Expansive Maps of the Circle

C. Connell, *A. Furman, [†]and S. Hurder [‡] Department of Mathematics (m/c 249) University of Illinois at Chicago 851 S. Morgan Street Chicago Illinois 60607-7045 USA connell@math.uic.edu, furman@math.uic.edu, hurder@uic.edu

(March 14, 2000)

1 The Theorem

Let Γ be a finitely-generated group, and S^1 the circle of radius 1 with metric $d: S^1 \times S^1 \to [0, \pi]$. We let $\varphi: \Gamma \times S^1 \to S^1$ denote an action of Γ on the circle by homeomorphisms. For notational convenience, given $\gamma \in \Gamma$ we let $\gamma x = \varphi(\gamma)(x)$.

Definition 1.1 The action $\varphi: \Gamma \times S^1 \to S^1$ is expansive if there exists $\epsilon > 0$ so that for any pair $x \neq y \in S^1$, there exists $\gamma \in \Gamma$ such that $d(\gamma x, \gamma y) > \epsilon$.

In this paper we answer a question posed by Thomas.B.Ward:

Theorem 1.2 If $\varphi: \Gamma \times S^1 \to S^1$ is an expansive action, then Γ cannot be an infra-nilpotent group.

The proof will be given in Section 4, and requires only elementary methods of topological dynamics. We prove two preparatory results in Sections 2 and 3.

After preparing this note, the paper [IT] was discovered which covers the more general situation of "expansive foliations", and in codimension one their result includes Theorem1.2. We note that the proof given here is more self-contained and goes into more detail about the construction of the "ping-pong table" in the topological case, which the reader might still find of interest. Ralf Spatzier has also informed the authors that he has a proof of the main theorem as well.

The last section gives two examples of expansive actions on the circle where Γ is a solvable group with exponential word growth, the first with a unique minimal set consisting of a fixed-point, and the second with an exceptional minimal set of Denjoy type, showing that the conclusion Γ is infra-nilpotent in Theorem 1.2 cannot be strengthened by assuming conditions on the minimal set.

^{*}Supported by NSF Postdoctoral Fellowship

[†]Partially supported by NSF Grant DMS-9803607

[‡]Partially supported by NSF Grant DMS-9704768

2 Minimal Actions

Recall that $K \subset S^1$ is a minimal set for φ if K is closed, invariant and minimal for these two conditions. Zorn's Lemma implies that every topological action admits at least one minimal set. Recall that every point of a minimal set K has φ -orbit dense in K. If K is infinite, then it contains a limit point of itself, and hence is a perfect set. A perfect minimal set either has no interior, in which case it is a Cantor set, or has interior, so is open and closed and hence must be all of S^1 . In this latter case we say the action φ is minimal.

An open, non-empty invariant set $M \subset S^1$ is said to be *locally minimal* if the closure of each orbit in M contains M in its interior. If $M = S^1$ then this reduces to the definition above.

Proposition 2.1 Suppose that $\varphi: \Gamma \times S^1 \to S^1$ is an expansive action with a locally minimal set M. Then there exists $\alpha, \beta \in \Gamma$ which generate a free sub-semigroup of Γ . In particular, Γ must have exponential word growth and cannot be infra-nilpotent.

Proof: We will construct a "ping-pong game" [T, delaH] for elements of the action φ and use this to exhibit the elements α and β .

Let $0 < \epsilon$ be the expansive constant for φ . Set $\delta = \epsilon/10$.

Given points $x, y \in S^1$ with $d(x, y) < \pi$ we let $\overline{xy} \subset S^1$ denote the interval (the shortest path in S^1) they determine, and |x, y| denotes the length of this interval.

We begin the proof of the proposition. Since M is invariant and φ is expansive, the diameter of each connected component of M must be at least ϵ . Choose $x_1 \in M$ to be the midpoint of a longest connected interval in M. (In the case where $M = S^1$ select any point.) Let $y_1, z_1 \in M$ be the points with $d(x_1, y_1) = d(x_1, z_1) = \delta/2$ so that $x_1 \in \overline{y_1 z_1} \subset M$. Choose $\gamma_1 \in \Gamma$ with $d(\gamma_1 y_1, \gamma_1 z_1) > \epsilon$. Let J_1 denote the interval $\overline{y_1, z_1}$, and $I_1 = \gamma_1 J_1$.

