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A Survey of Rigidity Theory for Anosov Actions

Steven Hurder

Abstract

We survey the recent results on the topological and smooth classifica-
tion of Anosov group actions, and present some of the many interesting
questions which remain open in this field.

1 Introduction - the main conjecture

“Rigidity” for a given dynamical system means that every nearby dynamical
system (usually in the C1-topology on maps) is topologically equivalent to the
initial system. One cannot expect the conjugacy to be differentiable, because
there are linear invariants associated to periodic points which are not invariant
under C1-perturbation. Smale’s paper [59] laid the foundations for this theory
some 25 years ago, and the subject has seen remarkable developments since
then, especially for hyperbolic dynamical systems. For the the non-hyperbolic
case, the subject is still in development, as pointed out in the opening talk by
J. Palis at this conference.

Rigidity theory for group actions has developed in response to problems
from geometry and Lie Group theory, more than from dynamics. The problem
is roughly the same: prove that a nearby system, usually in the C1-topology
on the generators of the action, is topologically equivalent to the initial action.
However, in the case when the group has additional algebraic structure, it is
possible to demand that more be shown; for example, that the conjugacy be
smooth or real analytic. In certain cases, one can prove a classification result,
that all actions of a certain type originate from an algebraic construction. This
is the content of the celebrated Mostow rigidity theorem for actions of higher
rank lattices on appropriate symmetric spaces, as well as the Franks-Newhouse-
Manning classification theory of Anosov abelian actions on nilmanifolds.
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There is a third class of group actions for which smooth and analytic con-
jugacy to an algebraic action can be proven: when the group is a “higher rank
lattice”, and the action is “irreducible”, Anosov and volume-preserving on a
tori or nil-manifold. In this survey we will introduce the reader to the rapidly
developing research on the rigidity phenomenon possessed by actions of higher
rank lattices on tori and nilmanifolds. There are many techniques in current
use, and more being developed with time, as well as many open questions to
ponder. Questions about understanding the actions of higher rank lattices on
tori were raised at a conference on the topic of “Ergodic Theory, Lie Groups
and Geometry” at the Mathematical Sciences Research Institute, Berkeley in
May 1984. R. Zimmer discussed his (then) recent work on the rigidity of iso-
metric actions of higher rank lattices on compact manifolds [72], and posed the
problem of obtaining similar results for non-isometric actions. Perturbations of
the standard action of SL(n,Z) on Tn give the canonical example of this type,
and it was asked whether they must be conjugate to the standard action. D.
Dried contributed a key remark during these discussions, that the existence of
hyperbolic matrices in SL(n,Z) ought to be of use. The problem set [24] and
Zimmer’s papers [73, 75] discuss some of the open questions at that time.

Many of the same conferencers met for a workshop on “Geometric Rigidity”
at the University of Colorado in Boulder, May 1989, at which many interesting
and exciting results were presented. Among the talks was a report by J. Lewis
on the main theorem of his thesis, that for n ≥ 7, all infinitesimal variations
of the standard action are trivial [37]. This translates into a statement about
the vanishing of the first cohomology group for SL(n,Z) with coefficients in
the module of smooth vector fields on Tn. Lewis proved that work of Zimmer
on the vanishing of the first cohomology with coefficients in the measurable
vector fields [76], which had evolved from the techniques of his isometric rigidity
theorems, could be improved to the smooth case. It was remarked at the time,
by the author and A. Katok, that Lewis’ methods were strongly reminiscent of
the regularity theorem (Lemma 2.3, [43]; Theorem 2.6, [31]) which had been
used in hyperbolic dynamics to prove the Livsic Theorem [38, 39] that certain
measurable cocycles (i.e., a special class of functions on the manifold) were
necessarily smooth.

Two new aspects concerning the rigidity of lattice actions on tori were ob-
tained by the author in August, 1989, and published in the announcement [25]
and paper [28]: given a C1-continuous path of such actions, if the initial action
has a “hyperbolic element” and the periodic points for the action are dense, then
each action in the path is topologically conjugate to the initial action, for small
time at least. This is called topological deformation rigidity for the action, and
holds very generally (see Theorem 2.3 below.) Secondly, a topological conjugacy
between actions with a large commuting “sufficiently hyperbolic” subgroup is
necessarily as smooth as the actions (see Theorem 3.14.) Thus, given a topo-
logical solution of the rigidity problem, very often the group structure and the
dynamics force the conjugacy to be smooth or even real analytic.
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A. Katok and J. Lewis announced at a conference on “Geometric Rigidity”
at Northwestern University, May 1990, the result that a C1-perturbation of the
standard action of SL(n,Z) on Tn is topologically conjugate to the standard
action for n > 4. This was later improved to hold for n ≥ 4, with the proofs ap-
pearing in [34]. Combined with the regularity theory that topological conjugacy
implies smooth conjugacy, this settled Zimmer’s initial question for n ≥ 4.

Subsequent developments have engulfed many related questions, and further
techniques were employed in the study of the problem, especially the cocycle
super-rigidity theory of R. Zimmer [68, 69]. This has lead to global rigidity
results, where the smooth algebraic structure can be deduced without assuming
that the given action is C1-perturbation of an algebraic action. Cocycle super-
rigidity was applied by A. Katok, J. Lewis and R. Zimmer in [35] to reprove
the perturbation rigidity for actions of finite-index subgroups of SL(n,Z) on
Tn, including the case n = 3. The author used cocycle super-rigidity and the
methods of [28] to prove global rigidity for a large class of lattice actions in [29],
as described in Theorem 4.2 below. M. Pollicott has recently [54] given a more
direct proof of the topological rigidity of the standard action of SL(n,Z) acting
on Tn.

The success of the rigidity program for lattice actions has spurred the in-
vestigation into other rigidity phenomenon associated to Anosov actions. For
example, the recent remarkable work of Katok and Spatzier [36] have yielded a
much deeper insight into the smooth classification of Anosov actions of abelian
groups, extending the Franks-Newhouse-Manning theory.

The model examples for the classification results are all derived from the fol-
lowing simple constructions. The natural action of the determinant-one, integer
n× n matrices SL(n,Z) on Rn preserves the integer lattice Zn, hence for each
subgroup Γ ⊂ SL(n,Z) there is an induced “standard action” on the quotient
n-torus,

ϕ : Γ×Tn → Tn.

If Γ contains a hyperbolic matrix A ∈ Γ, then we say that ϕ is an Anosov action.
This example admits a natural generalization to lattice actions on nilmanifolds
(cf. [9]), and there are non-standard affine actions of lattices (cf. section 6, or
[27]) obtained from this basic model by twisting the action with a translational
cocycle. Katok and Lewis have constructed non-affine actions of higher rank
lattices (cf. Example 8 below), suggesting the possibility that there exist non-
affine Anosov actions.

Let us introduce the general formulation of our rigidity program. Let X
denote a compact Cr-manifold without boundary of dimension n with 1 ≤ r ≤
∞. We set r = ω for the case of a real analytic manifold and real analytic
actions. A Cr-action ϕ : Γ×X → X of a group Γ on a X is said to be Anosov
if there exists at least one element, γh ∈ Γ, such that ϕ(γh) is an Anosov
diffeomorphism [2] of X. We say that γ is ϕ-hyperbolic.
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A finitely-generated group Γ is a said to be a higher rank lattice if Γ is a
discrete subgroup of a connected semi-simple algebraic R-group G, with the
R-split rank of each factor of G at least 2, G has finite center and G0

R has no
compact factors, so that G/Γ has finite volume.

The strongest form of rigidity is that there is a set of algebraic models
for the class of group actions under study, and a given action is topologically
conjugate to one of these, which is determined by a finite set of algebraic or
topological invariants of the action. In our context, the models are derived
from the fundamental group of the manifold, and the action is determined by
its homotopy type:

CONJECTURE 1.1 (Anosov Rigidity) Let Γ be a lattice of higher rank,
and ϕ : Γ ×X → X a Cr-Anosov action on a compact smooth manifold X of
dimension n, for 1 ≤ r ≤ ω. Then:

1. There is a finite covering of X by a nilmanifold X̃;

2. There is a subgroup Γ̃ ⊂ Γ of finite index for which the action ϕ|Γ̃ lifts to
an action ϕ̃ on X̃ with a fixed point;

3. The Cr-conjugacy class of ϕ̃|Γ̃ is determined by the homotopy type of the
action. That is, ϕ̃ is topologically conjugate to the standard algebraic
action of Γ̃ induced on the nilmanifold π̂1(X̃)/π1(X̃), where π̂1(X̃) denotes
the Mal’cev completion of the fundamental group of X̃.

2 Topological rigidity of Anosov actions

In this section, we discuss the known results on the topological rigidity of lattice
actions. There are three properties of the standard action of SL(n,Z) on Tn

which we abstract to a general C1-action : the presence of a hyperbolic element,
as introduced in the last section; density of the periodic orbits; and some form
of cohomology vanishing theorem.

A point x ∈ X is periodic for ϕ if the set

Γ(x)
def
= {ϕ(γ)(x) | γ ∈ Γ}

is finite. Let Λ = Λ(ϕ) ⊂ X denote the set of periodic points for ϕ. For each
x ∈ Λ, let Γx ⊂ Γ denote the isotropy subgroup of x. Note that the index
[Γ,Γx] ≤ o(x)! where o(x) = |Γ(x)| is the order of the orbit of x.

