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1. A simple definition

In 1971, C. Godbillon and J. Vey introduced the invariant of foliations named after them. Pre-
viously, the study of foliations was considered either as an area of topology, viewing a foliation is a
generalized fibration structure on a manifold (cf. [76]), or as an area within differential equations,
whose key results concerned recurrence and limit sets (cf. [97]). With the advent of the Godbillon-
Vey class and its generalization to the other secondary classes, the field obtained a unique focus,
characterized by the interplay of geometry, topology, dynamical systems, and eventually ergodic
theory. The study of the Godbillon-Vey invariant for codimension one foliations, in particular,
illustrates the breadth of the field of foliations, and it is still a developing subject. We discuss
here the path of ideas and results from “a simple definition”, to our current understanding of how
the Godbillon-Vey class depends on the geometry and dynamics of a foliation, concluding with a
selection of open problems. This work updates and expands on parts of the Seminaire Bourbaki
“Sur l’invariant de Godbillon-Vey” by Ghys [31], and the problem session from the 1992 foliations
meeting in Rio de Janeiro [72]. The bibliography attempts to be comprehensive and up-to-date.

Let M be a C∞–manifold with a codimension–one foliation F which is transversally C2, and
with C∞ leaves. We assume that the normal bundle to F is oriented, so there is a 1-form ω on M
whose kernel defines the leaf tangent bundle TF . The Frobenius Theorem implies there is a 1–form
η on M such that dω = η ∧ ω. Godbillon and Vey [41] observed that 3-form η ∧ dη is closed, and
its cohomology class GV (F) = [η∧dη] ∈ H3(M) is an invariant under diffeomorphism and foliated
concordance [77].

The simplicity of the definition of the Godbillon-Vey invariant GV (F) = [η∧dη] gives little indi-
cation of its geometric or dynamical meaning. The 1-form η entering in the definition is sometimes
called the modular form for F . It has long been known that the restriction of η to leaves of F are
closed forms, and for a C1-foliation there is a well-defined leafwise cohomology class [η] ∈ H1(M,F),
called the Reeb class, and the integral of η along leafwise curves measures the transverse holonomy
expansion [95] (see also [43, 96] and § 2, [31]) . The idea can even be traced back to the work of
Poincaré [93]. So [η] is a cohomology invariant of F which measures the transverse expansion.

The study of dynamics of flows and foliations have both been profoundly influenced by the special
examples derived from Anosov flows on compact manifolds [1, 91, 92], especially the Anosov flows
which are the geodesic flow of a compact manifold with constant negative curvature. For example,
let M denote the unit tangent bundle to a metric of constant curvature on a closed orientable
surface Σg of genus g > 1, and F the weak-stable foliation of the geodesic flow on M . The
Roussarie calculation, included in [41], evaluated GV (F) on the fundamental class, 〈GV (F), [M ]〉 =
±4π(1 − g), giving the first example of a codimension one foliation with non-vanishing GV (F).
Thurston’s celebrated construction [106] of a family of smooth foliations {Ft | t > 0} on the 3-
sphere, for which 〈GV (Ft), [M ]〉 = t, is constructed from the weak stable foliation starting with a
punctured surface. The leaves of the weak stable foliation of an Anosov flow have exponential growth
and are transversally expansive. Moussu and Pelletier [86] and Sullivan (in [102]) asked whether
this is always true - if GV (F) �= 0 must F have leaves of exponential growth? This conjecture
was supported by all of the examples. Moreover, in Thurston’s examples the Godbillon-Vey class
assumed a continuous range of values, suggesting that a geometric interpretation of GV (F) should
involve dynamical information such as “entropy”.

Thurston’s note [106] also contained a geometric interpretation of the Godbillon-Vey invariant
for 3-manifolds as measuring “helical wobble”. Reinhart and Wood [98] gave a formula expressing
the the Godbillon-Vey class of a foliation of a Riemannian 3-manifold in terms of the curvatures of
the leaves and normal bundle, which can be interpreted as the helical wobble. (See [31] for a nice
discussion on this point.) As pointed out by Langevin, the Reinhart-Wood formula is suggestive of
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an integral geometry interpretation of the Godbillon-Vey invariant and hints at possible dynamical
connections [3, 73]. Sullivan [105] gave another interpretation of the Godbillon-Vey invariant as the
“second derivative” of the intersection of certain foliation currents. Sullivan’s calculation is also an
interpretation of helical wobble, but more in the spirit of dynamical systems.

2. Structure theory

During the period 1976–1982, there were a succession of works by various authors which proved
the Moussu-Pelletier and Sullivan conjecture for increasingly general classes of foliations. The
approach to the conjecture was to prove a “vanishing theorem”, where the leaves of F are assumed
to have a dynamical property which implies subexponential growth, and then show this forces
GV (F) = 0.

The first result was by Herman [53] in 1976, who showed that GV (F) = 0 if F is the suspension
of an action of Z

2 on the circle. This was extended soon after by Wallet [121], so that one knew
that GV (F) = 0 for a codimension one C2-foliation F transverse to a circle bundle over a compact
Riemann surface, if no leaf of F has holonomy. Wallet’s result was in turn extended by Morita
and Tsuboi [84] in 1978, who showed that GV (F) = 0 if F is a foliation without holonomy on
any compact manifold. This result introduced C2-dynamics and Sacksteder’s Theorem into proofs
of the “vanishing theorem” for the first time, for a corollary of the Sacksteder theorem is that a
foliation without holonomy is defined by a transverse invariant measure. The vanishing of GV (F) is
a consequence of constructing a sequence of smooth transverse 1-forms approximating this measure.