Now proceed inductively. Assume 6-tuples $\{x_i, y_i, z_i, \gamma_i, J_i, I_i\}$ have been chosen for $1 \leq i < n$ and we select a new 6-tuple $\{x_n, y_n, z_n, \gamma_n, J_n, I_n\}$. Let x_n be the midpoint of I_{n-1} and choose $y_n, z_n \in I_{n-1}$ be distinct points with $d(x_n, y_n) = d(x_n, z_n) = \delta/2^n$. Choose $\gamma_n \in \Gamma$ with $d(\gamma_n y_n, \gamma_n z_n) > \epsilon$. Then set $J_n = \overline{y_n, z_n} \subset I_{n-1}$ and $I_n = \gamma_n J_n$ is a subset of M.

Let x_* be an accumulation point for the set of "midpoints" $\{x_1, x_2, \ldots\}$. Note that since all intervals I_n have length at least ϵ the point x_* lies in the interior of M, and is at least $\epsilon/2$ distance from the boundary of M. By the transitivity of φ there exists $\xi \in \Gamma$ such that $3\delta < d(x_*, \xi x_*) < 4\delta$. Choose $0 < \delta_1 < \delta/2$ such that for the closed interval $W = \{w \in S^1 \mid d(x_*, w) \le \delta_1\}, \xi W \subset \{w \in S^1 \mid d(\xi x_*, w) < \delta_1\}$. That is, both W and its image ξW have diameter less than δ_1 . It follows that $W \cap \xi W = \emptyset$.

Choose $0 \ll p < q$ so that $d(x_*, x_p) < \delta_1/2 \& \delta/2^p < \delta_1/2$ and $d(x_*, x_q) < \delta_1/2 \& \delta/2^q < \delta_1/2$. Define

$$\alpha = (\gamma_q \circ \cdots \circ \gamma_p)^{-1}; \quad U_\ell = |y_\ell, z_\ell|; \quad V = \alpha^{-1}U$$

Note that U has diameter $\delta/2^p < \delta_1/2$ and the midpoint $x_p \in U$ satisfies $d(x_*, x_p) < \delta_1/2$ so that $U \subset W$. The midpoint $x_q \in V$ also satisfies $d(x_*, x_q) < \delta_1/2 < \delta$ so that $U \subset V$. Set $\beta = \xi \circ \alpha$, then $\beta V \subset \xi U \subset \xi W \subset V$ and ξW is disjoint from U by the choice of W. It follows that the sub-semigroup of Γ generated by $\{\alpha, \beta\}$ is free. \Box

3 Finite Minimal Sets

Proposition 3.1 Let $I \subset S^1$ be a closed interval, assume Γ is a nilpotent group, and suppose that $\varphi: \Gamma \times I \to I$ is an action by orientation-preserving homeomorphisms whose only fixed-points are the endpoints of I. Then φ is not expansive.

Proof: We assume that the action of φ is expansive, and show this leads to a contradiction. The proof uses induction on the polycyclic length of Γ . Recall that Γ nilpotent implies there is a chain of normal (in Γ) subgroups

$$\Gamma_{d+1} = \{0\} \subset \Gamma_d \subset \cdots \subset \Gamma_1 = \Gamma$$

where each quotient Γ_i/Γ_{i+1} is a rank-one abelian subgroup of the center of Γ/Γ_{i+1} . As Γ is torsion-free, each quotient is isomorphic to Z. The integer d is called the polycyclic length of Γ .

Let J denote the interior of I.

First, suppose that Γ has polycyclic length 1, and let $\gamma \in \Gamma$ be a generator. By hypothesis, the action of Γ on J has no fixed points, so if we choose any $x \in J$ then the closed interval $I_1 = \overline{x\gamma x}$ is a fundamental domain for the action of γ . It follows that the action cannot be expansive.

Next, assume Proposition 3.1 is true for all nilpotent groups with polycyclic length less than d > 1. Fix a chain $\Gamma_d \subset \cdots \subset \Gamma_1 = \Gamma$ as above, and let $\alpha \in \Gamma_d$ be a generator, which is in the center of Γ .

Let $F \subset I$ be the fixed-point set of α . Note that F is invariant under Γ , and Γ acts without fixed-points on F.

Lemma 3.2 The interior $U \subset F$ is empty.

