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1 The Theorem

Let Γ be a finitely-generated group, and S1 the circle of radius 1 with metric d:S1 × S1 → [0, π].
We let ϕ: Γ × S1 → S1 denote an action of Γ on the circle by homeomorphisms. For notational
convenience, given γ ∈ Γ we let γx = ϕ(γ)(x).

Definition 1.1 The action ϕ: Γ × S1 → S1 is expansive if there exists ε > 0 so that for any pair
x 6= y ∈ S1, there exists γ ∈ Γ such that d(γx, γy) > ε.

In this paper we answer a question posed by Thomas.B.Ward:

Theorem 1.2 If ϕ: Γ×S1 → S1 is an expansive action, then Γ cannot be an infra-nilpotent group.

The proof will be given in Section 4, and requires only elementary methods of topological dynamics.
We prove two preparatory results in Sections 2 and 3.

After preparing this note, the paper [IT] was discovered which covers the more general situation
of “expansive foliations”, and in codimension one their result includes Theorem1.2. We note that
the proof given here is more self–contained and goes into more detail about the construction of
the “ping-pong table” in the topological case, which the reader might still find of interest. Ralf
Spatzier has also informed the authors that he has a proof of the main theorem as well.

The last section gives two examples of expansive actions on the circle where Γ is a solvable group
with exponential word growth, the first with a unique minimal set consisting of a fixed–point,
and the second with an exceptional minimal set of Denjoy type, showing that the conclusion Γ is
infra-nilpotent in Theorem 1.2 cannot be strengthened by assuming conditions on the minimal set.
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2 Minimal Actions

Recall that K ⊂ S1 is a minimal set for ϕ if K is closed, invariant and minimal for these two
conditions. Zorn’s Lemma implies that every topological action admits at least one minimal set.
Recall that every point of a minimal set K has ϕ–orbit dense in K. If K is infinite, then it contains
a limit point of itself, and hence is a perfect set. A perfect minimal set either has no interior, in
which case it is a Cantor set, or has interior, so is open and closed and hence must be all of S1. In
this latter case we say the action ϕ is minimal.

An open, non-empty invariant set M ⊂ S1 is said to be locally minimal if the closure of each orbit
in M contains M in its interior. If M = S1 then this reduces to the definition above.

Proposition 2.1 Suppose that ϕ: Γ × S1 → S1 is an expansive action with a locally minimal set
M . Then there exists α, β ∈ Γ which generate a free sub-semigroup of Γ. In particular, Γ must
have exponential word growth and cannot be infra-nilpotent.

Proof: We will construct a “ping-pong game” [T, delaH] for elements of the action ϕ and use this
to exhibit the elements α and β.

Let 0 < ε be the expansive constant for ϕ. Set δ = ε/10.

Given points x, y ∈ S1 with d(x, y) < π we let xy ⊂ S1 denote the interval (the shortest path in
S1) they determine, and |x, y| denotes the length of this interval.

We begin the proof of the proposition. Since M is invariant and ϕ is expansive, the diameter of
each connected component of M must be at least ε. Choose x1 ∈ M to be the midpoint of a longest
connected interval in M . (In the case where M = S1 select any point.) Let y1, z1 ∈ M be the points
with d(x1, y1) = d(x1, z1) = δ/2 so that x1 ∈ y1z1 ⊂ M . Choose γ1 ∈ Γ with d(γ1y1, γ1z1) > ε. Let
J1 denote the interval y1, z1, and I1 = γ1J1.

Now proceed inductively. Assume 6–tuples {xi, yi, zi, γi, Ji, Ii} have been chosen for 1 ≤ i < n and
we select a new 6–tuple {xn, yn, zn, γn, Jn, In}. Let xn be the midpoint of In−1 and choose yn, zn ∈
In−1 be distinct points with d(xn, yn) = d(xn, zn) = δ/2n. Choose γn ∈ Γ with d(γnyn, γnzn) > ε.
Then set Jn = yn, zn ⊂ In−1 and In = γnJn is a subset of M .

