ ΠE,x

= DL̃x
= ΠE,x

◦ DL̃x

Roe (Theorem 2.1, [29]) identified a class of functions for which this leafwise collection of operators
is represented by an element of Cc(GF ,E):

THEOREM 6.1 Let φ ∈ C0(R) whose Fourier transform is smooth and compactly supported.
Then for a foliation geometric operator DF :C∞(E) → C∞(E), the operator φ(DF ) is represented
by a kernel in C∞

c (GF ,E).

We indicate the main points of the proof, as it introduces important technical aspects of the
foliation groupoid and the leafwise spectral constructions from foliation geometric operators. Given
φ ∈ C0(R) with smooth, compactly supported Fourier transform, φ(DL̃x

) is represented by a distri-

butional kernel k̃x on L̃x × L̃x. The methods of [7, 31] imply that k̃x is actually a smooth kernel
with support contained in a uniform diameter tube about the diagonal in L̃x × L̃x. Moreover, DL̃x

is the lift of a differential operator along the leaf Lx hence k̃x is invariant under the diagonal action
of the holonomy group on L̃x × L̃x, so descends to the quotient s−1(Lx) ⊂ GF . A fundamental point
in [29] is these functions on the subsets s−1(Lx) combine to give a smooth function on GF .

Given a bounded Borel set B ⊂ R with characteristic function χB, choose a sequence of functions
{φi | i = 1, 2, . . .} ⊂ C0(R) with smooth, compactly-supported Fourier transforms and which
converge pointwise to the characteristic function χB. For each leaf Lx ⊂ V , the sequence of bounded
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operators φi(DL̃x
) converges to χB(DL̃x

) in the strong topology on B(L2(L̃x,E|L̃x)) by the spectral
theorem. Even stronger, one has that for the sequence of continuous functions {φi(DF)} on GF , the
restriction to each s−1(Lx) ⊂ GF converges uniformly on compact subsets to the kernel representing
χB(DL̃x

). To see this, note that for each x ∈ V the operator χB(DL̃x
) is represented by a smooth

kernel on L̃x × L̃x, as χB(DL̃x
) defines a bounded operator from L2(L̃x,E|Ẽx) to every Sobolev

completion of C∞
c (L̃x,E|L̃x) so we can apply Lemma 5.6, [30]. The spectral techniques of [31] imply

that the sequence of kernels φi(DL̃x
) considered as functions on L̃x × L̃x converge uniformly on

compact subsets to the kernel representing χB(DL̃x
). 2

It is not necessarily true that the sequence {φi(DF )} ⊂ Cc(GF ) converges uniformly on compact
sets in GF . In general, we only know that the limiting kernel χB(DF ) is a Borel function on GF ,
and that for each quasi-invariant transverse measure the sequence {φi(DF )} acting on Hµ converges
to the spectral projection associated to B.

PROPOSITION 6.2 ([9, 10]) For any bounded Borel function φ:R → R with compact support,
and quasi-invariant transverse measure µ for F , the collection of leafwise operators {φ(DL̃x

)|x ∈ V }
define an element φ(Dµ) ∈W ∗(V/F , µ,E).

An invariant transverse measure µ for F determines a trace Tµ:Cc(GF ,E) → C. The Haar
system dvF on the leaves of F product with µ defines a locally-finite Borel measure µ̃ on V . For
f ∈ C∞

c (GF ,E) set

Tµ(f) =

∫

x∈V

TrE(f)(∗x)dµ̃(x) (23)

where TrE denotes the fiberwise trace on the endomorphisms of the bundle E. Connes proved
[10, 11] that TrE extends to a densely defined trace on W ∗(V/F , µ,E). Normality of the trace (i.e.,
the dominated convergence property) and standard results of spectral theory imply:

LEMMA 6.3 Let µ be an invariant transverse measure for F . Given a bounded Borel function
φ:R → R with compact support, let {φi | i = 1, 2, . . .} ⊂ C0(R) be a sequence of functions which
converge pointwise to φ, and such that the Fourier transform of each φi is smooth and compactly
supported. Then φ(DF ) ∈ W ∗(V/F , µ,E) is in the domain of TrE, and

lim
i→∞

Tµ(φi(DF )) = Tµ(φ(DF )) (24)

The von Neumann trace satisfies a positivity property:

LEMMA 6.4 Let µ be an invariant transverse non-negative measure for F , DF a leafwise geo-
metric operator, and φ:R → R a non-negative bounded Borel function with compact support. Then
Tµ(φ(DF )) = 0 if and only if the leafwise operator φ(DL̃x

) = 0 for µ-almost every leaf Lx of F .