Proof: If not, U is an non-empty, open Γ -invariant set. Let $\{U_1, \ldots, U_n, \ldots\}$ be the set of open connected components of U. The action of φ is expansive, so for $x \neq y \in U_1$ there exists $\gamma \in \Gamma$ so that $d(\gamma x, \gamma y) > \epsilon$. The image of γx is contained in one of the intervals U_i whose length is thus at least ϵ . By reordering if necessary, let $\{U_1, \ldots, U_n\}$ be the subcollection of open intervals such that U_i has length at least ϵ for $1 \leq i \leq n$, and the length of U_i is less than ϵ for i > n. Let $\{U_1, \ldots, U_m\}$ for $m \leq n$ be the subcollection of open intervals whose Γ -orbits intersect U_1 . That is, for each $1 \leq i \leq m$ there exists $\alpha_i \in \Gamma$ with $\alpha_i U_1 = U_i$, and for i > m we have $\beta U_i \cap U_1 = \emptyset$ for all $\beta \in \Gamma$.

The action of each $\alpha_i: I \to I$ is uniformly continuous, so there exists a constant $\epsilon_1 > 0$ so that for $x, y \in U_1$ with $d(x, y) \leq \epsilon_1$ then $d(\alpha_i x, \alpha_i y) \leq \epsilon$. Without loss we choose $\epsilon_1 < \epsilon$. Thus, for any pair $u, v \in U_i$ with $d(u, v) > \epsilon$ then $d(\alpha_i^{-1}u, \alpha_i^{-1}v) > \epsilon_1$.

Set $M = \overline{U_1}$ be the closure of U_1 , and let Γ_M be the subgroup of Γ consisting of elements which leave M invariant. Note that $\Gamma_n \subset \Gamma_M$. We claim that Γ_M acts expansively on M with expansiveness constant ϵ_1 . Let $x \neq y \in M$. By hypotheses there exists $\gamma_1 \in \Gamma$ so that $d(\gamma_1 x, \gamma_1 y) > \epsilon$. The image $\gamma_1 U_1$ has length at least ϵ so there exists i with $\gamma_1 U_1 = U_i$. Set $\gamma = \alpha_i^{-1} \gamma_1 \in \Gamma_M$ then $d(\gamma_1 x, \gamma_2 y) > \epsilon_1$.

The subgroup Γ_n acts trivially on M so there is an induced action of the quotient Γ/Γ_n on M. This action has no interior fixed-points and Γ/Γ_n is nilpotent with polycylic length d-1, so by induction the action cannot be expansive, a contradiction. We next consider the case where F consists of the endpoints of I. That is, α has no fixed points on the interior $J \subset I$. Choose a point $x \in J$, then the interval $M = \overline{x\alpha x}$ is a fundamental domain for α . Let U denote the interior of M. Let Γ_M denote the subgroup of Γ which leaves M invariant.

Lemma 3.3 The induced action of Γ_M on M is expansive.

Proof: Let $x \neq y \in M$ and $\gamma \in \Gamma$ so that $d(\gamma x, \gamma y) > \epsilon$. The image of γM must equal $\alpha^{\ell} M$ for some ℓ , hence $\alpha^{-\ell}\gamma \in \Gamma_M$. Moreover, as γM contains two points separated by at least ϵ , and there are at most finitely many possible images $\alpha^{\ell} M$ with length greater than ϵ , there are at most finitely many such ℓ which arise. As in the case where F had interior, it follows that there is a uniform constant $\epsilon_1 > 0$ so that $d(\gamma x, \gamma y) > \epsilon$ implies $d(\alpha^{-\ell}\gamma x, \alpha^{-\ell}\gamma y) > \epsilon_1$. It follows that the action of Γ_M on M is expansive with constant ϵ_1 .

The group Γ_M is again nilpotent, with polycyclic length at most d-1. By induction, we conclude the action on M cannot be expansive, a contradiction.

Finally, we consider the case where F is nowhere–dense and has non-trivial intersection with the interior J of I. We obtain a contradiction using a combination of both of the above arguments.

The complement of F is a countable union of open connected intervals $\{U_1, \ldots, U_n, \ldots\}$, and for each i let M_i denote the closure of U_i in I. Note that α acts without fixed-points on each U_i .

The action of φ is expansive, so for $x \neq y \in U_1$ there exists $\gamma_1 \in \Gamma$ so that $d(\gamma_1 x, \gamma_1 y) > \epsilon$. The image of $\gamma_1 x$ must lie in the complement of F, hence in one of the intervals U_i whose length is at least ϵ . By reordering if necessary, let $\{U_1, \ldots, U_n\}$ be the subcollection of open intervals such that U_i has length at least ϵ for $1 \leq i \leq n$, and the length of U_i is less than ϵ for i > n. Let $\{U_1, \ldots, U_m\}$ for $m \leq n$ be the subcollection of open intervals whose Γ -orbits intersect U_1 . That is, for each $1 \leq i \leq m$ there exists $\alpha_i \in \Gamma$ with $\alpha_i U_1 = U_i$, and for i > m we have $\beta U_i \cap U_1 = \emptyset$ for all $\beta \in \Gamma$.