Let x∗ be an accumulation point for the set of “midpoints” {x1, x2, . . .}. Note that since all intervals
In have length at least ε the point x∗ lies in the interior of M , and is at least ε/2 distance from
the boundary of M . By the transitivity of ϕ there exists ξ ∈ Γ such that 3δ < d(x∗, ξx∗) < 4δ.
Choose 0 < δ1 < δ/2 such that for the closed interval W = {w ∈ S1 | d(x∗, w) ≤ δ1}, ξW ⊂ {w ∈
S1 | d(ξx∗, w) < δ1}. That is, both W and its image ξW have diameter less than δ1. It follows that
W ∩ ξW = ∅.

Choose 0 << p < q so that d(x∗, xp) < δ1/2 & δ/2p < δ1/2 and d(x∗, xq) < δ1/2 & δ/2q < δ1/2.
Define

α = (γq ◦ · · · ◦ γp)
−1 ; U` = |y`, z`| ; V = α−1U

Note that U has diameter δ/2p < δ1/2 and the midpoint xp ∈ U satisfies d(x∗, xp) < δ1/2 so that
U ⊂ W . The midpoint xq ∈ V also satisfies d(x∗, xq) < δ1/2 < δ so that U ⊂ V . Set β = ξ ◦ α,
then βV ⊂ ξU ⊂ ξW ⊂ V and ξW is disjoint from U by the choice of W . It follows that the
sub-semigroup of Γ generated by {α, β} is free. 2
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3 Finite Minimal Sets

Proposition 3.1 Let I ⊂ S1 be a closed interval, assume Γ is a nilpotent group, and suppose that
ϕ: Γ × I → I is an action by orientation–preserving homeomorphisms whose only fixed–points are
the endpoints of I. Then ϕ is not expansive.

Proof: We assume that the action of ϕ is expansive, and show this leads to a contradiction. The
proof uses induction on the polycyclic length of Γ. Recall that Γ nilpotent implies there is a chain
of normal (in Γ) subgroups

Γd+1 = {0} ⊂ Γd ⊂ · · · ⊂ Γ1 = Γ

where each quotient Γi/Γi+1 is a rank–one abelian subgroup of the center of Γ/Γi+1. As Γ is
torsion–free, each quotient is isomorphic to Z. The integer d is called the polycyclic length of Γ.

Let J denote the interior of I.

First, suppose that Γ has polycyclic length 1, and let γ ∈ Γ be a generator. By hypothesis, the
action of Γ on J has no fixed points, so if we choose any x ∈ J then the closed interval I1 = xγx
is a fundamental domain for the action of γ. It follows that the action cannot be expansive.

Next, assume Proposition 3.1 is true for all nilpotent groups with polycyclic length less than d > 1.
Fix a chain Γd ⊂ · · · ⊂ Γ1 = Γ as above, and let α ∈ Γd be a generator, which is in the center of Γ.

Let F ⊂ I be the fixed–point set of α. Note that F is invariant under Γ, and Γ acts without
fixed–points on F .

Lemma 3.2 The interior U ⊂ F is empty.

Proof: If not, U is an non–empty, open Γ–invariant set. Let {U1, . . . , Un, . . .} be the set of open
connected components of U . The action of ϕ is expansive, so for x 6= y ∈ U1 there exists γ ∈ Γ so
that d(γx, γy) > ε. The image of γx is contained in one of the intervals Ui whose length is thus at
least ε. By reordering if necessary, let {U1, . . . , Un} be the subcollection of open intervals such that
Ui has length at least ε for 1 ≤ i ≤ n, and the length of Ui is less than ε for i > n. Let {U1, . . . , Um}
for m ≤ n be the subcollection of open intervals whose Γ–orbits intersect U1. That is, for each
1 ≤ i ≤ m there exists αi ∈ Γ with αiU1 = Ui, and for i > m we have βUi ∩ U1 = ∅ for all β ∈ Γ.

The action of each αi: I → I is uniformly continuous, so there exists a constant ε1 > 0 so that for
x, y ∈ U1 with d(x, y) ≤ ε1 then d(αix, αiy) ≤ ε. Without loss we choose ε1 < ε. Thus, for any pair
u, v ∈ Ui with d(u, v) > ε then d(α−1

i u, α−1

i v) > ε1.