A foliation F is almost without holonomy if the only leaves with holonomy are compact. The
simplest example of such is the Reeb foliation, though in general these foliations can have very
complicated topology, as they are depth one with the non-compact leaves spiraling in on the compact
leaves. Their study has a long history [18, 44, 48, 83, 85, 86, 88], with the basic structure theorem
for C2-foliations proving that the holonomy of the compact leaves must be abelian, that their
complement is a union of local minimal sets, and there exists a transverse vector field defined
in an open neighborhood of the compact leaves which commutes with the holonomy. Mizutani,
Morita and Tsuboi [82] and Cantwell and Conlon [8] proved in 1980 that GV (F) = 0 for foliations
almost without holonomy. Both proofs combined the structure theory for foliations almost without
holonomy with the techniques developed for foliations without holonomy.

Throughout the 1970’s, the geometry of codimension one foliations with increasing degrees of
complexity was actively studied. This research culminated in three distinct approaches to a general
structure theory: Dippolito proved the “octopus decomposition” for C0-foliations; Nishimori [89]
introduced the “SRH” (Staircase, Room, Hall) decomposition; Cantwell and Conlon [9] and Hector
[49] proved a Poincaré-Bendixson theorem for the asymptotic behavior of leaves. All of these can
be seen as developing the ideas of the almost without holonomy classification theory. The Poincaré-
Bendixson theory also provided an approximate correspondence between the growth rates of leaves
and their level of complexity [7, 10, 11, 47, 110, 111, 112, 113, 115]. During 1980-81, a succession
of authors extended the vanishing theorem for foliations almost without holonomy, to increasingly
more general classes [8, 28, 89, 114]. None of these results directly related the growth of leaves to
the vanishing of GV (F), and all relied on the structure theory to estimate the form η ∧ dη.

Underlying these succession of works was a new idea, that the Godbillon-Vey invariant could
be “localized” to an open saturated subset U ⊂ M , where the special “dynamics and geometry”
of F|U could be used to show GV (F|U) = 0. This idea became more explicit in the works of
Cantwell-Conlon [8], Nishimori [89], Tsuchiya [114], and Duminy-Sergiescu [28].
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3. Duminy’s Theorem

In a brilliant work growing out of the paper [28], G. Duminy [26] introduced the Godbillon
measure gF on the Σ-algebra BO(F) generated by the open saturated subsets of a foliation F of
codimension one. Duminy’s note was also highly original on two other points: The Godbillon
measure is one half of the Godbillon-Vey invariant, constructed from the leaf cohomology class
[η] ∈ H1(M,F). The second half, the “Vey class” [dη] ∈ H2(M/F), was considered as a fixed
invariant of F on which the Godbillon measure could be evaluated to give GV (F|U) for U ∈ BO(F).
The other innovation, in a companion manuscript [27], was an estimation of the Godbillon measure
using what are essentially techniques of ergodic theory. Duminy’s work lifted the veil on the study
of the relation between GV (F) and dynamics.

THEOREM 3.1. [Duminy] If F is a codimension one, C2-foliation of a compact manifold M
with non-trivial Godbillon measure gF , then F must have a hyperbolic resilient leaf, and hence there
is an open subset of M consisting of leaves with exponential growth.

While the original manuscripts of Duminy were widely circulated, they were unfortunately never
published. An account of Duminy’s method was later published by Cantwell and Conlon [12], who
extended the theorem to non-compact manifolds. This extension is not so simple as passing from
cohomology on a compact manifold to that on a non-compact manifold, as the key estimates Duminy
used required the Poincaré-Bendixson structure theory of C2-foliations on compact manifolds [9, 49].
Cantwell and Conlon extended in the Poincaré-Bendixson theory to open manifolds in [12].

Duminy’s method of proof was that, if there is no resilient leaf for F , then by Sacksteder’s
Theorem [100] there are no exceptional minimal sets. Hence, by the Poincaré-Bendixson theory,
all leaves of F either lie at finite level, or lie in “arbitrarily thin” subsets U ∈ BO(F). The finite
level case is analyzed analogously to the almost without holonomy case, while the analysis of the
thin sets used the new techniques of [27]. Duminy’s new techniques raised new questions:

1. Exactly what are the properties of the “Godbillon measure”?
2. Could the technique of the Godbillon measure also yield an approach to relating the secondary

classes for higher codimension foliations to their dynamics?
3. What is the meaning of the calculation in [27] which miraculously showed just what needed

to be shown?
4. Does the “Vey class” have a geometric or dynamical meaning comparable to that proved for

the Godbillon measure?

Only the first two of these questions have been partially answered to date.

After Duminy’s manuscripts first appeared in March 1982, these questions were discussed among
Larry Conlon, André Haefliger, James Heitsch, Paul Schweitzer, and the author, who were visiting
Princeton in Spring, 1982. Three of the five participants in this mini-program at the Institute for
Advanced Study subsequently published papers on Duminy’s work!