Proof: The leafwise operators φ(DL̃x
) are selfadjoint, and positive by the assumption that φ ≥ 0,

so the local densities TrE(φ(DL̃x
))(∗x) are non-negative. Given that the integral (24) vanishes,

the integrand must vanish almost everywhere. Hence, for almost every leaf of F the local density
TrE(φ(DL̃x

))(∗x) = 0 which forces φ(DL̃x
) = 0 as well. The converse is immediate. 2

Given an invariant transverse measure µ for F let µ̃ be its Haar extension to a locally-finite Borel
measure on V . Let L2(V,E, µ) denote the completion of C∞(V,E) with respect to the Hilbert space
inner product defined by µ̃. The resulting Hilbert space depends substantially on the geometric
properties of the measure µ. For example, if µ is the transverse Dirac measure associated to a
compact leaf L, then L2(V,E, µ) ∼= L2(L,E|L) is the Hilbert space completion of the smooth sections
over L with respect to the smooth leafwise Riemannian measure. While if µ̃ is equivalent to the
smooth Lebesgue measure on V , then L2(V,E, µ) is isomorphic to the Hilbert space completion of
the smooth sections over V with the usual Riemannian inner product.
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The convolution algebra Cc(GF ,E) represents on L2(V,E, µ) via

{Rµ(f)ξ}(x) =

∫

δ∈L̃x

f(γ−1δ)ξ(r(δ))dµ̃(r(δ))

It is a standard calculation (but tedious) to show that the holonomy invariance of µ implies that Rµ

is a *-representation of Cc(GF ,E).

We note the following consequence of the hyperbolic method of Chernoff:

PROPOSITION 6.5 (Lemma 2.1,[8]) Let DF :C∞(E) → C∞(E) be a foliation geometric op-
erator. Then DF has a unique densely-defined extension to a closed operator Dµ on L2(V,E, µ).

For any bounded Borel function φ:R → R we define the bounded operator φ(Dµ) ∈ B(L2(V,E, µ))
using the spectral theorem. For special class of φ we can identify this operator in terms of the
leafwise operators DL̃x

:

PROPOSITION 6.6 (cf. [12]) Let φ ∈ C0(R) whose Fourier transform is smooth and compactly
supported. Then φ(Dµ) = Rµ(φ(DF )) for any foliation geometric operator DF and invariant trans-
verse measure µ.

Proof: Introduce the wave operators exp{2π
√
−1λDF} = {exp{2π

√
−1λDL̃x

}| x ∈ V } and

exp{2π
√
−1λDµ}. Both operators satisfy the same hyperbolic wave equation along the leaves of

F , hence
exp{itDµ} = Rµ(exp{itDF})

Then use the operator Fourier tranforms to calculate

φ(Dµ) =
1

2π

∫

R
φ̂(λ) · exp{itDµ}dt

=
1

2π

∫

R
φ̂(λ) ·Rµ(exp{itDF})dt

= Rµ

(
1

2π

∫

R
φ̂(λ) · exp{itDF}dt

)

= Rµ (φ(DF )) 2
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The following theorem establishes a relation between the spectral projections for a foliation
geometric operator acting along leaves, and for its action on the ambient foliated manifold. This is
a general form of a spectral coincidence theorem (cf. [17, 21, 22]).

THEOREM 6.7 Let DF be a foliation geometric operator, and µ an invariant transverse non-
atomic measure such that µ-almost every leaf in supp(µ) has trivial holonomy. Given a ≤ b, suppose
there is a set Z ⊂ V of positive µ̃-measure such that the leafwise operator χ[a,b](DL̃x

) has non-trivial

range for all x ∈ Z. Then for every α < a and b < β, the range of χ(α,β)(Dµ) in L2(V,E, µ) is
infinite dimensional. In particular, if a = b then a is in the essential spectrum of Dµ.

Proof: Let φ:R → [0, 1] be a smooth function with support in the interval (α, β) with φ(x) = 1
for a ≤ x ≤ b. For each n > 0 define a function φn ∈ C0(R) to be the inverse Fourier transform

of φ̂ restricted to the interval [−n, n]. The sequence {φn} converges uniformly to φ, so there exists
n0 > 100 such that for all n > n0, sup

x
|φ(x) − φn(x)| < 1/100.