The action of each $\alpha_i: I \to I$ is uniformly continuous, so there exists a constant $\epsilon_1 > 0$ so that for $x, y \in U_1$ with $d(x, y) \leq \epsilon_1$ then $d(\alpha_i x, \alpha_i y) \leq \epsilon$. Without loss we choose $\epsilon_1 < \epsilon$. Thus, for any pair $u, v \in U_i$ with $d(u, v) > \epsilon$ then $d(\alpha_i^{-1}u, \alpha_i^{-1}v) > \epsilon_1$.

Set $M = \overline{U_1}$ be the closure of U_1 , and let Γ_M be the subgroup of Γ consisting of elements which leave M invariant. Note that $\Gamma_n \subset \Gamma_M$. We claim that Γ_M acts expansively on M with expansiveness constant ϵ_1 . Let $x \neq y \in M$. By hypotheses there exists $\gamma_1 \in \Gamma$ so that $d(\gamma_1 x, \gamma_1 y) > \epsilon$. The image $\gamma_1 U_1$ has length at least ϵ so there exists i with $\gamma_1 U_1 = U_i$. Set $\gamma = \alpha_i^{-1} \gamma_1 \in \Gamma_M$ then $d(\gamma_x, \gamma_y) > \epsilon_1$.

Now, Γ_M is nilpotent with polycyclic length at most d, and the action of Γ_n on M has no interior fixed-points. By the previous case above, the action cannot be expansive, a contradiction.

This concludes the proof of Proposition 3.1.

4 Proof of Theorem

Suppose that $\varphi: \Gamma \times S^1 \to S^1$ is an expansive action and Γ is infra-nilpotent. We show this leads to a contradiction, proving Theorem 1.2.

If φ admits a minimal set K with interior, and hence $K = S^1$, then we are done by Proposition 2.1. We can thus assume that every minimal set K for the action φ is nowhere–dense.

Lemma 4.1 Let $I \subset S^1$ be a closed invariant subset for α , and $\Gamma_0 \subset \Gamma$ be a subgroup of finite index. Then Γ acts expansively on I if and only if Γ_0 acts expansively on I.

Proof: Let $\{\gamma_1, \ldots, \gamma_n\}$ be elements of Γ so that $\Gamma = \gamma_1 \Gamma_0 \cup \cdots \cup \gamma_n \Gamma_0$. As I is compact, there exists $\epsilon_0 > 0$ so that for any points $x, y \in I$ with $d(x, y) > \epsilon$ then $d(\gamma_i^{-1}x, \gamma_i^{-1}y) > \epsilon_0$ for all $1 \le i \le n$.

Assume that Γ acts expansively on I. Then given $x \neq y \in I$, there exists $\gamma \in \Gamma$ for which $d(\gamma x, \gamma y) > \epsilon$. Then for some $1 \leq i \leq n$ we have $\gamma_i^{-1} \gamma \in \Gamma_0$, and $d(\gamma_i^{-1} \gamma x, \gamma_i^{-1} \gamma y) > \epsilon_0$, thus Γ_0 acts expansively with constant ϵ_0 .

Conversely, if Γ_0 acts expansively, then obviously the same holds for $\Gamma \supset \Gamma_0$.

By definition, Γ has a subgroup Γ_0 of finite index which is nilpotent. Moreoever, by passing to a subgroup of index two if necessary, we can assume Γ_0 acts on S^1 via orientation-preserving homeomorphisms. By Lemma 4.1 the action of Γ_0 on S^1 is again expansive. Hence, by changing notation, we can assume that Γ is nilpotent and the action of φ is expansive and orientationpreserving.

Suppose now that every minimal set of φ is finite; let K be one such. As K is invariant, there is a subgroup of finite index $\Gamma_0 \subset \Gamma$ such that Γ_0 fixes the points of K. By Lemma 4.1 the action of Γ_0 is again expansive, with expansiveness constant ϵ_0 .

Note that every minimal set for the action of Γ_0 must also be finite, and therefore consists of fixedpoints. Let $F \subset S^1$ denote the closed set of fixed-points for the action of Γ_0 , then every minimal set for Γ_0 is contained in F.