The cohomology condition can be imposed universally on the group Γ, or
can be formulated more particularly in terms of the given action. The basic
idea is that we need to have the conclusion of the stability theorem of D. Stowe
for lattice actions with a periodic point [60, 61]. Stowe’s theorem requires that
H1(Γ(x);TxX) = 0 where the coefficients are a Γ(x)-module via derivative
action at x. We also require that the local isotropy representation on TxX be
rigid, which by Weil’s Theorem [65, 66, 67] follows from the vanishing of the first
cohomology for the adjoint representation on gl(TxX). Both of these conditions
are implied by:
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DEFINITION 2.1 Γ satisfies a strong vanishing cohomology condition if:

SVC(N) H1(Γ̃; RN
ρ̃ ) = {0} for every subgroup Γ̃ ⊂ Γ of finite index and

representation ρ̃ : Γ̃→ GL(N,R).

Observe that if Γ satisfies SVC(N), then every subgroup Γ̃ ⊂ Γ of finite index
also satisfies SVC(N). By a very remarkable result of G. A. Margulis, condition
SVC(N) for arbitrary N holds for any subgroup Γ of finite-index in SL(n,Z) for
n ≥ 3, as well as for many other lattices in higher-rank semi-simple Lie groups
(cf. Theorem 2.1, [49]):

THEOREM 2.2 (Margulis) Let Γ ⊂ G be an irreducible lattice in a con-
nected semi-simple algebraic R-group G. Assume that the R-split rank of each
factor of G is at least 2, and that G0

R has no compact factors. Then Γ satisfies
condition SVC(N) for every N > 0. 2

The Kunneth formula in cohomology implies that a product of groups sat-
isfying condition SVC(N) will also satisfy SVC(N), so that Margulis’ Theorem
implies that SVC(N) holds for products of lattices as in Theorem 2.2.

A C0,r-deformation of an action ϕ is a continuous path of Cr-actions ϕt
defined for some 0 ≤ t ≤ ε with ϕ0 = ϕ. An action ϕ is said to be topologi-
cally deformation rigid if every C0,1-deformation of ϕ, with ϕt contained in a
sufficiently small C1-neighborhood of ϕ, is topologically conjugate to ϕ by a
continuous path of homeomorphisms {Ht | 0 ≤ t ≤ ε}. That is, for each γ ∈ Γ
and 0 ≤ t ≤ ε we have

H−1
t ◦ ϕt(γ) ◦Ht = ϕ(γ) (1)

H0 = IdX .

The approach to geometric rigidity for Anosov actions is based on ideas
from dynamical systems, and especially follows the philosophy that an Anosov
dynamical system is determined by its behavior at periodic orbits. The Anosov
hypothesis is used to reduce proofs to questions about the behavior at periodic
orbits. This is a standard method for the study of Anosov diffeomorphisms (cf.
especially [2, 38, 18, 43, 31, 58, 59].)

The author’s approach to topological deformation rigidity studies the be-
havior of the periodic orbits for the system under deformation, following the
above philosophy. The Anosov hypothesis guarantees that these periodic orbits
are always isolated, with a unique fixed-point for their associated linear isotropy
actions. The hypotheses condition SVC(N) on the first cohomology of the group
Γ implies, by the stability theorem of D. Stowe [60, 61], that the periodic orbits
are “uniformly” continuously stable under a C0,1-deformation of an action. The
existence of a ϕ-hyperbolic element γh implies there is a unique candidate fam-
ily of homeomorphisms which satisfy (1), the path which works for ϕt(γh) by
Anosov structural stability. The stability of the fixed-points implies this path
works for the whole group, which yields the first result:
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THEOREM 2.3 (Theorem 2.9 [28]) Let ϕ : Γ×X → X be an Anosov C1-
action on a compact n-manifold X such that the periodic points Λ(ϕ) are dense
in X, and Γ has the SV C(n). Then ϕ is topologically deformation rigid.

The conclusion of Theorem 2.3 is false for the standard action of SL(2,Z) on
the 2-torus: Example 7 below shows that the standard action can be smoothly
deformed through volume-preserving Cω-actions which are not topologically
conjugate to the standard linear action.

A Cr-action ϕ1 is said to be a C1-perturbation of a Cr-action ϕ, for a fixed
finite set of generators {δ1, . . . , δd} of Γ, if the Cr-diffeomorphisms ϕ(δi) and
ϕ1(δi) are C1-close for all i. The action ϕ is said to be Cr-rigid (or topologically
rigid if r = 0) if every sufficiently small C1-perturbation of ϕ is Cr-conjugate
to ϕ, for 0 ≤ r ≤ ∞, or r = ω in the case of real analytic actions. That is, there
is a Cr-diffeomorphism, H1 : X → X, such that for each γ ∈ Γ we have

H−1
1 ◦ ϕ1(γ) ◦H1 = ϕ(γ) (2)

For a C1-perturbation of an Anosov action, if we fix a ϕ-hyperbolic element
γh ∈ Γ, then there is a unique candidate H1 (in the isotopy class of the identity)
for the solution to (2), obtained from Anosov structural stability for ϕ(γh).
In fact, the group Γ is easily seen to be generated by ϕ-hyperbolic elements
{γ1, . . . , γd}, so topological stability is equivalent to showing that there is one
homeomorphism H1 which works for all of the γi. Theorem 2.3 establishes
deformation rigidity by noting that all of these conjugacies agree for the initial
action (as they are then all the identity!) and for t > 0, Stowe’s Theorem and
connectedness of the parameter path implies they must agree on the dense set of
periodic points Λ(ϕt). By continuity of the homeomorphisms {Ht}, they must
agree everywhere. For a C1-perturbation ϕ1 which is not connected to ϕ by
a C0,1-path of actions, this method yields control over only a finite subset of
Λ(ϕ1), so that topological rigidity is not known in the generality of Theorem 2.3.

A. Katok and J. Lewis introduced a new technique in [34] for the study of
the topological rigidity of SL(n,Z) . Their key observation was that for n ≥ 4,
there are many embeddings of the non-trivial product groups SL(n1)×SL(n2) ⊂
SL(n,Z) where n1+n2 = n, whose actions on Tn are normally hyperbolic along
a dense set of invariant tori of lower dimensions. One can apply Stowe’s theory
for these subgroups to obtain perturbation stability for a family of sub-tori
in Tn. This additional information suffices to yield “dynamical control” of all
points in Λ(ϕ1) for a C1-perturbation. That is, the various choices of topological
conjugacies for a hyperbolic generating set of SL(n,Z) can be shown to agree
on the periodic points, so that they obtained:

THEOREM 2.4 (Theorem 1.3 [34]) Let Γ ⊂ SL(n,Z) be a subgroup of
finite index for n ≥ 4. Then the standard action of Γ on Tn is topologically
rigid.

The method of Katok and Lewis also extends to cover case of the integer
symplectic matrices Sp(n,Z) ⊂ SL(2n,Z) and products of the two types of
actions:
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THEOREM 2.5 (Theorem 6.1 [34]) Let Γ ⊂ Sp(2n,Z) be a subgroup of
finite index for n ≥ 3. Then the standard action of Γ on T2n is topologically
rigid.

THEOREM 2.6 (Theorem 6.2 [34]) Let Γi be a subgroup of finite index
in SL(ni,Z) for ni ≥ 4, or Sp(ni,Z) for ni ≥ 3, and set mi = ni or 2ni,
respectively. Then the standard action of Γ1 × · · · × Γk on Tn = Tm1 ×Tmk is
topologically rigid.

Note that Theorem 2.3 yields topological deformation rigidity for Anosov
actions on examples including tori and infra-nilmanifolds, while the methods
of Katok and Lewis yield topological rigidity for certain examples of standard
actions on tori. Extending topological rigidity to other subgroups of SL(n,Z)
and to actions on general nilmanifolds is a central problem. The task appears to
be non-trivial, for one is looking for a dynamical replacement of the use of the
concrete algebraic structures used by Katok and Lewis to control the periodic
structures, both points and submanifolds, for perturbations of Anosov actions
of large groups. For example, in the passage from the full integer matrix group
to a subgroup of finite index, the Katok and Lewis method invokes the solution
of the congruence subgroup problem [50, 3, 4], so that a dynamical theory which
avoids this algebraic result is likely to have great depth.

Recently, Mark Pollicott has developed criteria for a standard Anosov ac-
tion to have simultaneous structural stability homeomorphisms (conjugating
the generators of a C1-close action to the standard generators). His method
replaces control of the conjugating homeomorphisms with a global fixed-point
theorem for the sections of a Banach bundle, where the vanishing cohomology
condition can be viewed as having coefficients in a Banach space. This is a direct
adaptation of Moser’s proof of Anosov C1-stability to group actions, yielding in
particular:

THEOREM 2.7 (Theorem [54]) The standard action A:SL(n,Z)×Tn →
Tn for n ≥ 3 is locally topologically rigid.

Pollicott’s method produces a parameter space for the set of nearby actions
modulo conjugacy, which he shows to be trivial for the groups SL(n,Z). This
approach is attractive for its directness, and also because it is applicable to
actions where rigidity is not expected. In the latter situation, the problem of
classification becomes a question of understanding the parameter space of all ac-
tions modulo conjugacy, which is an absolutely open problem. (cf. Theorem 6.1
below for an example of an action with a non-trivial parameter space.)

The above results are concerned with showing that a C1-perturbation of an
Anosov action is topologically standard. One can also ask the more ambitious
question: what are the hypotheses on an Anosov action which yields global al-
gebraic rigidity? Katok and Lewis have extended their perturbation techniques
to obtain just such a result:
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THEOREM 2.8 (Theorem 2.1 [33]) Suppose that Γ is a subgroup of finite
index in SL(n,Z), n ≥ 4, and ϕ : Γ×Tn → Tn is a C1-action so that:

1. there exists a fixed-point for the action; i.e., there exists x0 ∈ Tnsuch that
ϕ(γ)(x0) = x0 for every γ ∈ Γ.