Set M = U1 be the closure of U1, and let ΓM be the subgroup of Γ consisting of elements which leave
M invariant. Note that Γn ⊂ ΓM . We claim that ΓM acts expansively on M with expansiveness
constant ε1. Let x 6= y ∈ M . By hypotheses there exists γ1 ∈ Γ so that d(γ1x, γ1y) > ε. The
image γ1U1 has length at least ε so there exists i with γ1U1 = Ui. Set γ = α−1

i γ1 ∈ ΓM then
d(γx, γy) > ε1.

The subgroup Γn acts trivially on M so there is an induced action of the quotient Γ/Γn on M .
This action has no interior fixed–points and Γ/Γn is nilpotent with polycylic length d − 1, so by
induction the action cannot be expansive, a contradiction. 2
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We next consider the case where F consists of the endpoints of I. That is, α has no fixed points
on the interior J ⊂ I. Choose a point x ∈ J , then the interval M = xαx is a fundamental domain
for α. Let U denote the interior of M . Let ΓM denote the subgroup of Γ which leaves M invariant.

Lemma 3.3 The induced action of ΓM on M is expansive.

Proof: Let x 6= y ∈ M and γ ∈ Γ so that d(γx, γy) > ε. The image of γM must equal α`M for
some `, hence α−`γ ∈ ΓM . Moreover, as γM contains two points separated by at least ε, and there
are at most finitely many possible images α`M with length greater than ε, there are at most finitely
many such ` which arise. As in the case where F had interior, it follows that there is a uniform
constant ε1 > 0 so that d(γx, γy) > ε implies d(α−`γx, α−`γy) > ε1. It follows that the action of
ΓM on M is expansive with constant ε1. 2

The group ΓM is again nilpotent, with polycyclic length at most d− 1. By induction, we conclude
the action on M cannot be expansive, a contradiction.

Finally, we consider the case where F is nowhere–dense and has non-trivial intersection with the
interior J of I. We obtain a contradiction using a combination of both of the above arguments.

The complement of F is a countable union of open connected intervals {U1, . . . , Un, . . .}, and for
each i let Mi denote the closure of Ui in I. Note that α acts without fixed–points on each Ui.

The action of ϕ is expansive, so for x 6= y ∈ U1 there exists γ1 ∈ Γ so that d(γ1x, γ1y) > ε. The
image of γ1x must lie in the complement of F , hence in one of the intervals Ui whose length is at
least ε. By reordering if necessary, let {U1, . . . , Un} be the subcollection of open intervals such that
Ui has length at least ε for 1 ≤ i ≤ n, and the length of Ui is less than ε for i > n. Let {U1, . . . , Um}
for m ≤ n be the subcollection of open intervals whose Γ–orbits intersect U1. That is, for each
1 ≤ i ≤ m there exists αi ∈ Γ with αiU1 = Ui, and for i > m we have βUi ∩ U1 = ∅ for all β ∈ Γ.

The action of each αi: I → I is uniformly continuous, so there exists a constant ε1 > 0 so that for
x, y ∈ U1 with d(x, y) ≤ ε1 then d(αix, αiy) ≤ ε. Without loss we choose ε1 < ε. Thus, for any pair
u, v ∈ Ui with d(u, v) > ε then d(α−1

i u, α−1

i v) > ε1.

Set M = U1 be the closure of U1, and let ΓM be the subgroup of Γ consisting of elements which leave
M invariant. Note that Γn ⊂ ΓM . We claim that ΓM acts expansively on M with expansiveness
constant ε1. Let x 6= y ∈ M . By hypotheses there exists γ1 ∈ Γ so that d(γ1x, γ1y) > ε. The
image γ1U1 has length at least ε so there exists i with γ1U1 = Ui. Set γ = α−1

i γ1 ∈ ΓM then
d(γx, γy) > ε1.

Now, ΓM is nilpotent with polycyclic length at most d, and the action of Γn on M has no interior
fixed–points. By the previous case above, the action cannot be expansive, a contradiction.

This concludes the proof of Proposition 3.1. 2
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4 Proof of Theorem

Suppose that ϕ: Γ × S1 → S1 is an expansive action and Γ is infra–nilpotent. We show this leads
to a contradiction, proving Theorem 1.2.