The first development following on Duminy’s work was by Heitsch and Hurder [52]. They ex-
tended Duminy’s ideas in two directions, one formal and the other more fundamental. First, they
showed that for a codimension q ≥ 1, C1-foliation, each cohomology class yI ∈ H∗(gl(q), SO(q))
yields an associated Weil measure, denoted by χF (yI), for which the Godbillon measure gF =
χF (y1) is the simplest one. The classes yI are those which appear in the E2-term of the spectral
sequence calculation of the cohomology of the truncated Weil algebra WO(q), hence their name.
The fact that the Weil measures are defined for C1-foliations was just an observation based on the
definitions. The definition of the “Vey class”, and more generally the classes [cJ ] corresponding to
the Chern forms cJ(Q) of the normal bundle to F , still require a C2-foliation for their definition.
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The more fundamental point of the work [52] was that the measures were defined on the Σ-
algebra B(F) of all measurable, saturated subsets of M , and that the leafwise forms used to define
the measures χF (yI) need only be transversally measurable. It may happen that the only open
saturated subsets for a foliation are either empty, or M itself, so the extension of the Godbillon
measure to the algebra of measurable sets B(F) widened the application of the ideas. On the other
hand, the ability to calculate these new invariants using measurable data had a more important
impact. Dynamical hypotheses on a foliation, combined with asymptotic techniques, often yields
leafwise smooth, but only transversally measurable data, so that this extension allowed techniques
of ergodic theory to be applied in the evaluation of the Godbillon and Weil measures.

For example, the Godbillon measure gF can be calculated using a transversally measurable,
transverse volume form for F . A foliation with all leaves compact is easily shown to have a
transversally measurable, closed transverse volume form, hence its Godbillon-Vey classes must
vanish. This argument applies in any codimension. Cantwell and Conlon used the modification of
Duminy’s approach to give a simpler proof of Duminy’s Theorem [12, 21]. Hurder [55] showed that
for a foliation of arbitrary codimension, if all leaves are compact, then all of the Weil measures
must vanish since such a foliation admits a transversally measurable, holonomy invariant transverse
Riemannian metric. This was the first “vanishing theorem” for the other secondary classes of
foliations, for codimension greater than one.

Duminy’s papers [26, 27] were a demarcation in the study of the dynamics of foliations. The
fundamental conjecture posed in 1974 was solved, while the reformulation of his ideas transformed
the study of the relation between dynamics of foliations and the Godbillon-Vey and other secondary
classes, into questions of ergodic theory. The study of foliation dynamics was afterwards motivated
by results and techniques of the ergodic theory for smooth maps [103, 71] and group actions
[125]. Connections to the theory of ergodic equivalence relations [29] and cocycles [101] became
fundamental.

4. Ergodic theory

One of the “often discovered”’ facts in ergodic theory is that a diffeomorphism f : M → M of a
compact Riemannian manifold M cannot expand volume on an invariant set of positive measure.
This basic fact was first formulated by Schmidt [101] in cocycle language as saying that the additive
Radon-Nikodyn cocycle ν : Z × M → R defined by ν(n, x) = log{|(fn)′(x)|} has subexponential
growth for almost every x ∈ M . The key to the proof is that the group Z has subexponential
growth, while if lim supn→∞ ν(n, x)/n ≥ a > 0 on a set E ⊂ M of positive Lebesgue measure, then
the volume of the iterates fn(E) grows exponentially, and there is “no room” for all the volume in
the space Z × M .

On the other hand, if Γ is a group with exponential word growth acting smoothly on M , then
the additive Radon-Nikodyn cocycle ν : Γ × M → R can have exponential growth. This is exactly
what happens, for example, with the action of a surface group on the circle at infinity in the
original examples calculated by Roussarie. This balance between the growth of the group and of
the Radon-Nikodyn cocycle underlies the next advance in the study of the Godbillon-Vey invariants.

We need a digression into the growth rates of leaves. For a finitely generated group, the
limit gr(Γ) = lim

n→∞ log{#Γn}/n always exists, where Γn = {γ | ‖γ‖ ≤ n}, as Γ is a homoge-
neous metric space for the word metric. Given a leaf L ⊂ M of F for Riemannian manifold
M , and x ∈ L, we say L has subexponential growth if lim sup

R→∞
log{V olL(x, R)}/R = 0 where

V olL(x, R) denotes the volume in the leaf metric of a ball centered at x ∈ L with leaf radius
R. If lim inf

R→∞
log{V olL(x, R)}/R = 0, we say that the leaf L has non-exponential growth, while L
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has exponential growth if lim inf
R→∞

log{V olL(x, R)}/R > 0. A foliation can have leaves which have

nonexponential growth but not subexponential growth [47].

In 1984, Hurder [58] proved that for the pseudogroup of a codimension q ≥ 1 foliation of a
compact manifold, if almost all orbits have subexponential growth, then the Radon-Nikodyn cocycle
has subexponential growth. This gave the first direct relation between the growth of leaves of a
foliation and the asymptotic growth rate of the modular class [η]. However, subexponential growth
of the Radon-Nikodyn cocycle does not imply the modular form has any local growth estimates.
A cocycle with subexponential growth may still oscillate wildly on small scale, and only when
averaged for large “time” does it behave in a subexponential manner.