2. There exists a direct-sum decomposition of Qn as a vector space over Q,

Qn = V1 ⊕V2, V1
∼= Qk, V2

∼= Q`, k + ` = n, k, ` ≥ 2

and a ϕ-hyperbolic element γh ∈ Γ such that ϕ(γh)(Vi) = Vi for i = 1, 2.

Then ϕ is topologically conjugate to the standard linear action on Tn induced
from the action of ϕ∗ on H1(Tn; R).

The other known global rigidity results all follow from the methods of cocycle
super-rigidity, which is discussed in section 5 below.

3 From topological to smooth rigidity

The central problem for Anosov dynamical systems with one generator is to
find conditions under which topological conjugacy implies smooth conjugacy
[5, 8, 19, 20, 31, 40, 41, 42, 44, 43, 47, 48, 53, 52]. For a volume-preserving
Anosov Cr-diffeomorphism of T2 for 1 ≤ r ≤ ω, R. de la Llavé showed in
[40, 41] that the exponents in the stable and unstable directions at periodic
points form a complete set of smooth invariants of conjugacy. That is, if H is
a topological conjugacy between two volume-preserving Anosov actions φ0 and
φ1, such that the exponents of Dφ0 at every periodic point x ∈ T2 agree with
those of Dφ1 at H(x), then H is a Cr-diffeomorphism. The key to this result is
the Livsic Theorem referred to previously, which along with the hyperbolicity
of the action is used to prove that H must be Cr when restricted to the 1-
dimensional stable and unstable leaves of φ0. Remarkably, this implies the map
H is Cr when r = ∞ or ω, and for r > 1 the map H is Cr−ε for some ε > 0
independent of r. (See Lemma 2.3 [43].) This method uses in a key way that
the stable and unstable foliations are 1-dimensional, and are conjugate under
the homeomorphism H.

The interesting actions of lattices on compact manifolds, for which rigidity
can be expected, all require the dimension n ≥ 3. One of the points of the
works [25, 28] was that the method of de la Llavé can be made to work in
higher dimensions as well, by taking advantage of the extra group structure
present for a higher rank lattice. This leads to the notion of a trellised action,
Definition 3.2. Briefly, this is an Anosov action with sufficiently many hyperbolic
elements which preserve a maximally transverse system of “sufficiently regular”
1-dimensional foliations of X. These foliations then yield a dynamically defined
affine structure on X which is stable under topological conjugation.

The problem of showing that a topological conjugacy between Anosov ac-
tions of a higher rank lattice must be smooth, hinges on a much simpler prob-
lem, whether a topological conjugacy between two Anosov actions of an abelian
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group A on X must be smooth. This very interesting question is addressed later
in this section, including the regularity results of the author [28] and of Katok
and Lewis [34] that are part of the classification of lattice actions, and the more
recent work of Katok and Spatzier [36] on regularity of abelian actions.

We begin with the definition of a trellis structure:

DEFINITION 3.1 Let X be a compact smooth n-manifold without boundary.
Let 1 ≤ r ≤ ∞, or r = ω for the real analytic case. A Cr-trellis T on X is a
collection of 1-dimensional, pairwise-transverse foliations {Fi|1 ≤ i ≤ n} of X
such that

1. The tangential distributions have internal direct sum TF1 ⊕ · · · ⊕ TFn ∼=
TX;

2. For each x ∈ X and 1 ≤ i ≤ n, the leaf Li(x) of Fi through x is a Cr-
immersed submanifold of X;

3. The Cr-immersions Li(x) ↪→ X depend uniformly Hölder continuously on
the basepoint x in the Cr-topology on immersions.

T is a regular Cr-trellis if it also satisfies the additional condition:
4. Each foliation Fi is transversally absolutely continuous with a quasi-invar-

iant transverse volume form that depends smoothly on the leaf coordinates.

All methods of proving regularity of a topological conjugacy between Anosov
actions seem to require that the given group action “preserve” a trellis on X,
which we formulate as:

DEFINITION 3.2 (Trellised Action) A Cr-action ϕ : Γ × Xn → Xn is
trellised if there exist:

1. a regular Cr-trellis T = {Fi|1 ≤ i ≤ n} on X;
2. ϕ-hyperbolic elements ∆ = {γ1, . . . , γn} ⊂ Γ such that Fi is invariant

under the Anosov diffeomorphism ϕ(γi). That is, ϕ(γi) maps each leaf of
Fi to a leaf of Fi.

ϕ is an oriented trellised action if (3.2.1) and (3.2.2) hold, and in addition:
3. each of the tangential distributions TFi is oriented and the Anosov diffeo-

morphism ϕ(γi) preserves the orientation of TFi.
ϕ is a volume-preserving trellised action if (3.2.1) and (3.2.2) hold, and in
addition:

4. there is a Cr-volume-form on X which is invariant under the action of the
ϕ-hyperbolic elements γi ∈ ∆.

The elements γi are not required to commute in the definition of a trellised
action. Moreover, we do not require that Fi be the stable, or even the strongest
stable foliation of ϕ(γi). The present definition allows, for example, that there
is one fixed γ ∈ Γ such that γi = γ for all 1 ≤ i ≤ n; such a γ would then be a
“dynamical” regular semi-simple element for Γ.

The author proved the following regularity result for deformations of a trel-
lised action:
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THEOREM 3.3 (Theorem 2.12 [28]) For a closed n-manifold X, suppose
that:

1. ϕ0 : Γ×X → X is a Cr-action with dense periodic orbits, for r = 1,∞ or
ω;

2. Γ is finitely-generated, and satisfies the cohomology condition SV C(n2−1);

3. ϕ0 is trellised by a regular trellis T0, with associated hyperbolic elements
∆ = {γ1, . . . , γn};

4. {ϕt|0 ≤ t ≤ ε} is a C0,r-deformation of ϕ0 such that ϕt(γi) is Anosov for
all 1 ≤ i ≤ n and 0 ≤ t ≤ ε;

5. ϕt is conjugate to ϕ0 by a continuous family of homeomorphisms
{Ht : X → X | 0 ≤ t ≤ ε};

6. there is a Cr-trellis Tt on X such that Ht maps the leaves of F0,i to those
of Ft,i .

Then Ht is a Cr-diffeomorphism for all 0 ≤ t ≤ ε.
Suppose, in addition, that {ϕt|0 ≤ t ≤ ε} is a C0,`-deformation for ` = 1, or

` =∞ if r =∞ or ω, and the leaves of the foliations {Ft,i} depend continuously
on the parameter t in the C`-topology on immersions. Then the diffeomorphisms
Ht depend continuously on t in the C`-topology on maps.

This theorem is technical in its assumptions, and to obtain its hypotheses in
applications it is necessary to impose further assumptions on Γ and the initial
action ϕ0. For example, the class of Cartan actions introduced in [28] are
always trellised. First, let us recall a special property of hyperbolic elements,
which corresponds in the linear case to a matrix γ ∈ SL(n,Z) having a unique
maximally contracting direction:

DEFINITION 3.4 An Anosov map f has a one-dimensional strongest stable
distribution if there exists a Df-invariant, 1-dimensional vector subbundle
Ess ⊂ E− which satisfies an exponential dichotomy: that is, there exists

• a Finsler on TX,

• a continuous splitting of the tangent bundle into Df-invariant subbundles,
TX ∼= Ecs ⊕ Ess,
• constants λ > 1 and 1 > ε > 0

such that for all positive integers m,

‖ D(fm)(v) ‖ > (λ− ε)−m· ‖ v ‖ ; 0 6= v ∈ Ecs (3)
‖ D(fm)(v) ‖ < (λ+ ε)−m· ‖ v ‖ ; 0 6= v ∈ Ess.

The strongest stable distribution Ess is necessarily integrable, and the leaves
of the resulting foliation Fss are Cr-immersed 1-dimensional submanifolds (cf.
Chapter 6 [58]). While the foliation Fss need not even be C1, the immersions
of its leaves vary Hölder continuously in the Cr-topology on immersions into X.
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DEFINITION 3.5 (Abelian Cartan Action) Let A be a free abelian group
with a given set of generators ∆ = {γ1, . . . , γn}. (ϕ,∆) is a Cartan Cr-action
on the n-manifold X if:

• ϕ : A×X → X a Cr-action on X;

• each γi ∈ ∆ is ϕ-hyperbolic and ϕ(γi) has a 1-dimensional strongest stable
foliation Fssi
• the tangential distributions Essi = TFssi are pairwise-transverse with their

internal direct sum Ess1 ⊕ · · · ⊕ Essn ∼= TX.

We say that (ϕ,∆) is a maximal Cartan action if ϕ is a Cartan action, and
for each 1 ≤ i ≤ n, the stable foliation Fi of the Anosov diffeomorphism ϕ(γi)
is 1-dimensional; hence Fi = Fssi .

We say that (ϕ,∆) is an orientable Cartan action if each trellis foliation
Fi is orientable, and the restricted action of each ϕ(γ) on Fi for γ ∈ ∆ is
orientation-preserving.

THEOREM 3.6 (Theorem 2.16 [28])

1. For a Cartan Cr-action (ϕ,∆), the collection of strongest stable foliations
T = {Fss1 , . . . ,Fssn } is a Cr-trellis on X.

