Select alternative format: $\underline{B i b T e X} \mid \underline{\text { ASCII }}$

MR1271826 (95e:57049)
Hurder, Steven (1-ILCC); Mitsumatsu, Yoshihiko (J-CHUO)
Transverse Euler classes of foliations on nonatomic foliation cycles.
Differential topology, foliations, and group actions (Rio de Janeiro, 1992), 29-39, Contemp.
Math., 161, Amer.Math. Soc., Providence, RI, 1994.
57R30 (28D15 57R20 58F18)

Doc Delivery

References: 0

Reference Citations: 2

Review Citations: 0

For a $(p+q)$-dimensional manifold with a p-dimensional foliation \mathcal{F}, a foliation cycle is a p dimensional cycle as defined by D. Sullivan [Invent. Math. 36 (1976), 225-255; MR 55 \#6440]. There is a canonical bijective correspondence between foliation cycles and transverse invariant measures.
Compact leaves give rise to foliation cycles (corresponding to atomic transverse invariant measures). A foliation cycle is called almost compact if it is supported in a tubular neighborhood N (normal disk bundle) of a closed p-dimensional submanifold K with fiber disks being transverse to the foliation.
The authors investigate the average Euler class with respect to a foliation cycle C which is the cap product of the Euler class $e(\nu \mathcal{F})$ of the normal bundle of the foliation and the foliation cycle C. They show that if C is almost compact and diffuse (i.e., not supported on a leaf isotopic to K in N), then the average Euler class vanishes. This was shown in their previous paper [Indiana Univ. Math. J. $\mathbf{4 0}$ (1991), no. 4, 1169-1183; MR 93b:58114] as a corollary to the following vanishing theorem: If a foliation has two foliation cycles and at least one of them is non-atomic, then their homological intersection vanishes. In the present paper, the authors use the blowing-up, study its invariant measures and show the vanishing of the average Euler class geometrically. Using this method they also show the above-mentioned vanishing theorem.
\{For the entire collection see 94j:57003\}

Reviewed by Takashi Tsuboi

© Copyright American Mathematical Society 1995, 2004