The complement of F consists of a countable union of open connected intervals, which we denote by $\{J_1, \ldots, J_n, \ldots\}$ and let for each n let I_n denote the closure of J_n in S^1 .

Now observe that F is fixed implies that each interval I_n is also invariant for Γ_0 , hence the action of φ on I_n must be expansive. That is, we obtain an expansive action of a nilpotent group Γ_0 on a closed interval $I = I_n$, which contradicts the conclusion of Proposition 3.1.

The final case to consider is when φ admits a minimal set K which is not finite and not dense, hence K is a nowhere–dense perfect set. Such minimal sets are called "exceptional" in the foliation literature [CC, G].

The group Γ is nilpotent, hence is amenable, so its action on K admits an invariant probability measure μ . We consider μ as an invariant measure for the action of Γ on S^1 . The measure μ defines an invariant "length coordinate" on S^1 , for which there is an induced action $\phi_{\mu}: \Gamma \times S^1 \to$ by rotations [S, CC, G]. Moreover, μ also defines a continuous map $h_{\mu}: S^1 \to S^1$ which is a semi-conjugacy between the actions φ and ϕ_{μ} .

Let $J \subset S^1$ be a maximal connected open interval in the complement of K, and I its closure. Define Γ_I to be the subgroup of elements which leave I invariant. Define Γ_μ to the kernel of ϕ_μ .

6

Lemma 4.2 $\Gamma_I = \Gamma_{\mu}$. Thus, each element of Γ_I leaves invariant every maximal connected open interval in the complement of K.

Proof: By construction, h_{μ} is locally constant on the complement of K, hence maps I to a point $\theta \in S^1$. If $\gamma \in \Gamma_I$ then $\phi_{\mu}(\gamma)$ fixes θ . As each image of ϕ_{μ} consists of rotations of S^1 , $\phi_{\mu}(\gamma)$ must be the identity. Hence $\gamma \in \Gamma_{\mu}$. Conversely, $\gamma \in \Gamma_{\mu}$ fixes every point of S^1 hence leaves $I = h_{\mu}(\theta)$ invariant, so $\gamma \in \Gamma_I$.

The action of φ is expansive, so for $x \neq y \in I$ with $d(x, y) < \delta$ there exists $\gamma \in \Gamma$ so that $d(\gamma x, \gamma y) > \epsilon$. Let $I_1 = \gamma I$ which is a closed maximal connected interval whose interior is disjoint from K. Note that by Lemma 4.2, $\Gamma_I = \Gamma_{I_1}$. We change notation and set $I = I_1$.

Let $\{I_1, \ldots, I_n\}$ be the collection of closed intervals such that there exists $\alpha_i \in \Gamma$ with $I_i = \alpha_i I$ and I_i has length at least ϵ . The set is non-empty, and finite as the intervals $I_i \cap I_j = \emptyset$ for $i \neq j$. Let $\{\alpha_1, \ldots, \alpha_n\}$ be elements of Γ with $\alpha_i I = I_i$. The action of each $\alpha_i \colon I \to I_i$ is uniformly continuous, so there exists a constant $\epsilon_1 > 0$ so that for $x, y \in I$ with $d(x, y) \leq \epsilon_1$ then $d(\alpha_i x, \alpha_i y) \leq \epsilon$. Without loss we choose $\epsilon_1 < \epsilon$. Thus, for any pair $u, v \in I_i$ with $d(u, v) > \epsilon$ then $d(\alpha_i^{-1} u, \alpha_i^{-1} v) > \epsilon_1$.

Lemma 4.3 Γ_I acts expansively on I with expansiveness constant ϵ_1 .

Proof: Let $x \neq y \in I$. By hypotheses there exists $\gamma_1 \in \Gamma$ so that $d(\gamma_1 x, \gamma_1 y) > \epsilon$. The image $\gamma_1 I$ has length at least ϵ so there exists i with $\gamma_1 I = I_i$. Set $\gamma = \alpha^{-1} \gamma_1 \in \Gamma_I$ then $d(\gamma x, \gamma y) > \epsilon_1$. \Box

Let $F \subset I$ be the closed set of fixed-points for the action of Γ_I . If F consists or more than the endpoints of I, then we consider the restriction of the action of Γ_I to the closure of each maximal connected component F in $I \setminus F$, so are reduced to the case where F consists of the endpoints of I. Then as G_I is nilpotent, Proposition 3.1 implies the action cannot be expansive, a contradiction.

This completes the proof of Theorem 1.2.