2. For a maximal Cartan Cr-action (ϕ,∆), the collection of stable foliations
T = {F1, . . . ,Fn} is a regular Cr-trellis on X.

3. For a volume-preserving maximal Cartan Cr-action (ϕ,∆) with r ≥ 3,
each stable foliation Fi is transversally C1+α for some 0 < α < 1.

If we assume that X is a compact nilmanifold, then the trellis associated to
the generators of a Cartan action are topological invariants:

THEOREM 3.7 (Theorem 1.1 [30]) Let A be a free abelian group, and
(ϕ0,∆) and (ϕ1,∆) be two Cartan C1-actions on a compact nilmanifold X.
Suppose that there exists a homeomorphism H : X → X conjugating the action
of ϕ1 to ϕ0. Then for each 1 ≤ i ≤ n, H maps the strongest stable foliation of
ϕ1(γi) to that of ϕ0(γi).

It is an elementary consequence of the work work of Franks [15] and New-
house [51] that a transitive Anosov action of an abelian group on a torus with a
common fixed-point is topologically equivalent to an algebraic action. This re-
sult is also true for Anosov actions on infra-nilmanifolds using the corresponding
work of Manning [46]:

THEOREM 3.8 (Proposition 2.18 [28]) Let (ϕ,∆) be a Cartan C1-action
on the closed n-dimensional infra-nilmanifold X. Then ϕ has a periodic point
x0, and there is a positive integer p so that the action of the pth-powers ∆p =
{γp1 , . . . , γpm} is topologically conjugate to a standard (algebraic) Cartan action
induced by the map on homotopy, ϕ# : ∆p × π1(X;x0)→ π1(X;x0).
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The author has produced examples of abelian Cartan actions which do not
have a fixed-point for the full action [27], so that the reduction to the subgroup
generated by ∆p is necessary.

We have described the known topological properties of abelian Cartan ac-
tions. Let us now address the question of their smooth rigidity. Theorem 3.8
reduces the problem to showing that a topological conjugacy between abelian
Cartan actions, which by Theorem 3.7 preserves the trellising, is smooth when
restricted to the leaves of the trellis foliations. The techniques of de la Llavé
then directly carry over to show the conjugacy is as smooth as the actions (cf.
section 5, [28].) There are two methods currently known which are sufficient to
guarantee that a conjugacy is smooth when restricted to the strongest stable
leaves:

• Assume that the exponents of the action match up at periodic orbits,
exactly as in the case of T2 ;

• Assume that the dynamics of the Cartan action matches up the unique
Gibbs measures along the strongest stable foliations.

The former approach is taken in [25, 28], the latter in [8, 34, 42]. We state
some results that follow from each of these hypotheses. Theorems 3.9 and 3.11
below generalize to higher dimensions results of R. de la Llavé, J. Marco and
R. Moriyon [40, 41, 44, 43, 47, 48] for X = T2.

THEOREM 3.9 (Theorem 2.19 [28]) Let A be an abelian group generated,
not necessarily freely, by the set ∆ = {γ1, . . . , γn}. Given volume-preserving
Cartan Cr-actions (ϕ0,∆) and (ϕ1,∆) on an n-manifold X, for r = 1,∞ or ω,
suppose that:

1. ϕ0 is a trellised action (i.e., the foliations have additional regularity);

2. H : X → X is a homeomorphism conjugating ϕ1 to ϕ0;

3. For all 1 ≤ i ≤ n and for each x ∈ Λ(ϕ0), the maximally contract-
ing exponent of Dxϕ0(γi) equals the maximally contracting exponent of
DH(x)ϕ1(γi).

Then H is a Cr-diffeomorphism. Moreover, for ` = 1 (or ` = ∞ if r = ∞ or
ω) suppose there are given

4. a C0,`-deformation {(ϕt,∆)|0 ≤ t ≤ 1} through volume-preserving Cartan
Cr-actions, and

5. a continuous family of homeomorphisms {Ht|0 ≤ t ≤ 1} conjugating ϕt to
ϕ0

which satisfy (3.9.2) and (3.9.3) for all 0 ≤ t ≤ 1. Then the Cr-diffeomorphism
Ht depends C0 on t in the C`-topology on Cr-maps.

COROLLARY 3.10 (Corollary 2.20 [28]) Let (ϕ0,∆) be a volume-preserv-
ing trellised Cartan Cr-action on an n-manifold X, for r = ∞ or ω, with A
the abelian group generated, not necessarily freely, by the set ∆ = {γ1, . . . , γn}.
Suppose that H : X → X is a C1-conjugacy between an arbitrary Cr-action
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ϕ1 : A×X → X and the given action ϕ0. Then (ϕ1,∆) is a volume-preserving
Cartan Cr-action, and H is a Cr-diffeomorphism.

For a Cartan action ϕ, let x ∈ Λ be a periodic point, and let Ax be the
isotropy subgroup of x. The linear isotropy representation

Dxϕ : Ax → GL(TxX)

has image in a maximal diagonal subgroup. The choice of a trellis {Fi} for the
action defines a basis in each tangent space TxX for which the action is diagonal.
Introduce the abelian (multiplicative) diagonal group R+ ⊕ · · · ⊕R+, then we
can consider the isotropy representations as homomorphisms Dxϕ : Ax → λn.
An orientable Cartan action is said to have constant exponents if there exist
homomorphisms λi : A → R+ for 1 ≤ i ≤ n such that for each x ∈ Λ and
γ ∈ Ax,

Dxϕ(γ) = λ1(γ)⊕ . . .⊕ λn(γ).

THEOREM 3.11 (Theorem 2.21 [28], Theorem 1.2 [30]) Let (ϕ,∆) be
a Cartan Cr-action on an infra-nilmanifold X, for r = 1,∞ or ω. If ϕ has
constant exponents, then there is subgroup Ã ⊂ A of finite-index so that the re-
striction ϕ|Ã is Cr-conjugate to a standard linear action, and ϕ is Cr-conjugate
to an affine action of A on X.

Katok and Lewis developed a form of “non-stationary Sternberg lineariza-
tion” in the Appendix to [34] which extended the work of B. Anderson (Lemma,
page 145 [1]), and used this to prove for a maximal Cartan action:

THEOREM 3.12 (Theorems 4.2 and 4.12 [34]) Let ϕ : A×Tn → Tn be
a maximal Cartan C∞-action for n ≥ 3 with a fixed-point x0 for the action.
Then the Franks-Newhouse topological conjugacy H: Tn → Tn between ϕ and
the standard action ϕ∗:A×Tn → Tn is C∞.

Finally, we return to the main issue, which is to show that a topological
conjugacy between Anosov actions of higher rank lattices is necessarily smooth.
From the previous discussion, it is clear that we would like to reduce the question
to either of the cases Theorem 3.9 or Theorem 3.12. The idea introduced in
[25, 28] was to look for an abelian subgroup A of the given lattice Γ, then restrict
the action to A and require that the restriction be Cartan. The existence of a
free abelian subgroup A of rank n − 1, for any Γ ⊂ SL(n,Z) of finite index,
can be shown by number-theoretic methods. However, there is a much more
powerful existence theorem which applies to every subgroup Γ ⊂ GZ of finite
index, due to G. Prasad and M. S. Raghunathan:

THEOREM 3.13 (Theorem 2.8 and Corollary 2.9 [55]) Let G be a
semi-simple analytic Lie group and Γ a lattice in G. Let H be a Cartan subgroup
of G, then there exists g ∈ G such that ΓH = Γ∩ g−1Hg is a uniform lattice in
g−1Hg.
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If G is a semi-simple linear group with no compact factors, then we can
apply Theorem 3.13 for H a maximal R-split torus to conclude that a lattice
Γ in G always contains a free abelian subgroup A of rank equal to the rank of
G, such that the generators of A are represented by commuting, diagonalizable
hyperbolic elements. We call the resulting subgroup ΓH a Cartan subgroup for
Γ. The standard action of ΓH on TN will be a Cartan action, if the Lie group
H can be simultaneously diagonalized with by a basis {v1, . . . , vN} of RN so
that each vi is the (unique up to scalar multiples) maximal eigenvector for some
gi ∈ H. This is a Lie algebraic question which can be easily determined in all
examples.

The following two results on the smoothness of a topological conjugacy be-
tween trellised Cartan actions use the strategy of controlling the exponents at
periodic orbits:

THEOREM 3.14 (Theorem 2.15 [28]) For a closed n-manifold X, suppose
that:

1. ϕ0 : Γ×X → X is a Cr-action of Γ with dense periodic orbits, for r = 1,∞
or ω;

2. ϕ0 is trellised by a regular trellis T0 whose associated hyperbolic elements
∆ = {γ1, . . . , γn} determine an abelian Cartan subaction ϕ0|A;

3. Γ is a higher-rank lattice in a Lie group G, and the subgroup A ⊂ Γ
generated by ∆ is a cocompact lattice in a maximal R-split torus of G;

4. ϕ1 : Γ × X → X is a Cr-action such that ϕ1|A is an abelian Cartan
subaction;

5. ϕ1 is conjugate to ϕ0 by a homeomorphism, H : X → X

Then H is a Cr-diffeomorphism.

Katok and Lewis obtained the following global result, which is remarkable
in that only the Anosov hypothesis is made on the dynamics of the action ϕ!
Note that it does not even assume that the given action preserves a volume
form; this is deduced from the dynamics and the given topological conjugacy to
a standard action.

