AMERICAN MATHEMATICAL SOCIETY Navigate MathSciNet Mathematical Reviews on the Web Jump to Search or Browse Screens

Item: 1 of 1 | <u>Return to headlines</u>

MSN-Support | Help Index

Select alternative format: <u>BibTeX</u> | <u>ASCII</u>

MR1388313 (97g:58165) Hurder, Steven (1-ILCC)

Exotic index theory and the Novikov conjecture.

Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 255–276, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995. 58G12 (19K35 19K56 57R67)

Journal

cle Doc Deliver

References: 0

Reference Citations: 1

Review Citations: 0

This is an analytic approach to the Novikov conjecture using techniques from the coarse index theory of N. Higson and J. Roe [in *Novikov conjectures, index theorems and rigidity, Vol. 2* (*Oberwolfach, 1993*), 227–254, Cambridge Univ. Press, Cambridge, 1995; <u>MR 97f:58127</u>; <u>MR 97f:58127</u>] and ideas from coarse topology (Ferry, Weinberger, and others). The basic method is that of A. S. Mishchenko, in the KK-theory formulation of G. G. Kasparov. A novel feature is the use of fibered versions of coarse analytic constructions. Let M be a manifold with fundamental group Γ . M is called ultraspherical if there is a map of \tilde{M} to \mathbf{R}^n of nonzero degree and uniformly bounded gradient. Let $\tilde{M}\Gamma$ be the balanced product ($\tilde{M} \times \tilde{M}$)/ Γ , which is a bundle over M with projection π . M is Γ -ultraspherical if $\tilde{M}\Gamma$ admits a fiber-preserving map to the tangent bundle of M which has the above property on each fiber. The main result is Theorem 1.1. The body of the paper shows that its statement should be corrected as follows: Let Γ be a group whose classifying space is a complete Riemannian spin manifold M which is Γ -ultraspherical. Then the assembly map β : $K_*(M) \to K_*(C_r^*\Gamma)$ is rationally injective. If M is ultraspherical of degree ± 1 then β is injective. This allows verification of the Novikov conjecture for new classes of non-finitely presented groups.

The proof involves analysis of the family of Dirac operators on the fibers of $M\Gamma$. (Rational injectivity without the spin hypothesis may be obtained by substituting the signature operator.) This requires the introduction of a fibered Roe algebra $C^*(\tilde{M}\Gamma, \pi)$ and a fibered Higson corona $\partial_{\pi}\tilde{M}\Gamma$. A key construction is the coarsening map $K_q(C_r^*\Gamma) \to K_q(C^*(\tilde{M}\Gamma, \pi))$; its range is much more manageable than its domain. The image of this is paired with a "dual Dirac" element of $KK_{p+1}(C^*(\tilde{M}\Gamma, \pi), C(M))$ depending on $u \in K^p(\partial_{\pi}\tilde{M}\Gamma)$, giving maps $K_q(C_r^*(\Gamma)) \to K^{p+q+1}(M)$. Composing with the assembly map and Poincaré duality yields the exotic index

maps $K^*(M) \to K^{*+p+q+1}(M)$. The notion of a coarse Bott (or Thom) class is introduced. When M is compact this is a $\Theta \in K^*(\tilde{M}\Gamma)$ such that there exists $u_\Theta \in K^{*+1}(\partial_{\pi}\tilde{M}\Gamma)$ with $\Theta = \delta u_\Theta$, and the pairing of Θ with the Dirac operator on each fiber is ± 1 . If M is Γ -ultraspherical of degree one then $\tilde{M}\Gamma$ admits a coarse Bott class. The main theorem follows by applying a families version of an index theorem of G. Yu ["K-theoretic indices of Dirac type operators on complete manifolds and the Roe algebra", Preprint, Math. Sci. Res. Inst., Berkeley, 1991; per bibl.] to show that the exotic index corresponding to u_Θ is injective. A sketch proof of an important theorem of G. Carlsson and E. K. Pedersen [Topology **34** (1995), no. 3, 731–758; <u>MR 96f:19006</u>] is given using these methods.

{For the entire collection see 96m:57003}

Reviewed by John G. Miller

© Copyright American Mathematical Society 1997, 2004