If ϕ admits a minimal set K with interior, and hence K = S1, then we are done by Proposition 2.1.
We can thus assume that every minimal set K for the action ϕ is nowhere–dense.

Lemma 4.1 Let I ⊂ S1 be a closed invariant subset for α, and Γ0 ⊂ Γ be a subgroup of finite
index. Then Γ acts expansively on I if and only if Γ0 acts expansively on I.

Proof: Let {γ1, . . . , γn} be elements of Γ so that Γ = γ1Γ0∪· · ·∪γnΓ0. As I is compact, there exists
ε0 > 0 so that for any points x, y ∈ I with d(x, y) > ε then d(γ−1

i x, γ−1

i y) > ε0 for all 1 ≤ i ≤ n.

Assume that Γ acts expansively on I. Then given x 6= y ∈ I, there exists γ ∈ Γ for which
d(γx, γy) > ε. Then for some 1 ≤ i ≤ n we have γ−1

i γ ∈ Γ0, and d(γ−1

i γx, γ−1

i γy) > ε0, thus Γ0

acts expansively with constant ε0.

Conversely, if Γ0 acts expansively, then obviously the same holds for Γ ⊃ Γ0. 2

By definition, Γ has a subgroup Γ0 of finite index which is nilpotent. Moreoever, by passing to
a subgroup of index two if necessary, we can assume Γ0 acts on S1 via orientation–preserving
homeomorphisms. By Lemma 4.1 the action of Γ0 on S1 is again expansive. Hence, by changing
notation, we can assume that Γ is nilpotent and the action of ϕ is expansive and orientation–
preserving.

Suppose now that every minimal set of ϕ is finite; let K be one such. As K is invariant, there is a
subgroup of finite index Γ0 ⊂ Γ such that Γ0 fixes the points of K. By Lemma 4.1 the action of Γ0

is again expansive, with expansiveness constant ε0.

Note that every minimal set for the action of Γ0 must also be finite, and therefore consists of fixed–
points. Let F ⊂ S1 denote the closed set of fixed–points for the action of Γ0, then every minimal
set for Γ0 is contained in F .

The complement of F consists of a countable union of open connected intervals, which we denote
by {J1, . . . , Jn, . . .} and let for each n let In denote the closure of Jn in S1.

Now observe that F is fixed implies that each interval In is also invariant for Γ0, hence the action
of ϕ on In must be expansive. That is, we obtain an expansive action of a nilpotent group Γ0 on a
closed interval I = In, which contradicts the conclusion of Proposition 3.1.

The final case to consider is when ϕ admits a minimal set K which is not finite and not dense,
hence K is a nowhere–dense perfect set. Such minimal sets are called “exceptional” in the foliation
literature [CC, G].

The group Γ is nilpotent, hence is amenable, so its action on K admits an invariant probability
measure µ. We consider µ as an invariant measure for the action of Γ on S1. The measure µ
defines an invariant “length coordinate” on S1, for which there is an induced action φµ: Γ × S1 →
by rotations [S, CC, G]. Moreover, µ also defines a continuous map hµ:S1 → S1 which is a
semi-conjugacy between the actions ϕ and φµ.

Let J ⊂ S1 be a maximal connected open interval in the complement of K, and I its closure. Define
ΓI to be the subgroup of elements which leave I invariant. Define Γµ to the kernel of φµ.
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Lemma 4.2 ΓI = Γµ. Thus, each element of ΓI leaves invariant every maximal connected open
interval in the complement of K.

Proof: By construction, hµ is locally constant on the complement of K, hence maps I to a point
θ ∈ S1. If γ ∈ ΓI then φµ(γ) fixes θ. As each image of φµ consists of rotations of S1, φµ(γ) must
be the identity. Hence γ ∈ Γµ. Conversely, γ ∈ Γµ fixes every point of S1 hence leaves I = hµ(θ)
invariant, so γ ∈ ΓI . 2

The action of ϕ is expansive, so for x 6= y ∈ I with d(x, y) < δ there exists γ ∈ Γ so that
d(γx, γy) > ε. Let I1 = γI which is a closed maximal connected interval whose interior is disjoint
from K. Note that by Lemma 4.2, ΓI = ΓI1 . We change notation and set I = I1.