THEOREM 3.15 Let Γ be a subgroup of finite index in SL(n,Z), n ≥ 3,
and ϕ : Γ × Tn → Tn an Anosov C∞-action. Suppose that H : Tn → Tn

is a topological conjugacy between ϕ and the standard action ϕ∗ induced on
Tn ∼= H1(Tn; R)/H1(Tn; Z). Then H is necessarily C∞.

This theorem is typical of the best result one could hope for in the subject.
We do not go into the discussion of the proof, but mention that a key rôle
is played by the ideas of cocycle super-rigidity, which are used to show that
the exponents for an abelian Cartan subaction agree at periodic points. The
mention of super-rigidity brings us to the last phase of the rigidity theory, which
are the global results obtained from combining extensions of super-rigidity with
Theorem 3.11.
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4 Smooth rigidity for Cartan actions

The original “global rigidity result” for volume-preserving smooth ergodic ac-
tions of higher rank lattices on a compact manifold is the cocycle super-rigidity
theorem of R. Zimmer [68, 70]: with appropriate technical hypotheses on the
action ϕ : Γ × X → X, there is a measurable framing of the tangent bundle
TX so that with respect to this framing the matrix-valued derivative cocy-
cle Dϕ : Γ × X → GL(n,R) is almost everywhere given by a homomorphism
ρ : Γ → GL(n,R). In a sense, this says that the action of almost-everywhere
infinitesimally standard.

On the other hand, the study of abelian Cartan Cr-actions shows that the
exponents of the derivative mapping at periodic orbits for the action form a
set of moduli for their smooth classification. In particular, if the exponents
are constant at every periodic orbit, then Theorem 3.11 states that the Cartan
action is affine, and hence there is a finite-index subgroup whose action is stan-
dard. The condition on the constancy of the exponents is equivalent to a type
of super-rigidity conclusion which is valid on the dense set of periodic points.

At a conference on “Geometric Rigidity” at Penn State in March 1991, the
talks by J. Lewis and R. Zimmer discussed an application of super-rigidity
to the classification of actions of finite-index subgroups of SL(n,Z) on Tn.
The conclusion of super-rigidity was shown to apply for these groups, with an
additional hypotheses of an invariant volume form. Lewis and Zimmer then
used Theorem 3.12 to deduce a new global rigidity theorem for such actions.
During the conference (in fact, during discussions by the unruly audience of the
talks!) the following theorem was deduced:

THEOREM 4.1 (Theorem 2 [32]) Let ϕ : Γ × X → X be an Anosov Cr-
action on a compact n-manifold X without boundary, for r = 1,∞ or ω. Suppose
that Γ satisfies Kazhdan’s property T, and the action ϕ preserves an absolutely
continuous probability measure on X. Then there exists ε > 0 so that if ϕ1 is
ε-C1-close to ϕ, then ϕ1 also preserves a Cr-volume form on X.

The point of this is that given an Anosov action of a higher rank lattice
with a smooth invariant volume form, every C1-close perturbation preserves
an invariant volume form! Thus, one of the hypotheses of the Lewis-Zimmer
theorem was eliminated for perturbations of the standard action. One can then
deduce the smooth rigidity of the standard action of a finite-index subgroup
Γ ⊂ SL(3,Z) on T3, which had remained open till that point. The Lewis and
Zimmer approach is detailed in the paper [35].
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Cocycle super-rigidity can be combined with the study of abelian Cartan
actions to obtain further classification of Anosov actions of higher rank lattices,
an approach first described in the preprint [32] and refined in the author’s paper
[29]. First, we make a definition: A Cr-action ϕ : Γ × X → X is said to be
Cartan if there exists an abelian subgroup A ⊂ Γ generated (not necessarily
freely!) by ∆ = {γ1, . . . , γn} ⊂ Γ, such that the restriction of ϕ to A is an
abelian Cartan action on X.

THEOREM 4.2 (Theorem 1 [29]) Let ϕ : Γ × Tn → Tn be a Cartan Cr-
action on the n-torus Tn, for r = 1,∞ or r = ω in the real analytic case.
Suppose that Γ is a higher rank lattice and the subgroup A ⊂ Γ generated by ∆
is a cocompact lattice in a maximal R-split torus in G. If the action ϕ preserves
an absolutely continuous probability measure on Tn, then ϕ is Cr-conjugate to
an affine action.

Combining Theorems 4.1 and 4.2 with the results about abelian Cartan
actions of the last section we obtain:

COROLLARY 4.3 Let ϕ : Γ × Tn → Tn be a Cartan Cr-action on the n-
torus Tn, for r = 1,∞ or r = ω in the real analytic case. Suppose that Γ is a
higher rank lattice and the subgroup A ⊂ Γ generated by the ∆ is a cocompact
lattice in a maximal R-split torus in G. If the action ϕ preserves an absolutely-
continuous probability measure on Tn, then there exists ε > 0 so that if ϕ1 is
ε-C1-close to ϕ, then ϕ1 is Cr-conjugate to the action ϕ.

As an example of this Corollary, let ϕ : Γ×Tn → Tn be a standard action,
and suppose that either:

1. Γ ⊂ SL(n,Z) is a subgroup of finite index for n ≥ 3; or

2. Γ ⊂ Sp(n,Z) ⊂ SL(2n,Z) is a subgroup of finite index of the group of
integer symplectic matrices Sp(n,Z), for n ≥ 2; or

3. Γ is a subgroup of finite-index of a product Γ0×· · ·×Γd ⊂ SL(n,Z), where
each factor group Γi satisfies one of the two above cases, and Γ contains a
hyperbolic element.

Then ϕ is Cr-rigid for r = 1,∞ and for r = ω.
The key point to the proof of Theorem 4.2 is technical extension of a conse-

quence of cocycle super-rigidity for Cartan actions (cf. Corollary 1.2 [77]):

PROPOSITION 4.4 Let ϕ : Γ × Tn → Tn be a Cartan C1-action on the
n-torus Tn which preserves a smooth volume form. Suppose that Γ is a higher
rank lattice and the subgroup A ⊂ Γ generated by ∆ is a cocompact lattice in a
maximal R-split torus in G. Then there exist

• continuous vector fields {~v1, . . . , ~vn} on a finite covering of Tn which give
a framing of the tangent bundle,

• a finite-index subgroup Γ′ ⊂ Γ, and

• a lift ϕ̃ of the restricted action ϕ|Γ′ to this cover,
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so that with respect to this framing, the derivative cocycle Dϕ̃ : Γ′ × Tn →
SL(n,R) is given by a homomorphism ρϕ : Γ′ → SL(n,R).

From Proposition 4.4, we deduce that the restriction of the lifted action ϕ̃
to a finite-index subgroup of A has constant exponents at the periodic points,
and therefore is smoothly equivalent to an affine action. The condition on the
derivatives of the full lifted action of Γ′ shows that this is also affine, from which
the conclusions of Theorem 4.2 are deduced.

The hypotheses of Theorem 4.2 are clearly too strong, and more general
results are certainly possible. For example, the techniques of proof all are true
for actions on infra-nilmanifolds, so the result could have been stated in the
greater generality where Γ acts on a infra-nilmaniofld X. As a second example,
the hypothesis on the invariant measure can be replaced by an assumption on
the induced homotopy action:

THEOREM 4.5 ([29]) Let ϕ : Γ × X → X be an Anosov Cr-action on a
compact nilmanifold X, for r = 1,∞, ω. Suppose that Γ is a higher rank lattice
and the subgroup A ⊂ Γ generated by ∆ is a cocompact lattice in a maximal
R-split torus in G. Suppose that the induced algebraic action of Γ on the nil-
manifold π̂1(X̃)/π1(X̃) obtained from the Mal’cev completion is Cartan. Then
ϕ is Cr-conjugate to an affine action.

Further applications of this method are certain to be developed, so the reader
must regard this report as the situation as of summer 1992.

5 Standard examples

The purpose of this section is to discuss some of the examples of algebraic lattice
group actions on Tn which are rigid by the theorems of the previous sections.
The list is taken from section 7 of [28], and should give the reader an idea of
the available constructions. The proofs of the propositions and lemmas cited
below can be found there. Also, we do not go into examples of lattice actions
on nilmanifolds; this is discussed in [29]. Here is an overview of the examples:

• finite index subgroups of the integer matrices acting on the torus;
• subgroups of the integer symplectic matrices.
• lattices obtained from Weyl’s technique of restriction of scalars. (The issue

with these examples is to obtain the Anosov condition.)
• combinations of these three types of examples via the constructions of

geometric sums, products, diagonal actions and “arithmetic products”.

We begin by recalling some of the standard facts regarding lattices. The
fundamental result on the existence of lattices is due to Borel and Harish-
Chandra ([6]; cf. also Chapter XIV, [56].)

THEOREM 5.1 (Borel–Harish-Chandra) Let G ⊂ SL(N,C) be a semi-
simple algebraic group defined over Q. Then the group of integer points GZ is
a lattice in the group of real points GR. 2
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The group Γ = GZ preserves the integer lattice in RN , so descends to a standard
action on TN .

The Margulis Vanishing Theorem 2.2 discussed in section 2 implies that
SVC(N) holds for all N ≥ 1 for every subgroup Γ ⊂ GZ of finite index, where G
is as in Theorem 5.1, (GR)0 has no compact factors, and GR has R-split rank
at least 2.

EXAMPLE 1 (SL(n,Z)) Let (Q/Z)n denote the rational torus in Tn. The
following is an easy exercise.