For each x ∈ Z the leafwise operator χ[a,b](DL̃x
) has non-trivial range, so choose a Borel field

{ξx ∈ C∞(L̃x,E|Lx)|x ∈ Z} of unit-length sections in the range of the projections χ[a,b](DL̃x
).

By Proposition 6.6, the sequence of operators {φi(Dµ)} acting on L2(V,E, µ) converge to φ(Dµ).
The strategy now is to “truncate” the family {ξz | z ∈ Z} so that it “embeds” into L2(V,E, µ),
then use Proposition 6.6 to evaluate φ(Dµ) on the embedded sections. We prove that φ(Dµ) has
infinite-dimensional range, hence the same is true for χ(α,β)(Dµ).

Let B(x, r′) ⊂ L̃x denote the closed ball of radius r′ about ∗x ∈ L̃x for x ∈ Z. The key technical
point is to choose a radius ρ > 0 so that the restrictions ξx|B(x, ρ) have “good spectral estimates”.
First, there exists r0 > 100 and a Borel subset Z0 ⊂ Z of positive µ̃-measure so that for all x ∈ Z0

||ξx − ξx|B(x, r0)||L̃x
< 1/100 (25)

||ξx − φ(DL̃x
)(ξx|B(x, r0))||L̃x

< 1/100 (26)

Set ρ = r0 + n0 + 2.

LEMMA 6.8 For all n > n0 and x ∈ Tx

〈φn(DL̃x
)(ξx|B(x, ρ)), ξx|B(x, ρ)〉L̃x

≥ 9/10 (27)

Proof: Set ξ+x = ξx|B(x, ρ) and ξx = ξ+x + ξ−x . The spectral theorem yields the estimate, for n > n0

||φ(DL̃x
)(ξ+x ) − φn(DL̃x

)(ξ+x )||L̃x
≤ sup

x
|φ(x) − φn(x)| < 1/100 (28)

Combine the estimates (25), (26) and (28) with the observation φ(DL̃x
)(ξx) = χ[a,b](DL̃x

)(ξx) = ξx
to obtain

||ξ+x −φn(DL̃x
)(ξ+x )||L̃x

≤ ||ξ+x −ξx||+||ξx−φ(DL̃x
)(ξ+x )||L̃x

+||φ(DL̃x
)(ξ+x )−φn(DL̃x

)(ξ+x )||L̃x
< 3/100

The estimate (27) now is immediate, as 99/100 < ||ξ+x ||L̃x
≤ 1. 2
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We are now ready to construct the approximate eigen-sections in L2(V,E, µ). We can assume
that for every x ∈ Z0 the leaf Lx has no holonomy (as this is true for µ̃-a.e. leaf) and we identify
L̃x = Lx ⊂ V via the covering map r. Choose a point z ∈ Z0 with µ̃-density 1, then every transverse
disk Dz ⊂ V through z intersects Z0 is a set Tz = Dz ∩ Z0 of positive µ-measure. We use the
product neighborhood theorem

THEOREM 6.9 (cf. Chapter IV, Theorem 2 [6]) Let L be a leaf with holonomy covering L̃.
Given a compact subset K ⊂ L̃ and ε > 0, there exists a foliated immersion Π:K × (−1, 1)q → V
so that the restriction Π:K × {0} → L ⊂ V coincides with the restriction to K of the covering map
π: L̃→ L. If L has no holonomy, then Π can be chosen to be an embedding.

As Lz has no holonomy, there is a foliated embedding Π:B(z, ρ)×(−1, 1)q → V . The Riemannian
metric on TF|B(x, ρ) depends absolutely continuously on the parameter x, so by restricting to
(−t, t)q ⊂ (−1, 1)q we can also assume that the natural maps B(x, ρ) × w → B(x, ρ) × w′ distort
distances by at most 1 (for the metrics obtained from the Riemannian metrics induced by Π). Choose
Dz = Π(z, (−1, 1)q), set Tz = Π−1(z × Tz) and let

W (z, ρ) = Π(B(z, ρ) × Tz) ⊂ V

For each Borel subset X ⊂ Tz with µ(X) > 0, we introduce ξ(X, ρ) ∈ L2(V,E, µ) with support
on W (z, ρ) by setting

ξ(X, ρ)(w) =





1√
µ(X)

· ξx(w) for w ∈ B(x, ρ) & x ∈ X

0 for w 6∈
⋃

x∈X

B(x, ρ)

Observe that 99/100 < ||ξ(X, ρ)||µ ≤ 1, where || · ||µ is the norm on L2(V,E, µ).