One consequence of the Heitsch-Hurder reformulation of Duminy’s methods was that it is possible
to renormalize the transverse volume form using a leafwise smooth, transversally measurable change
of scale function. If such a change of scale function can be chosen so that the new transverse volume
form has uniform arbitrarily slow growth, then the modular form η is uniformly estimated arbitrarily
close to 0, hence the Godbillon measure must vanish. This is just a measurable version of the original
idea from Herman [53]! Fortunately, smooth ergodic theory had already solved the renormalization
problem. A fundamental technique for the study of non-uniform hyperbolic dynamical systems is
the Lyapunov tempering procedure used in Pesin theory [90]. Hurder and Katok [66] extended
this tempering procedure from actions of Z to the context of metric equivalence relations. When
applied to a foliation with almost every leaf of subexponential growth, this yields for each ε > 0 a
transverse volume form which is uniformly ε-invariant. Thus, the Godbillon measure must vanish.
This was the key idea behind the proof in [58] of the generalization of the Moussu-Pelletier and
Sullivan Conjecture to all codimensions:

THEOREM 4.1. Let F be a C1 foliation of codimension q ≥ 1 such that almost every leaf has
subexponential growth rate. Then the Godbillon measure gF = 0. If F is C2 then the Godbillon-Vey
class GV (F) = 0.

The theorem implies that if GV (F) �= 0 then there exists a set of leaves with positive measure
that do not have subexponential growth. It is not known if the set of leaves with non-exponential,
but not subexponential growth can have positive Lebesgue measure. Alternately, one can ask if the
method of proof of the theorem can be extended to leaves with non-exponential growth.

This discussion is focussed on the development of codimension one theory, but we detour for a
moment to describe some related issues that are best observed in higher codimensions. The struc-
ture theory for codimension one foliations has no counterpart in higher codimensions. Even for a
single diffeomorphism of a compact manifold M of dimension greater than one, it is impossible to
give a good classification. The best that has been achieved is to restrict to classes of dynamics, and
make a structure theory for diffeomorphisms within these restricted classes. Classes of examples
include pseudo-Anosov maps of surfaces, Anosov maps of manifolds, affine actions, projective ac-
tions, actions with all orbits finite, distal and equicontinuous actions, and so forth. Similar classes
of dynamical systems have been defined and studied for group actions on manifolds with some
measure of success, and to some extent also for foliations.

An alternate approach to a classification theory for arbitrary diffeomorphisms, or groups of
diffeomorphisms, of a compact manifold M is to attempt to classify the derivative cocycle of the
action. Associated to a group action ϕ : Γ×M → M is the derivative cocycle Dϕ : Γ×M → GL(Rq),
where we have chosen some bounded measurable trivialization of the tangent bundle TM . For a
codimension q foliation F , there is an analogous cocycle Dϕ : GF → GL(Rq) where GF is the
holonomy groupoid of F . Rather than attempt the seemingly impossible step to classify the group
actions or foliation dynamics, one studies their associated cocycles up to an appropriate notion
of measurable coboundary. This yields a cohomology theory which is the direct generalization of
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the idea of the modular class [η] ∈ H1(M,F). The classification of cocycles up to measurable
equivalence is a well-studied problem from smooth ergodic theory of group actions, and there are
many techniques, and several celebrated theorems.

One invariant associated to a measurable cocycle is the Lyapunov band spectrum which consists
of a band of asymptotic (or generalized) eigenvalues for the range of Dϕ. For example, these
invariants have a prominent role in the study of asymptotic behavior of the solutions of differential
equations, especially in the Sacker-Sell theory. Another more delicate invariant consists of the
algebraic hull [127] of Dϕ, which is the smallest algebraic subgroup G ⊂ GL(Rq) so that Dϕ is
cohomologous to a cocycle with values in G.

The existence of an invariant ergodic measure allows deeper analysis of Dϕ. For example, if a
smooth action admits an ergodic invariant measure and the group Γ is a higher rank lattice, then
Zimmer’s Cocycle Superrigidity Theorem [125, 79] reduces the classification of Dϕ to a problem in
representation theory. There remains the problem of translating information about the cocycle Dϕ
into dynamical information for F , which frequently also requires the hypothesis (or construction)
of an invariant measure for the action or foliation. For example, see the applications by Zimmer
[123, 124, 126] of cocycle superrigidity to the smooth classification of group actions.

In codimension one, classification theory naturally evolved from an understanding of a certain
collection of examples or “models”. In higher codimensions, there is a far greater collection of
models. The modular form η is replaced by the transverse derivative cocycle Dϕ, whose behavior is
far more complicated. In spite of these additional considerations, there are several results relating
vanishing of secondary classes to foliation dynamics and the classification of the derivative cocycle
in higher codimensions. Hurder [56] showed in 1984 that for the linear holonomy of a leaf in a C2-
foliation F , if the algebraic hull is not amenable, then F has leaves of exponential growth. Hurder
and Katok [66] showed in 1987 that if a foliation F defines an amenable equivalence relation,
and hence the algebraic hull of the cocycle Dϕ : GF → GL(Rq) is amenable, then many of its
secondary classes of F vanish. The University of Chicago thesis of Stuck [104] extended these
vanishing results. Analysis of the cocycle Dϕ, combined with possible additional hypotheses on
the transverse geometry of the foliation F , are expected to yield a better understanding of the
dynamics of foliations in higher codimensions. For example, the geometric entropy of a foliation
can be combined with information derived from Dϕ to produce new results in all codimensions, as
we discuss next.