LEMMA 5.2 Let Γ ⊂ SL(n,Z) contain a hyperbolic element for the standard
action of Γ on Tn. Then the periodic points of the standard action of Γ on Tn

are Λ = (Q/Z)n, and hence are dense. 2

For a subgroup Γ ⊂ SL(n,Z) of finite index for n ≥ 3, the Margulis Vanish-
ing Theorem 2.2 implies that SVC(N) holds for all N ≥ 1.

The Prasad & Raghunathan result (Theorem 3.13 above, or Theorem 2.8
and Corollary 2.9 [55]) yields the following:

LEMMA 5.3 Let Γ ⊂ SL(n,Z) be a subgroup of finite index. Then there a
subset of commuting hyperbolic elements, ∆ ⊂ Γ, so that each γi ∈ ∆ has a 1-
dimensional contracting eigenspace Ei ⊂ Rn with internal direct sum E1⊕· · ·⊕
En ∼= Rn. Consequently, the standard action of Γ on Tn is maximal Cartan.

It is a standard question to produce explicit matrices of the form promised
by the Prasad & Raghunathan theorem. This is accomplished using methods
of number theory. Our thanks to Leon McCullough for the following example:

LEMMA 5.4 The following matrices in SL(3,Z)

A1 =

 −2, 1, 0
−1, 0, 1
−2, 1, 1

 A2 =

 1,−2, 1
0,−2, 1
1,−1, 0

 A3 =

 0, 1,−1
1, 1,−2
1, 0,−2


are hyperbolic, satisfy the identities:

A1A2 = A2A1 = A1 +A2

A1A3 = A3A1 = A2 +A3

A2A3 = A3A2 = A1 +A2

and are roots of the characteristic polynomial x3 + x2 − 2x− 1 = 0. 2

COROLLARY 5.5 Let Γ ⊂ SL(n,Z) be a subgroup of finite-index. Then the
standard action of Γ on Tn is Cr-rigid for r = 1,∞, ω.

EXAMPLE 2 (Sp(n,Z)) The previous example for SL(n,Z) corresponds to
the “A” series of simple Lie groups. There are corresponding Anosov actions
for the symplectic groups, or the “C” series. The rigidity of the standard action
of one Anosov element in Sp(2,Z) was studied in [14].

The strength of the Prasad-Raghunathan theorem is illustrated by its ap-
plication in the symplectic case:
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LEMMA 5.6 Let n ≥ 1 and let Γ ⊂ Sp(n,Z) be a subgroup of finite index.
Then there exists commuting matrices δ1, . . . , δn ∈ Γ such that the set ∆ =
{δ1, δ−1

1 , . . . , δn, δ
−1
n } generates an abelian subgroup A whose standard action

on T2n is trellised.

COROLLARY 5.7 Let Γ ⊂ Sp(n,Z) be a subgroup of finite-index. Then the
standard action of Γ on T2n is Cr-rigid for r = 1,∞, ω.

EXAMPLE 3 (SL(n,O(k))) Let k ⊂ R be an algebraic number field of de-
gree d over Q, letO(k) be the ring of integers for the field and let SL(n,O(k)) be
the subgroup of SL(n,k) with entries from O(k). The “Restriction of Scalars”
technique of A. Weil yields a wide range of lattice actions.

PROPOSITION 5.8 For n ≥ 2 and Γ ⊂ SL(n,O(k)) a subgroup of finite
index,

1. there exists an analytic “standard” action of Γ on Tdn, and
2. if the group GR = Rk/Q(SL(n,R))R of real points (for the group G ob-

tained by the restriction of scalars) has no compact factors, then the stan-
dard action of Γ is Anosov.

Proof. We recall the proof of this, as the technique is not well-known (cf. pages
115-116, [71].) Let {σ1, . . . , σd} be distinct field embeddings of k into R with
σ1 the identity inclusion. Each embedding σi defines a map σni : kn → Rn, and
so we get a Q-linear map

σn : kn −→ Rdn

σn(w) = (σ1(w), . . . , σd(w))

whose extension to R over Q is an isomorphism. This induces an isomorphism
of SL(n,k) with an algebraic subgroup G ⊂ SL(dn,R) which is defined over Q.
The image of the group SL(n,O(k)) is then seen to equal the integral points GZ

of G. We define the standard action of SL(n,O(k)) on Tdn via this embedding.
The group G defined over k is equal to the product of the embeddings

Gσi = σi(SL(n,k)), and the set of real points has a similar product structure

GR
∼=

d∏
i=1

(Gσi)R. (4)

The image of σn(Γ) ⊂ GR is a lattice by Weil’s theory of restriction of scalars, so
that if no factor (Gσi)R is compact, then we can find a Cartan subgroup for GR

containing a hyperbolic element for the standard action. Then by Theorem 3.13
of Prasad and Raghunathan, the image of Γ will contain a hyperbolic element.
2

The usual application of Weil’s theory of restriction of scalars is to produce
cocompact lattices in an arithmetic Lie group (cf. Example 6.1.5, [71], or page
216, [56]). In these constructions, the field extension has degree 2, with (Gσ1)R

isomorphic to (SL(n,k))R and (Gσ2)R isomorphic to a compact Lie group.
These examples do not give Anosov standard actions.
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COROLLARY 5.9 Let n ≥ 3 and let k be an algebraic number field of degree
d over Q, such that the group Rk/Q(SL(n,k))R has no compact factor. For
any subgroup Γ ⊂ SL(n,O(k)) of finite index, the standard action of Γ on Tdn

is Cr-rigid for r = 1,∞, ω.

EXAMPLE 4 (Geometric Sums and Products) Let {ϕi : Γi×Xi → Xi |
1 ≤ i ≤ d} be given Cr-actions. Then the direct product action of Γ = Γ1 ×
· · · × Γd on X = X1 × · · · × Xd is obtained by letting the subgroup Γi act on
the factor Xi via ϕi and via the identity on Xj for j 6= i, and then extending
to all of Γ via products. The following is easy to check:

LEMMA 5.10 Suppose that each action ϕi for 1 ≤ i ≤ d is Anosov (respec-
tively trellised, Cartan). Then the direct product action ϕ : Γ × X → X is
Anosov (respectively trellised, Cartan).

COROLLARY 5.11 For 1 ≤ i ≤ d, let Γi ⊂ SL(ni,Z) be isomorphic to a
higher rank lattice, and so that the standard action ϕi : Γi×Tni → Tni is Cartan
with linear trellising. Then for any finite-index subgroup Γ ⊂ Γ1 × · · · × Γd, the
restricted product action ϕ = ϕ1 × · · · × ϕd of Γ on Tn = Tn1 × · · · × Tnd is
Cr-rigid for r = 1,∞, ω.

Suppose that each space Xi = Tni for integers ni > 2, and Γi ⊂ SL(ni,Z).
The geometric tensor product of the standard actions {ϕi : Γi×Tni → Tni |1 ≤
i ≤ d} is obtained by taking the induced action of the lattices Γi on the tensor
product Rn1 ⊗ · · · ⊗Rnd , and observing that this preserves the tensor product
lattice Zn1⊗· · ·⊗Znd . We obtain the tensor product action ϕ of Γ1×· · ·×Γd on
TN where N = n1 · · ·nd. Then for any finite-index subgroup Γ ⊂ Γ1×· · ·×Γd:

LEMMA 5.12 Suppose that each action ϕi for 1 ≤ i ≤ d is Anosov (respec-
tively trellised). Then the restricted tensor product action ϕ : Γ×TN → TN is
Anosov (respectively trellised).

Remark: Note that a tensor product action will never be a Cartan action, as
it is impossible to have a basis of maximally contracting eigenspaces.

COROLLARY 5.13 For 1 ≤ i ≤ d, let Γi ⊂ SL(ni,Z) be isomorphic to a
higher rank lattice, and so that the standard action ϕi : Γi × Tni → Tni is
linearly trellised. Then the restricted tensor product action ϕ = ϕ1 ⊗ · · · ⊗ ϕd
of Γ on TN , for N = n1 · · ·nd, is C0,r-deformation rigid for r = 1,∞, ω. 2

EXAMPLE 5 (Diagonal Actions) The d-fold diagonal action of an action
ϕ : Γ × X → X is obtained by restricting the product action of d-copies of ϕ
to the d-fold diagonal. There is a slightly more general construction available.
Let actions {ϕi : Γ×Xi → Xi|1 ≤ i ≤ d} be given, then we obtain an action of
Γ on X = X1 × · · · ×Xd by setting

ϕ(γ)(x1, . . . , xd) = (ϕ1(γ)(x1), . . . , ϕd(γ)(xd))
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LEMMA 5.14 Let ϕ be the generalized diagonal action obtained from the
Anosov actions {ϕi|1 ≤ i ≤ d}. If there exists γ ∈ Γ such that γ is ϕi-hyperbolic
for all 1 ≤ i ≤ d, then ϕ is an Anosov action. 2

COROLLARY 5.15 Let {ϕi : Γ × Xi → Xi | 1 ≤ i ≤ d} be Anosov actions
with dense periodic orbits, with a common hyperbolic element γ. If Γ satisfies the
cohomology condition SV C(n2) for n = n1 + · · ·+nd, then ϕ is Ck-topologically
deformation rigid. 2

A diagonal action with φi = φ the same for all i can not be Cartan for d ≥ 2,
as the dimensions of the eigenspaces for the hyperbolic elements are always at
least d; hence the strongest stable direction is always of dimension at least d.

Diagonal actions provide a large collection of examples where topological
deformation rigidity is the best result known. It seems difficult, at the present
state of research, to decide whether these actions are differentiably rigid. A
natural test case is to show they are C1-deformation rigid; for example, by
studying the properties of cocycles over product actions.