Let {I1, . . . , In} be the collection of closed intervals such that there exists αi ∈ Γ with Ii = αiI and
Ii has length at least ε. The set is non-empty, and finite as the intervals Ii ∩ Ij = ∅ for i 6= j. Let
{α1, . . . , αn} be elements of Γ with αiI = Ii. The action of each αi: I → Ii is uniformly continuous,
so there exists a constant ε1 > 0 so that for x, y ∈ I with d(x, y) ≤ ε1 then d(αix, αiy) ≤ ε. Without
loss we choose ε1 < ε. Thus, for any pair u, v ∈ Ii with d(u, v) > ε then d(α−1

i u, α−1

i v) > ε1.

Lemma 4.3 ΓI acts expansively on I with expansiveness constant ε1.

Proof: Let x 6= y ∈ I. By hypotheses there exists γ1 ∈ Γ so that d(γ1x, γ1y) > ε. The image γ1I
has length at least ε so there exists i with γ1I = Ii. Set γ = α−1γ1 ∈ ΓI then d(γx, γy) > ε1. 2

Let F ⊂ I be the closed set of fixed–points for the action of ΓI . If F consists or more than the
endpoints of I, then we consider the restriction of the action of ΓI to the closure of each maximal
connected component F in I \F , so are reduced to the case where F consists of the endpoints of I.
Then as GI is nilpotent, Proposition 3.1 implies the action cannot be expansive, a contradiction.

This completes the proof of Theorem 1.2. 2
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5 Two Examples

We give two examples of expansive C1–actions, one of an action of the “ax +b” group on the circle
with one fixed–point, and the second example where the “ax + b” group is embedded into the gaps
of a Denjoy example to produce an expansive action with a Cantor type minimal set.

Example 5.1 An expansive action of a solvable group on S1 with minimal set a point.

Define maps of the real line by f(x) = 2x and g(x) = x + 1. Embed the real line into the circle
S1 = [−π, π]/{−π ∼ π} using the inverse tangent map θ = h(x) = 2 arctan(x). Set α = h ◦ f ◦ h−1

and β = h ◦ g ◦ h−1, and let Γ be the subgroup of Homeo(S1) they generate.

The action of f, g on R has every orbit dense, hence the action of Γ on S1 admits a unique
fixed–point π, and every other orbit is dense.

Given x 6= y ∈ S1, at least one of these cannot be the fixed–point π. Hence, there exists ` such
that g`(h−1(x)) and g`(h−1(y)) lie on opposite sides of the origin in R. Applying a suitable power
k > 0 of f we can ensure that their images fk ◦ g`(h−1(x)) and fk ◦ g`(h−1(y)) span an interval
containing either [0,1] or [-1,0] in R, hence h◦fk ◦g`(h−1(x)) and h◦fk ◦g`(h−1(y)) are ε separated
in S1 for ε = 2arctan(1) = π/2. 2

Example 5.2 An expansive action of a solvable group on S1 with Cantor minimal set.

Let γ§1 → S1 be a C1-diffeomorphism with an invariant exceptional minimal set K. The comple-
ment of K consists of a disjoint union of open intervals {U1, U2, . . .} and γ acts transitively on the
set of intervals. Thus, we can index the open sets by Z where U` = γ`U0.

Choose a diffeomorphism h:R → U0.

Define α ∈ Homeo(S1) with fixed–point set K, and on U` we define

α|U` = γ` ◦ h ◦ f ◦ h−1 ◦ γ−`

Define β ∈ Homeo(S1) with fixed–point set K, and on U` we define

β|U` = γ` ◦ h ◦ g ◦ h−1 ◦ γ−`

Let Γ ⊂ Homeo(S1) be the subgroup generated by {α, β}. Clearly, K is the unique minimal set
for the action of Γ, and every point in the complement of K has dense orbit in S1.

It is also easy to see that the action of Γ is expansive. There are two cases to consider. If x 6= y ∈ S1,
and both points lie in the same connected component of the complement of K, then a suitable power
γ`(x) ∈ U0 so we can proceed as above. If x 6= y do not lie in the closure of the same connected
component of the complement of K, then there exists some U` contained in the interval xy, thus
γ−`(x) and γ−`(y) contain U0 in the interval they determine. 2
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