5. Geometric entropy

One of the most fundamental invariants of the dynamics of a diffeomorphism of a compact
manifold is its topological entropy. When positive, it implies the orbits of f exhibit an exponential
amount of “chaos”. When zero, the map f is somehow not typical, and has unusual regularity. For
the study of group actions and foliation dynamics, it is natural to look for a corresponding entropy
invariant of the system.

There are been several definitions of topological entropy for group actions, motivated by the
need to have a definition for lattice dynamics where the group is typically Z

n. These definitions
admit extensions to actions of amenable groups, but for non-amenable groups, these definitions all
encounter difficulties of one sort or another. The main problem with adapting these definitions for
the study of foliations, however, is that they all vanish for C1-actions whose leaves have growth
rate greater than linear, so would vanish for all but the simplest or most pathological foliations!

The introduction by Ghys, Langevin and Walczak [37] of the geometric entropy h(F) for a C1–
foliation F marked another transformation in the study of foliation dynamics. Their definition
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is completely natural: h(F) measures the exponential rate of growth for (ε, n)-separated sets in
the analogue of the Bowen metrics for the holonomy pseudogroup GF of F . (Chapter 13 of [6]
gives an excellent introduction and discussion of foliation entropy.) Thus, h(F) is a measure of the
complexity of the transverse dynamics of F . The precise value of h(F) depends upon a variety
of choices, but the property h(F) = 0 or h(F) > 0 is well-defined. A codimension one foliation
with a transverse invariant measure has entropy zero, while the entropy of the Roussarie example
is positive. The authors established two key relations between h(F) and dynamics:

THEOREM 5.1. (Theorem 6.1, [37]) If F is a C2–foliation of codimension one, then h(F) > 0
if and only if F has a resilient leaf

This theorem, combined with Duminy’s Theorem, implies that if GV (F) �= 0 then h(F) > 0.

THEOREM 5.2. (Theorem 5.1, [37]) If F is a C1-foliation of codimension q ≥ 1 with h(F) =
0, then F has a non-trivial holonomy invariant transverse measure.

A number of problems and questions are suggested by these two theorems (see § 7, [37]):

1. Can one show the implication “if GV (F) �= 0 then h(F) > 0” directly?
2. Show that if some secondary class is non-zero for q > 1, then h(F) > 0.
3. Can one define an analog of metric entropy for a foliation, and use it to estimate h(F)?
4. What is the relation between F-harmonic measures and h(F)?

These problems have been the continued focus of research since the appearance of the paper [37],
and influenced research in many areas of the study of codimension one foliations. We will discuss
the progress and updated formulations for these questions.

The problem of defining h(F) using harmonic measures remains open. The closest result to
obtaining such a relation, and this is only at the level of intuition, is the paper by Ghys [33] which
proves key results about random walks on leaves and recurrence along the ends of leaves. This
suggests that F-harmonic measures should almost surely be influenced by the separation of leaves
as they tend to infinity, as the entropy measures a type of expansion of the leaves, which should
influence the properties of the convergence of the heat flow to harmonic measures. As both the
geometric entropy and the properties of harmonic measures are natural invariants of a foliation,
any relation between them would have great appeal and most likely be fundamental.

Work on the first three problems will be discussed in relation to the paper [59] by Hurder, which
outlined program for the study of h(F) using the foliation geodesic flow. A foliation with smooth
leaves has a leafwise geodesic flow, defined on the unit tangent bundle V = T1F to the leaves. The
foliation F on M defines a foliation F̂ on V whose leaves cover those of F . The foliation geodesic
flow preserves F̂ . The Riemannian geometry of this flow has been studied by Walczak in a series
of papers [116, 117, 118, 119]. It also has a close relationship to the entropy of foliations.

Ghys, Langevin and Walczak actually defined two entropies for a foliation in [37], the pseu-
dogroup entropy h(F) introduced above, and another invariant called the geometric entropy of F ,
defined by requiring points in an (ε, n)-separated set to be separated by the holonomy along geo-
desic segments of length at most n. Equivalently, the geometric entropy is that for the pseudogroup
GF with the norm on maps defined via the shortest leafwise distance of a leafwise path with the
same holonomy. Thus, as proved in [37], these entropies are either both zero, or non-zero.

The paper [59] proposed to reformulate the geometric entropy of F in terms of the entropy
relative to the invariant foliation F̂ associated to the foliation geodesic flow, and then use the
restriction of the normal derivative cocycle Dϕ : GF → GL(Rq) to this flow to estimate the entropy.
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This would allow introduction of many techniques of smooth dynamical systems for the study of
h(F), and give a uniform approach which applied in all codimensions along the lines used in [66].