The proof of Theorem 6.7 is completed by

PROPOSITION 6.10 For each Borel subset X ⊂ Tz with µ(X) > 0,

9/10 < ||φ(Dµ)ξ(X, ρ)||µ ≤ 1 (29)

Moreover, if {Xn ⊂ Tz | n = 1, 2, . . .} is a disjoint collection of Borel subsets with µ(Xn) > 0 for
all n, then the subset

{φ(Dµ)ξ(Xn, ρ) | n = 1, 2, . . .} ⊂ L2(V,E, µ)

spans an infinite-dimensional subspace.

Proof: For all n > n0, set En = φ(Dµ) − φn(Dµ) then ||En||µ ≤ 1/100 by the spectral theorem. By
Proposition 6.6 and the choice of φn

φn(Dµ) = Rµ

(
1

2π

∫ n

−n

φ̂(λ) · exp{itDF}dt
)

Using the unit-speed propagation of the geometric operators DL̃x
and the foliation product structure

on W (z, ρ) and Lemma 6.8, we have

〈φn(Dµ)ξ(X, ρ), ξ(X, ρ)〉 =
1

µ(X)
·
∫

X

〈φn(DL̃x
)(ξx|B(x, ρ)), ξx|B(x, ρ)〉Lx

dµ(x)

≥ 1

µ(X)
·
∫

X

9/10 dµ(x)

= 9/10
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This proves the first claim of the proposition. Observe that if X` and Xm are disjoint, then the
supports of φn0

(Dµ)(ξ(X`, ρ) and φn0
(Dµ)(ξ(Xm, ρ) are disjoint, so their images are linearly in-

dependent and the range of φn0
(Dµ) contains the infinite dimensional subspace spanned by the

collection {φn0
(Dµ)ξ(Xn, ρ) | n = 1, 2, . . .}. Now

φ(Dµ) = φn0
(Dµ) + En0

where the operator norm ||En0
||µ < 1/100 so by the estimate (29) and linear algebra, the collection

{φ(Dµ)ξ(Xn, ρ) | n = 1, 2, . . .} also spans an infinite dimensional subspace.

Finally, when a = b we have that for all ε > 0, the range of χ(a−ε,a+ε)(Dµ) is infinite dimensional.
This implies a ∈ σe(Dµ). 2

COROLLARY 6.11 Let DF be a foliation geometric operator, and µ an invariant transverse non-
atomic measure such that µ-almost every leaf in supp(µ) has trivial holonomy. Given a ≤ b, suppose
that Tµ(χ[a,b](DF )) 6= 0. Then for every α < a and b < β, the range of χ(α,β)(Dµ) in L2(V,E, µ) is
infinite dimensional. In particular, if a = b then a is in the essential spectrum of Dµ.

Proof: Lemma 6.4 and the hypothesis Tµ(χ[a,b](DF )) 6= 0 implies that there is a set Z ⊂ V
with positive µ̃-measure so that χ[a,b](DL̃x

) 6= 0 for all x ∈ Z. Then proceed as in the proof of
Theorem 6.7. 2

COROLLARY 6.12 Let (DF , ε) be a graded foliation geometric operator and µ an invariant trans-
verse non-atomic measure such that µ-almost every leaf in supp(µ) has trivial holonomy. Suppose
that the Connes’ foliation index Indµ(DF , ε)) 6= 0, then 0 is in the essential spectrum of DF acting
on L2(V,E, µ).

Proof: Indµ(DF , ε)) = Tµ(ε ◦χ[0,0](DF )), hence Tµ(χ[0,0](DF )) 6= 0 and apply Corollary 6.11. 2

COROLLARY 6.13 Let F be a totally geodesic Riemannian foliation of the compact manifold
V , and DF = d0,1 + δ0,−1 be the leafwise Euler operator. Suppose there is a there is a leaf with a
non-trivial harmonic L2-form. Then 0 is in the essential spectrum of DF acting on L2(V,E).