EXAMPLE 6 (Arithmetic Products) Let {ϕi : Γi × Tni → Tni |1 ≤ i ≤
d} be Anosov standard actions of arithmetic subgroups Γi = (Gi)Z, where
Gi ⊂ SL(ni,R) is a connected semi-simple algebraic group defined over Q,
with real-rank at least 2. There is an alternate construction of a standard
action of a group Γ on a torus constructed from this data, that we call the
arithmetic product.

The product group G = G1 × · · · × Gd ⊂ SL(n,R) is defined over Q,
for n = n1 + · · · + nd. The group of real points GR admits an arithmetic
irreducible lattice subgroup Γ ⊂ GR. That is, for some N ≥ n there exists
a group G̃ ⊂ SL(N,R) containing a lattice Γ̃ = G̃Z, and there is a natural
homomorphism π : G̃→ G whose restriction to Γ̃ is an isomorphism.

The arithmetic product of the actions {ϕi} is the action of Γ on TN via the
inverse map

(π|Γ̃)−1 : Γ −→ SL(N,Z) .

This construction is similar to Example 3. To determine whether such an
action is Anosov or Cartan, we first must determine whether G̃ contains a non-
trivial compact factor. This entails a more extensive discussion of cases, which
we omit.

6 Non-standard examples

An area of mathematics needs a wealth of examples to flourish; after seeing some
of the available algebraic constructions of standard examples in the last section,
we conclude this survey with a collection of non-standard examples. Again, this
is not an exhaustive list, but should suggest to the reader the possibilities, and
hopefully motivate the construction of further examples. Examples are given
of:
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• a deformation of the standard action of SL(2,Z)

• non-Anosov but almost everywhere hyperbolic lattice actions (after Katok
& Lewis)

• affine actions with no fixed-points

• normally hyperbolic actions

and conclude with a “wish list” of examples we would like to see.

EXAMPLE 7 (A deformation of the standard action of SL(2,Z)) We
construct a 1-parameter family of real analytic actions of SL(2,Z) on T2 which
is not topologically deformation rigid. Thus, the Anosov hypotheses is not
sufficient for the topological rigidity of a group action with more than one
generator and additional hypotheses are necessary to obtain rigidity.

THEOREM 6.1 (Theorem 7.22 [28]) There exists an analytic family {ϕt |
0 ≤ t ≤ 1} of volume-preserving real analytic actions of SL(2,Z) on T2, with
ϕ0 = ϕ the standard action, such that ϕt is not topologically conjugate to ϕ for
all 0 < t ≤ 1.

Proof. First recall:

LEMMA 6.2 1. The pair of matrices A =
[

0 −1
1 0

]
and B =

[
1 −1
1 0

]
generate SL(2,Z).

2. A has order 4, B has order 6, and A2 = B3 = −I.

3. SL(2,Z) is isomorphic to the amalgamated product (Z/4Z)
×

Z/2Z (Z/6Z)

generated by {A,B}.

Our construction is based on deforming the action of one of these generators
using the flow of a vector field. The deformation is required to preserve the rela-
tions satisfied by A and B. The proof that the new actions are not standard then
follows from analyzing the invariant manifolds for a particular element. Folkert
Tangerman has constructed similar deformations from a geometric viewpoint,
and described the construction as “opening up an invariant circle”. Thus, this
is a kind of “lattice-action earthquake”, in reference to Thurston’s method of
deforming hyperbolic structures.

Let ~Z1 = x ∂
∂y − y

∂
∂x be the rotational vector field about the origin. Then

for any smooth function ψ(s), the vector field ~Zψ = ψ(x2 +y2) · ~Z1 is divergence
free.

We first form a non-trivial family of C∞-deformations, then indicate the
modifications necessary for the real analytic case. Choose a smooth function ψ
such that ψ(0) = 1, ψ(s) ≥ 0 for all s, and ψ(s) = 0 for s ≥ 10−4. Form the
translate of the vector field ~Zψ, centered at the point [1/2, 0] ∈ R2:

Z+ = DT[1/2,0](Zψ) (5)
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Introduce the companion vector field Z− = D(A2)(Z+) = D(−I)(Z+), and
form the sum Z = Z+ + Z−. Note that D(A2)(Z) = Z.

We want the vector field Z to be invariant under the translation action of
the lattice Z2, so we form the infinite sum

Z̃ =
∑

[m,n]∈Z

DT[m,n](Z) (6)

which is well-defined since the supports of the translates are disjoint.
Let F (t) : R2 → R2 be the flow of the vector field Z̃, and observe that

F (t) ◦A2 = A2 ◦ F (t) (7)
T[m,n] ◦ F (t) = F (t) ◦ T[m,n]. (8)

From equation (8) the maps F (t) descend to a family of diffeomorphisms of T2

denoted by F̃ (t). Moreover, from the identity (7) we have that{
F̃−1(t) ◦ ϕ(A) ◦ F̃ (t)

}2

= −I (9)

which by Lemma 6.2 implies there is a well-defined C∞-deformation of the
standard action ϕ of SL(2,Z), by declaring that

ϕt(A) = F̃ (t)−1 ◦ ϕ(A) ◦ F̃ (t) (10)
ϕt(B) = ϕ(B) (11)

On can then check that this family of deformations is non-trivial:

LEMMA 6.3 ([28]) If there exists a homeomorphism H : T2 → T2 conjugat-
ing ϕt to ϕ0 , then t = 0.

Analytic deformations are easily obtained by using the cut-off function
ψ(s) = exp{−(100s)2}. The support of the exponential function is no longer
compact, but the sum (6) will still yield an analytic vector field, for the index set
grows linearly with the weight |n|+|m|, and the function exp{−10000(n2+m2)}
decays super-exponentially fast in this weight.

EXAMPLE 8 (Non-affine ergodic lattice actions) Katok and Lewis
describe in section 4 of [33] a family of examples of actions on compact manifolds
by a higher rank lattices, which are smooth, volume-preserving and ergodic,
but not affine. The constructions are “elementary”, in that the authors take
a standard action and “blow-up” some of the periodic orbits. To produce an
invariant volume form for the blow-up requires a change in the smooth structure
on the manifold in a neighborhood of the divisor along which the blow-up occurs.
Thus, the construction is actually quite sophisticated in its overall approach.
These examples are notable for while they are derived from linear actions, the
end result is not affine. Moreover, there is a great latitude available in the
construction, which suggests that these type of ideas will be very rewarding
of further development. Katok and Lewis conjecture that this sort of example
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is the “typical case” for ergodic actions of higher rank lattices, Conjecture 1.1
[33]. This would fit perfectly with M. Gromov’s program to study the invariant
geometric structures of large group actions [17].

Let us describe intuitively the idea of Katok and Lewis’ construction. The
action of GL(n,R) on Rn fixes the origin 0 and is C1 near 0, hence induces an
action on the blow-up of Rn at 0. (For details on the blow-up construction, see
for example the book by Griffiths and Harris, [16].) Restricting this construction
to a lattice subgroup Γ ⊂ SL(n,Z) ⊂ GL(n,R), we see that there is an induced
action of Γ on the blow-up of this fixed-point.

Given a higher-rank lattice Γ ⊂ SL(n,Z), there is a finite set of fixed-points
for a standard Anosov action on Tn. Choose a subset {xi, . . . , xd} of the fixed-
points, then about each xi we can perform (locally) the blow-up construction.
Let M denote the resulting real-analytic manifold obtained from inductively
blowing up this set of points, Tn, with {Z1, . . . , Zd} the codimension-one ana-
lytic subvarieties corresponding to the blow-up of the points. Then we obtain
a real analytic action of Γ on M for which the submanifolds Zi are invariant.
Moreover, the action on the complement

M − {Z1 ∪ · · · ∪ Zd} ∼= Tn − {x1, . . . , xd}

is equivalent to the linear action. It follows that the action of Γ on M is ergodic
and “uniformly Anosov” on a dense open subset.

The volume form on Tn restricts to one on Tn − {x1, . . . , xd} and hence
there is a smooth invariant density on M . Unfortunately, this form is zero on
the divisors {Z1 ∪ · · · ∪ Zd}. Katok and Lewis then show that by a change of
coordinates in the normal bundle to these divisors, the singular volume form
becomes non-singular and invariant for the resulting action of Γ. This is a very
delicate construction, and the reader is referred to page 18 of [33] for details.

This construction of Katok and Lewis is similar to one used by O. H. Ras-
mussen to construct new examples of group actions on the two-sphere, whose
secondary classes are independently variable [57]. Away from the theme of this
paper, it is interesting to speculate whether the above examples have non-trivial
characteristic invariants associated with them, in the spirit of [21, 23]?

The projectivizing of the linear actions of lattices was also the key tech-
nique for J. Heitsch’s construction of families of group actions whose secondary
classes varied continuously and independently [22]. The Heitsch construction
yields continuous families of actions, and is easily adapted to the situation of
Katok and Lewis. Thus, one can obtain continuous families of lattice actions
which are presumably not smoothly equivalent, by reason of characteristic class
techniques. They are conjecturally not topologically equivalent either.

EXAMPLE 9 (Affine actions without fixed-points) The standard
actions of subgroups of SL(n,Z) on Tn all fix the coset of the origin. The prob-
lem of classifying the Anosov actions of higher rank lattices raises the question
whether a lattice action that preserves an affine structure must have a fixed-
point? A periodic point? The existence of a fixed-point is a problem concerning
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the torsion elements in a certain cohomology group associated to the action.
The following is an example of actions for which this group is non-trivial.