The papers [58, 66] used ergodic theory methods to prove vanishing theorems for secondary
classes in terms of the range of the derivative cocycle Dϕ on the metric equivalence relation defined
by the pseudogroup GF . A natural question following these works was to find geometric conditions
which gave information about the Lyapunov band spectrum of the transverse derivative cocycle
Dϕ, and use this information to obtain further relations between dynamics and the secondary
classes. For example, the paper [57] showed that the characteristic classes must vanish for distal
group actions with some additional hypotheses. A key step in [57] was to introduce invariant
measures, not for the full group action, but associated to particular elements of the group along
which there was hyperbolic expansion, and consider the Pesin stable manifold for these measures.
The corresponding approach for foliations is to consider transversally hyperbolic invariant measures
for the geodesic flow, and their stable manifolds. So, the techniques of [57, 58, 66] can be applied
to the study of the relation between h(F) and the dynamics of F .

Two difficulties in applying these ideas to the study of foliation geometric entropy are immediately
encountered: First, the entropy of the geodesic flow, relative to the invariant foliation, clearly
bounds the geometric entropy from below. For foliations whose leaves have subexponential growth,
the relative geodesic flow entropy and the geometric entropy are equivalent. Langevin and Walczak
[74] called the relative geodesic flow entropy the transverse entropy, and proved that in codimension
one, the geometric entropy and the transverse entropy are always equivalent. But it is not known
whether these two entropies always agree for codimension greater than one.

The other difficulty is the definition and applications of a measure entropy for foliations, based
on a relative measure entropy for the geodesic flow analogous to a construction well known in the
ergodic theory of maps [78]. The (formidable) technical work required has never been written up,
and it remains an open problem to justify this part of the program.

Langevin and Walczak [75] also studied the relations between the geometric entropy and the
exponents of the transverse derivative cocycle Dϕ. This paper introduces the “pressure” for the
dynamics of a pseudogroup. Bís and Walczak [2] showed that the geometric entropy can be calcu-
lated using pseudo-orbits.

During 1999-2000, the program of [59] for the study of h(F) was carried out for codimension
one foliations, avoiding the construction of relative measure entropy [62]. The role of the relative
measure entropy was to obtain lower bound estimates on the geometric entropy in terms of the
Lyapunov spectrum of invariant measures for the foliation geodesic flow. The alternative approach
of [63, 64, 65] is based on the construction of special dynamical subsystems, called “ping-pong
games”. The existence of a ping-pong game is equivalent to the existence of a resilient leaf, and
directly implies the geometric entropy of the foliation is positive. The key point is that asymptotic
estimates for the restriction of Dϕ along the foliation geodesic flow can be combined with stable
manifold theory along transversally hyperbolic invariant measures for the geodesic flow, to produce
ping-pong games, and hence prove the foliation geometric entropy must be positive.

The dynamic given by a ping-pong game represents an intermediate invariant of a foliation, and
its existence can be proved by techniques similar to proving the existence of measures with positive
relative entropy. A good theory of relative measure entropy should assign positive values to the
dynamical subsystem determined by a ping-pong game. In the absence of such a theory, the study
of the ping-pong games of F provides an effective method to estimate h(F). Here are the main
results from the papers [63, 64, 65]:

THEOREM 5.3. (Theorem 1.1, [63]) Suppose F is a codimension one, transversally C1-
foliation with h(F) > 0, then F has a ping-pong game, and hence a resilient leaf.
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The proof of this uses “elementary” techniques of ergodic theory and flow dynamics, so avoids
the use of C2-structure theory.

THEOREM 5.4. (Theorem 1.1, [65]) Suppose F is a codimension one, transversally C1-
foliation with non-trivial Godbillon measure gF , then F has a ping-pong game and hence h(F) > 0.

The proof of this uses a new cocycle tempering method, modifying that of [58], and the basic
methods for constructing ping-pong games developed in [63, 64].

For higher codimensions, this approach also yields the following result, where it is necessary to
impose a Hölder condition on the transverse holonomy:

THEOREM 5.5. (Theorem 1.3, [65]) If F is a codimension q, transversally C1+a-foliation
with h(F) > 0, then F is not distal. In particular, F cannot be a foliation with all leaves compact.

The proofs of these results are heavily “one dimensional”, but it seems likely that it will be
possible to extend the techniques of proof to higher codimensions, to obtain relations between
h(F) and the secondary classes. (See also the discussion for Problem 9.5 at the end of this paper.)

6. Exceptional minimal sets

A leaf of a codimension one foliation is semi-proper if it approaches itself from one side. If the
closure K = L of a semi-proper leaf L is minimal, then it is transversally a nowhere dense Cantor
set, and we say K is an exceptional minimal set. The semi-proper leaves are precisely the leaves
through the endpoints in the gaps of the transverse Cantor set. Semi-proper leaves and exceptional
minimal sets have been understood as an essential part of the study of codimension one dynamics
since the work of Denjoy, and the generalizations to foliations by Sacksteder [96, 100].

A variety of constructions of exceptional minimal sets have been given (e.g., see [99, 46, 68, 80]).
The Poincaré-Bendixson classification theory for C2-foliations [9, 49] is greatly simplified when there
are no exceptional minimal sets. The proof of Duminy’s theorem assumes there are no resilient
leaves, and hence no exceptional minimal set, and proceeds from there.

Surprisingly, the exceptional minimal sets have defied an easy classification.