Proof: The holonomy invariant transverse Riemannian metric for F defines the transverse invariant
measure µ, so that µ̃ is just the smooth volume density on V . The leaves of a totally geodesic
Riemaniann foliation F are all locally isometric, so have isometric holonomy coverings hence satisfy
χ[0,0](DL̃x

)) 6= 0. In a Riemannian foliation, the set of leaves with non-trivial holonomy is a countable
union of codimension-2 subvarieties, so has Lebesgue measure 0. The conclusion then follows from
Theorem 6.7. 2

The obvious question raised by Theorem 6.7 is whether χ[a,b](DF ) 6= 0 implies that χ[a,b](Dµ) 6= 0.
If we choose a descending sequence of smooth functions

χ[a,b] ≤ · · ·ψ` ≤ ψ`−1 ≤ ψ1 = φ

whose limit is χ[a,b] then we are asking whether the intersection of the ranges ψ`(Dµ) is non-trivial.
The answer in unknown for the generality of Theorem 6.7.

The converse of Theorem 6.7 is false. The simplest example arises from the linear foliation Fα

of T2 with irrational slope α. Take DF = −i d
d`

to be the symmetric first-order operator obtained
from differentiating with respect to the leaf length coordinate `. This foliation satisfies all of the
geometric hypotheses of the theorem, but the spectrum of each leaf is absolutely continuous, while
the operator DF acting on C∞(T2,C) is completely pure-point with dense spectrum. This operator
also illustrates the technical difficulty in answering the above question regarding the range of the
limit of the sequence {ψ`(Dµ)}, as it exhibits many properties similar to one with leafwise pure-point
spectrum.
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7 Examples with pure-point spectrum

This work was inspired by the analysis of the simple examples of section 2, but to conclude we will
give examples of totally geodesic Riemannian foliations with far more complicated dynamics and
spectral theory for which our theorems apply.

Here is the basic construction: Let M and N be complete Riemannian manifolds of dimensions
m and q, respectively. Give the manifold M × N the product Riemannian metric, and note it
naturally has two foliations FM and FN whose leaves are the manifolds {M × {y} | y ∈ N} and
{{x} × N | x ∈ M}, respectively. Let α: Γ → Isom(M × N) be an isometric action by a finitely-
generated group Γ so that:

• the quotient space Vα = (M ×N) / {(x, y) ∼ α(γ)(x, y) for γ ∈ Γ} is a compact manifold.

• each diffeomorphism α(γ) for γ ∈ Γ preserves the foliation FM (and hence the orthogonal
foliation FN as well.)

For example, suppose we start with two isometric actions αM : Γ×M → M and αN : Γ×N → N ,
then form the product action α = αM ×αN . If the action α is discrete with compact quotient, then
α satisfies the hypotheses above.

The quotient manifold Vα carries two foliations FM
α and FN

α which are the quotients of FM and
FN respectively. The tangential distributions TFM

α and TFN
α have induced metrics from TM ×N

and M × TN , respectively. This yields a Riemannian metric on TVα by declaring that TFM
α and

TFN
α are orthogonal, for which both TFM

α and TFN
α are totally geodesic Riemannian [19].

A geometric operator DM :C∞
c (EM ) → C∞

c (EM ) extends to a leafwise operator D̃M on the
lifted bundle Ẽ → M ×N . We say that D̃M is invariant under α if there is given a unitary action
α ˜E

: Γ × Ẽ → Ẽ covering α, and the induced action on leafwise geometric operators leaves D̃M
Fα

invariant. We then obtain a foliation geometric operator Dα along FM
α .

The Laplacian ∆N :C∞
c (N) → C∞

c (N) extends to an operator

∆̃N :C∞
c (M ×N, Ẽ) → C∞

c (M ×N, Ẽ)

which is invariant under α, hence descends to an operator ∆FN
α

along FN
α . Moreover, D̃M and ∆̃N

commute as they are locally “uncoupled”, so the quotient operators Dα and ∆FN
α

commute. The
sum D∗

αDα + ∆FN
α

is self-adjoint and elliptic on C∞(E), hence has pure-point spectrum. As Dα

commutes with D∗
αDα + ∆FN

α
its spectrum must also be completely pure-point.