THEOREM 6.4 (Theorem 1 [27]) For each n ≥ 2 and p > 1, there exists
a lattice subgroup Γ(n, p) ⊂ SL(n,Z) and an affine action ϕ̃ with linear part
given by the standard action of Γ(n, p) on Tn, such that:

1. SL(n,Z)p2 ⊂ Γ(n, p) ⊂ SL(n,Z)p, where SL(n,Z)p denotes the congru-
ence p-subgroup;

2. the restricted action of ϕ̃ to SL(n,Z)p2 is the standard linear action;

3. the affine action ϕ̃ of Γ(n, p) has dense periodic orbits, but has no fixed-
points.

Our construction produces groups Γ(n, p) ⊂ SL(n,Z) with non-trivial torsion
classes in H1(Γ(n, p); Tn

ϕ0
), where ϕ0 is the standard linear action of Γ(n, p)

on Tn. These classes then correspond to affine actions of Γ(n, p) on Tn with
periodic orbits, but no fixed-points.

Let Z/pZ denote the cyclic group of order p. For each n > 1, there is a
natural “mod-p” quotient map Πp : SL(n,Z) → SL(n,Z/pZ), whose kernel
is the congruence-p subgroup denoted by SL(n,Z)p. Given a subgroup Γ ⊂
SL(n,Z), define Γq = Γ∩SL(n,Z)p. Observe then that Γq is normal with finite
index in Γ.

Recall that ϕ0 : Γ × Tn → Tn is the standard action. For a subgroup
Γ ⊂ SL(n,Z), define the subgroup of Γ-invariants in Tn,

I(Γ) = (Tn)Γ = {x ∈ Tn|x = ϕ0(γ)(x) for all γ ∈ Γ}

LEMMA 6.5 There is a natural map Hom(Γ, I(Γ)) i∗−→ H1(Γ,Tn
ϕ0

).

Proof. ϕ0 restricts to the trivial action on I(Γ), so the inclusion i : I(Γ) ⊂ Tn

induces a well-defined map Hom(Γ, I(Γ)) ∼= H1(Γ; I(Γ)ϕ) i∗−→ H1(Γ,Tn
ϕ0

). 2

Let 1
pZ denote the additive group of fractions with denominator 1

p , and let
Tn
p = ( 1

pZ)n mod Zn be the “1/p-points” for the n-torus.

LEMMA 6.6 For each p ≥ 1, I(SL(n,Zp)) = Tn
p .

The proof of Theorem 6.4 follows by exhibiting a lattice subgroup Γ(n, p)
such that SL(n,Z)p2 ⊂ Γ(n, p) ⊂ SL(n,Z)p and

i∗ : Hom(Γ(n,p),Tn
p)−→H1(Γ(n, p),Tn

ϕ)

is not trivial. Let Ua denote the n × n matrix with all entries zero, except
for the top right entry which equals a, and Id be the n × n identity matrix.
Then A = Id + Up ∈ SL(n,Z)p is an upper triangular matrix. Note that
Ap = Id+Up2 , so that A generates a cyclic subgroup of order p in the quotient
group SL(n,Z)p/SL(n,Z)p2 . Define Γ(n, p) to be the group generated by A
and the subgroup SL(n,Z)p2 . Let Π : Γ(n, p) → Z/pZ be the quotient map
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onto the cyclic group of order p, where the kernel of Π is SL(n,Z)p2 , and
Π(A) = 1 ∈ Z/pZ.

For 1 ≤ i ≤ n, define homomorphisms τi : Γ(n, p)→ Tn
p by

τi(γ) =
Π(γ)
p
· ~ei mod Zn

where ~ei = (0, . . . , 1, . . . , 0) is the ith basis vector of Zn.

LEMMA 6.7 The elements {i∗[τ1], . . . , i∗[τn−1]} ∈ H1(Γ(n, p),Tn
ϕ0

) are lin-
early independent over Z/pZ.

COROLLARY 6.8 There is an inclusion (Z/pZ)n−1 ⊂ H1(Γ(n, p); Tn
ϕ0

).

The points in the rational torus Qn/Zn are all periodic for the standard
action, and also for the translation action by a rational number. It follows
that Qn/Zn is contained in the set of periodic orbits for each affine action ϕτ
associated to a class [τ ] = a1 · [τ1] + · · ·+ an−1 · [τn−1] ∈ H1(Γ(n, p),Tn

ϕ), hence
Λ(ϕτ ) is dense. When [τ ] 6= 0, there are no fixed-points for the affine action ϕτ .
Theorem 6.4 now follows.

A more general formulation of this construction of affine actions is given in
section 4 of [27] where the cohomology methods above are replaced with their
dynamical counter-parts.

EXAMPLE 10 (Normally hyperbolic actions) There are a plethora
of constructions of lattice actions which are algebraic but not Anosov. For
example, the typical examples studied by R. Zimmer [73, 75, 68] are of this
type: take a cocompact lattice Λ ⊂ G in a semi-simple Lie group G and form
the compact quotient M = G/Λ. Then every homomorphism ρ : Γ → G
induces a left action ρ̂ of Γ on M . The tangent bundle TM admits a framing
by the quotient of a right-invariant framing of TG, and the derivative action of
an element g ∈ G is described in terms of the adjoint representation Ad(g) ∈
GL(TeG). For a semi-simple connected Lie group G, the matrix Ad(g) always
centralizes at least one direction in TeG, so that the action γ̂ is never Anosov
for γ ∈ Γ. On the other hand, these actions are often normally hyperbolic with
respect to a foliation of M , in the sense of Chapter 7 of [45].

There is a tremendous interest in extending the methods of Anosov actions
described in this survey, to the normally-hyperbolic examples just described.
This would give a dynamical approach to the rigidity results of R. Zimmer,
whose proofs have relied on techniques derived from super-rigidity. For ex-
ample, dynamical methods have been used by R. Feres in [12, 10, 11, 13] to
extend previous work of Zimmer [74] on higher rank actions. G. Stuck has
mixed dynamical techniques with methods of super-rigidity for the study of
codimension-one actions of semi-simple groups [63, 62, 64].

There are many other types of examples of normally hyperbolic actions. Let
us give one more, which is very stupid, but still suggestive. Take any Anosov
action ϕ : Γ × X → X, and take any compact smooth manifold Y without
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boundary. Then the group Γ also acts on the product manifold X × Y , via the
identity action on Y !

This type of construction can be made slightly more elaborate, by consid-
ering a fibration π : V → X whose fibers are all diffeomorphic to Y . We then
assume there is given an action of Γ on the fibration π : V → X, which is
Anosov on the base space X. That is, ϕ : Γ × V → V preserves the fibers of
the map π and induces a smooth action of the quotient X. This will again be
normally hyperbolic.

There is another way to extend the product action, in a slightly less trivial
fashion. Given an Anosov action ϕ : Γ × X → X, and an arbitrary smooth
action of Γ on Y . Suppose that these actions lift to the universal covers X̃ and
Ỹ of X and Y , respectively. (For example, the action on X always lifts if ϕ
is a standard action.) Then there is a diagonal action of Γ on the product of
the universal coverings, X̃ × Ỹ . Assume that there is given a group Λ and a
right action of Λ on X̃ × Ỹ , which commutes with the left diagonal action of
Γ, so that the quotient M = X̃ × Ỹ /Λ is a compact manifold. Then there is
an induced action on M is normally hyperbolic. For example, the lattices Λ
investigated by Cairns and Ghys (Example 2.4, [7]) are of this type. One can
modify their construction so that there is an Anosov action of a group Γ on one
of the factors, then the left and right actions will automatically commute and
we obtain examples of the type under discussion.

It is expected that many of the topological rigidity results for Anosov ac-
tions carries over to normally hyperbolic actions, as this is often true for the
techniques used (cf. [45, 60, 61].) For example, the following extension of The-
orem 2.3 was announced in [26]:

THEOREM 6.9 Let π : V → X be a fibration, where V and X are connected
manifolds without boundary. Suppose there is given a C1-action ϕ : Γ×V → V
which preserves the fibers of the fibration π, and induces an Anosov C1-action
ϕ0 on the base space X. Assume that the periodic points Λ(ϕ0) are dense in X,
and Γ satisfies the condition SV C(n2) where X has dimension n. Then ϕ is
topologically deformation rigid.

We conclude with a short list of questions and problems:

QUESTION 6.10 1. Are there topologically trivial C1-deformations of an
Anosov action of a higher rank lattice which are not C1-trivial?

2. Is there an affine Anosov action of a higher rank lattice without a periodic
orbit?

3. Is there a classification of the affine Anosov actions of higher rank lat-
tices? ( If one assumes there exists a periodic orbit for the action, then
this amounts to calculating the torsion in the cohomology of the standard
representation of a subgroup of SL(n,Z) acting on Tn.)

4. Give concrete examples of Anosov actions that arise from the restriction-
of-scalars technique (Example 3).
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5. Give an example of an action of an irreducible rank one lattice in SL(n,Z)
with homological dimension greater than one, whose standard action on
Tn is not deformation rigid. That is, extend the construction of Example 7
to the fundamental group Γ of a finite-volume, negatively curved manifold
of dimension greater than 2, where there is a homomorphism of Γ into
SL(n,Z).

6. Give an example of a smooth action ϕ of a higher rank lattice Γ on a
compact manifold such that there is an element γ ∈ Γ for which ϕ(γ) is
Axiom A, but not Anosov.
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