One of the open problems is to show that an exceptional minimal set for a C2-foliation must
have Lebesgue measure zero. Inaba [68] and Matsumoto [80] in 1986 gave general constructions
of minimal sets for which the Lebesgue measure is zero. As remarked in [80], if an exceptional
minimal set K has measure zero, then the Godbillon-Vey measure vanishes on K, so that analysis
of the Godbillon-Vey invariant can ignore the contributions from exceptional minimal sets. Though
unlikely, it would be an amazing result to show there exists an exceptional (local) minimal set with
non-zero Godbillon-Vey measure.

Another open problem is to show that the leaves in an exceptional minimal set of a C2-foliation
must have a Cantor set of ends. A deep, unpublished work of Duminy (written up by Cantwell and
Conlon in the manuscript [16]) shows that the semi-proper leaves always have a Cantor set of ends.

One can also ask when an exceptional minimal set contains only a finite number of semi-proper
leaves. There exists C1-foliations with exceptional minimal sets having a countably infinite number
of semi-proper leaves, but it is conjectured that for C2-foliations this is impossible.

In spite of the extensive study of exceptional minimal sets in codimension one dynamics, all
of these questions show a key piece of the puzzle is still missing. To quote from [13], “Our very
incomplete understanding of the exceptional type constitutes a major gap in the theory.”
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In 1988, Cantwell and Conlon [13] introduced a class of exceptional minimal sets, those of Markov
type. A Markov minimal set K admits a finite set of expanding holonomy generators which define
the foliation dynamics on it, and thus the dynamics on K are given by a quotient of a subshift of
finite type. Cantwell and Conlon showed that for an exceptional minimal set of Markov type, there
are only a finite number of semi-proper leaves, and K has measure zero [13]. They later showed
that every leaf in a Markov minimal set K has a Cantor set of ends [15].

Inaba and Matsumoto [69] showed for transversally projective foliations, an exceptional minimal
set is always Markov. This paper also gave a technical refinement of the definition of Markov
property, which broadens the definition. Walczak [120] showed in fact that a Markov minimal set
has Hausdorff dimension less than the dimension of M .

7. Extensions of Godbillon-Vey

The definition of the Godbillon-Vey invariant of a C2-foliation of codimension one clearly de-
pends upon the second derivatives of the 1-form defining F . It is conjectured that if there is a
homeomorphism h : M → M ′ mapping the leaves of a C2 foliation F on M to the leaves of a
C2-foliation F ′ on M ′, then h∗GV (F ′) = GV (F). This problem has been posed in each of the
foliation surveys and problems sessions [102, 31, 72] since 1978, and still remains unresolved.

The existence of a topological conjugacy h between F and F ′ means that the two foliations have
the same topological dynamics. If GV (F) is determined by the topological dynamics of F , then the
conjecture should be true. On the other hand, conjugation by a homeomorphism allows changing
the exponents of hyperbolicity for the dynamics. For example, a homeomorphism can change the
“shape” of an exceptional minimal set, and similarly distort the transverse dynamics of a foliation.
Thus, it would be very surprising if the conjecture is true. However, there are no counter-examples
in C2, and no suggestive examples to guide intuition on this question.

One approach to the problem would be to show that non-triviality of the Godbillon-Vey classes
implies there is sufficient hyperbolicity in the dynamics of the foliations (at least in the support of
their Godbillon-Vey measures) to prove that the homeomorphism h is actually C1 or possibly even
C2, along the lines of [39] mentioned below.

A weaker conjecture is whether the conclusion holds when the conjugacy h has some additional
regularity. For example, Raby [94] showed that GV (F) is an invariant under C1-diffeomorphism.
Hurder and Katok [67] showed (independently, and using essentially the same methods as Raby)
that if the conjugacy h and its inverse are absolutely continuous, then the conclusion is true.
Natsume [87] showed that the Godbillon-Vey map in analytical K-theory of foliation C∗-algebras
is also C1-invariant.

Ghys and Tsuboi [39] used Duminy’s Theorem to show that for a foliation with GV (F) �= 0, a
C1-conjugacy must be C2 on the support of the Godbillon-Vey measure, thus the C1-conjecture
is only of modest interest. It is unknown if the assumption that h and its inverse are Hölder
Ca-continuous, for some a > 0, suffices to show h∗GV (F ′) = GV (F).

There are counter-examples to topological invariance of extensions of the Godbillon-Vey class to
foliations which are not C2. Ghys defined in [30] a “Godbillon-Vey” type invariant for piecewise
C2-foliations in codimension one, and then showed via surgery on Anosov flows on 3-manifolds
that there are homeomorphic, piecewise C2-foliations with distinct “Godbillon-Vey” invariants. In
another direction, Hurder and Katok defined in [67] a “Godbillon-Vey” type invariant for the weak-
stable foliations of volume preserving Anosov flows on 3-manifolds, and showed that for the geodesic
flow of a metric of variable negative curvature on a compact Riemann surface, the “Godbillon-Vey”
invariant is a function of the “Mitsumatsu defect” [81], hence varies continuously and non-trivially
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as a function of the metric (Corollary 3.12, [67]) . The weak-stable foliations of all of these metrics
are topologically conjugate, so this gives a continuous family of counter-examples. Both approaches
to extending the Godbillon-Vey invariant are combined in work of Tsuboi [108, 109].