5 Two Examples

We give two examples of expansive C^{1} -actions, one of an action of the "ax +b" group on the circle with one fixed-point, and the second example where the "ax + b" group is embedded into the gaps of a Denjoy example to produce an expansive action with a Cantor type minimal set.

Example 5.1 An expansive action of a solvable group on S^1 with minimal set a point.

Define maps of the real line by f(x) = 2x and g(x) = x + 1. Embed the real line into the circle $S^1 = [-\pi, \pi]/\{-\pi \sim \pi\}$ using the inverse tangent map $\theta = h(x) = 2 \arctan(x)$. Set $\alpha = h \circ f \circ h^{-1}$ and $\beta = h \circ g \circ h^{-1}$, and let Γ be the subgroup of **Homeo**(**S**¹) they generate.

The action of f, g on \mathbf{R} has every orbit dense, hence the action of Γ on S^1 admits a unique fixed-point π , and every other orbit is dense.

Given $x \neq y \in S^1$, at least one of these cannot be the fixed-point π . Hence, there exists ℓ such that $g^{\ell}(h^{-1}(x))$ and $g^{\ell}(h^{-1}(y))$ lie on opposite sides of the origin in \mathbf{R} . Applying a suitable power k > 0 of f we can ensure that their images $f^k \circ g^{\ell}(h^{-1}(x))$ and $f^k \circ g^{\ell}(h^{-1}(y))$ span an interval containing either [0,1] or [-1,0] in \mathbf{R} , hence $h \circ f^k \circ g^{\ell}(h^{-1}(x))$ and $h \circ f^k \circ g^{\ell}(h^{-1}(y))$ are ϵ separated in S^1 for $\epsilon = 2 \arctan(1) = \pi/2$.

Example 5.2 An expansive action of a solvable group on S^1 with Cantor minimal set.

Let $\gamma \S^1 \to S^1$ be a C^1 -diffeomorphism with an invariant exceptional minimal set K. The complement of K consists of a disjoint union of open intervals $\{U_1, U_2, \ldots\}$ and γ acts transitively on the set of intervals. Thus, we can index the open sets by \mathbf{Z} where $U_{\ell} = \gamma^{\ell} U_0$.

Choose a diffeomorphism $h: \mathbf{R} \to U_0$.

Define $\alpha \in \text{Homeo}(S^1)$ with fixed-point set K, and on U_{ℓ} we define

$$\alpha | U_{\ell} = \gamma^{\ell} \circ h \circ f \circ h^{-1} \circ \gamma^{-\ell}$$

Define $\beta \in \text{Homeo}(\mathbf{S}^1)$ with fixed-point set K, and on U_{ℓ} we define

$$\beta | U_{\ell} = \gamma^{\ell} \circ h \circ g \circ h^{-1} \circ \gamma^{-\ell}$$

Let $\Gamma \subset \text{Homeo}(\mathbf{S}^1)$ be the subgroup generated by $\{\alpha, \beta\}$. Clearly, K is the unique minimal set for the action of Γ , and every point in the complement of K has dense orbit in S^1 .

It is also easy to see that the action of Γ is expansive. There are two cases to consider. If $x \neq y \in S^1$, and both points lie in the same connected component of the complement of K, then a suitable power $\gamma^{\ell}(x) \in U_0$ so we can proceed as above. If $x \neq y$ do not lie in the closure of the same connected component of the complement of K, then there exists some U_{ℓ} contained in the interval \overline{xy} , thus $\gamma^{-\ell}(x)$ and $\gamma^{-\ell}(y)$ contain U_0 in the interval they determine.

References

- [CC] Alberto Candell and Lawrence Conlon. Foliations 1. Amer. Math. Soc., Providence, RI, 2000.
- [delaH] P. de la Harpe. Free groups in linear groups. Enseign. Math (2), 29:129–144, 1983.
- [FS] Benson Farb and Peter Shalen. Groups of real-analytic diffeomorphisms of the circle. preprint, April 1998.
- [G] Etienne Ghys. *Foliations 1.* preprint, June 1999.
- [H] S. Hurder. Exceptional minimal sets for $c^{1+\alpha}$ -group actions on the circle. Ergodic Theory Dynamical Systems, 11:455–467, 1991.
- [IT] T. Inaba and N. Tsuchiya. Expansive Foliations. *Hokkaido Math. Journal*, 21:39–49, 1992.
- [S] R. Sacksteder. Foliations and pseudogroups. American Jour. Math., 87:79–102, 1965.
- [T] Jacques Tits. Free subgroups in linear groups. J. of Algebra, 20:250-270, 1972.