The first examples are intermediate between fibrations and foliations with all leaves dense:

EXAMPLE 7.1 LetX be a compact manifold with a geometric operatorDX :C∞(EX) → C∞(EX).
Let Γ = π1(X) → Γq be a quotient of the fundamental group of X , and DM be the lift of DX to the
the Galois covering M corresponding to Γq. We take αM to be the action of Γ on M by covering
transformations. Let αN : Γ × N → N be an isometric action on a compact Riemannian manifold,
and assume that αN has a fixed-point z ∈ N . Denote by Lz the leaf of FM

α obtained as the quotient
of M × {z}. Then Lz is compact and isometric to X . Note that the orbits of αN cannot be dense,
as the distance from the fixed-point z is a preserved quantity.

For example, a simple way to obtain such αN is to choose N = G a compact Lie group, endowed
with a bi-invariant metric. Let β: Γ → G be a representation. Then the Adjoint action of G on
itself is an isometry which restricts to an isometric action of β(Γ). Set αN = Ad ◦ β and note
that the identity element e ∈ G is a fixed-point. Let Le

∼= X be the leaf through e, then every
λ-eigensection φ on X yields a singular eigendistribution for Dα. Theorem 3.1 implies Hφ will be
an infinite-dimensional λ-eigenspace of Dα. Thus, there is an inclusion σ(DX) ⊂ σpp(Dα).

21



EXAMPLE 7.2 Repeat the construction of Example 7.1, but replace αN with an isometric action
with all orbits dense. This implies the isometry group G of N acts transitively, hence N is isometric
to a compact symmetric space G/H for some closed subgroup H . The action αN is equivalent to
a representation of Γ into G acting on G/H via left translations. The examples of section 2 are of
this form, with N = Tq.

More general examples are obtained by letting Γ′ be a uniform (cocompact) lattice of higher rank
in a semi-simple Lie group [35], which then acts on the associated symmetric space M with compact
orbi-fold quotient. A torsion-free subgroup Γ ⊂ Γ′ will act freely on M with quotient X = M/Γ
a manifold. By Margulis’ Theorem [24] we can assume Γ is arithmetic, so admits a dense faithful
representation into a compact Lie group G. Choose any closed proper subgroup H ⊂ G and take
N = G/H .

Every leaf of FM
α will be dense in Vα, with the generic leaf isometric to X . Suppose the Euler

characteristic of X is not zero, then as the leaves of Fα cover X , the average Euler characteristic of
Fα will also be non-zero. By Corollary 6.12, 0 is in the essential spectrum of the leafwise Laplacian
on forms on Vα.

EXAMPLE 7.3 The product Lie group SL(2,R)×SL(2,R) has a cocompact irreducible torsion-
free lattice subgroup Γ (cf. Chapter 6 [35]). The projection of Γ into each factor SL(2,R) is
dense by irreducibility. Each factor SL(2,R) acts on the 2-dimensional hyperbolic plane H2 =
SL(2,R)/SO(2), so by projecting we obtain two actions αM and αN of Γ on M = N = H2. The
product action α = αM × αN is simply the left action of Γ on

H2 × H2 ∼= SL(2,R)× SL(2,R)/SO(2)× SO(2)

so has quotient a compact 4-manifold Vα. The product action of SL(2,R)× SL(2,R) on H2 × H2

preserves the two factors, hence α preserves the two foliations FM and FN . The leaves of FM
α

are all dense and generically isometric to the hyperbolic plane. In particular, the average Euler
characteristic is non-zero for FM

α . The leaves are non-compact so there are no harmonic L2 0-forms
or 2-forms. We conclude that 0 is in the essential spectrum of the leafwise Laplacian on 1-forms on
Vα.

REMARK 7.4 Note than in the examples above, the leaves of FM
α have exponential growth if Γ is

a uniform lattice in a semi-simple Lie group other than Rq. There seems to be no standard methods
for analyzing the spectrum of the operator Dα on L2(Vα,E) in this case. It would be interesting
to have a representation approach to proving that 0 is in the essential spectrum of Dα, as this may
shed more light on whether 0 is actually a point of infinite multiplicity in the pure-point spectrum.

22



References

[1] J. A. Alvarez Lopez. Modified Laplacians in foliated manifolds. preprint, 1991.

[2] J. A. Alvarez Lopez and Ph. Tondeur. Hodge decomposition along the leaves of a Riemannian foliation.
Jour. Func. Anal., 99:443–458, 1991.
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