The topological invariance conjecture highlights once again how little is fundamentally known
about the Godbillon-Vey class and its geometric or dynamical meaning. Perhaps, if it were possible
to give a geometric or dynamic interpretation for the “Vey class”, then one could determine whether
the ingredients are preserved under homeomorphism, or possibly under a Hölder homeomorphism,
or just under diffeomorphism.

8. Tricks and treats

While compiling this survey, and from the author’s own research in the subject, several techniques
and methods frequently are seen to be both essential and in some way unique to the study of the
Godbillon-Vey classes and the dynamics of codimension one foliations. In this section, we compile a
short sampling and brief description of selected techniques which have led to a deeper understanding
of the themes of this survey. Of course, a thorough reading of the introductory texts on foliations,
such as Godbillon’s book [40] or the recent text by Candel and Conlon [6], reveals a far greater
variety of ideas and techniques than discussed below. Still, it seems useful (and novel) to offer a
list of “Tricks and Treats” for the subject, if only as an advertisement for the variety of methods
which play a role in this field.

TECHNIQUE 8.1. Naive distortion lemma

This is the most well-known method of 1-dimensional dynamics, except perhaps the well-ordering
of the line. The hypothesis “F is C2” often means simply that the elements of the holonomy
pseudogroup satisfy this estimate, which was used in the celebrated theorems of Denjoy [24] and
Sacksteder [100]. Briefly, recall that given a chain of local diffeomorphisms g = hin ◦ · · ·hi1 and
two points u0 and v0 in the domain of g, then

| log{g′(u0)} − log{g′(v0)}| ≤ θ
n−1∑

p=0

|up − vp|

where θ is a constant depending on the C2 norms of the generating elements {h1, . . . , hN} and
up = hip ◦ · · ·hi1(u0) and vp = hip ◦ · · ·hi1(v0). See section 8.1.A, [6]. This is usually applied in
a context where the right-hand-sum is estimated by geometric considerations, as occurs when u0

and v0 are the endpoints of a gap for an exceptional minimal set. It is called “naive” by Sullivan,
because in the modern theory of 1-dimensional dynamics there is also a “sophisticated” distortion
lemma, also known as the “Schwartzian distortion lemma”. This latter technique is a fundamental
tool for renormalization theory of maps in 1-dimensional dynamics, but has not been used in the
study of foliations, though it might prove useful for studying exceptional minimal sets.

TECHNIQUE 8.2. Octopus decomposition

This result for C0-foliations, which has no counterpart in classic dynamics, was introduced by
Dippolito [25]. It states that an open saturated subset U ⊂ M of a foliated compact manifold can
be decomposed into a union of manifold with corners, U = N ∪A1 ∪ · · · ∪An where N is the body,
or nucleus, of U , and the Ai are the arms. The body N is a compact, connected manifold with
boundary and corners, and F|N foliates N . Each arm Ai is a closed, non-compact submanifold
with boundary and corners, and F|Ai is a foliated interval bundle. More technical conditions are
required (see pages 130-131, [6]) but this suffices to give the idea. The power of this result lies in
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that the structure of foliated interval bundles is well understood, so this isolates difficulties with
the study of F|U to the compact foliated body F|N . One imagines the arms of the octopus snaking
through the various exceptional minimal sets of F , or possibly squeezing between the proper leaves.
The conjecture about whether an exceptional minimal set K for a C2 foliation can have infinitely
many semi-proper leaves is just asking how many octopi can share the set K!

TECHNIQUE 8.3. Poincaré-Bendixson theory

The theory of levels is one of the most sophisticated tools for the study of C2-foliations. It was
developed by Cantwell and Conlon [9] and Hector [49], and defines inductively a decomposition
(or hierarchy) of a foliation according to the asymptotics of the leaves. Starting with level 0, the
compact minimal sets, the leaves at the next level are the local minimal sets for the complement
of the previous level. The resulting structure and complications can be formidable. Fortunately,
there is an introduction to the theory [14], and Chapter 8 of [6] provides a detailed and patient
discussion of all aspects of the theory. One its greatest successes is the structure theory of real
analytic foliations [11], where the hierarchy is finite and the structure of each stage is very well
understood. When this theory is applied to codimension one foliations of 3-manifolds, one can ask
about the “placement” of the leaves, or local minimal sets at various levels, within the manifold.
For example, if M is Haken it is possible to formulate precise questions about the leaf placements
at increasing levels and the fundamental group of M . Unfortunately, it is not possible to answer
these questions yet – the ongoing work of Cantwell and Conlon [17, 18, 19, 20] have solved the
placement problem for depth one, while depth two awaits.

TECHNIQUE 8.4. Micro-expansion, sheaves and quivers

A C1-foliation F with positive geometric entropy has micro-expansion, a phrase coined to suggest
the explosion in the orbits of exponentially close points that has to occur when h(F) > 0. A
complete transversal T for F has finite length, so by definition of geometric entropy, for ε > 0
small and i → ∞, there exists a sequence ni → ∞ and collections of (ε, ni)-separated points
{xi

1, . . . , xi
pi
} ⊂ T where the sequence {pi} has exponential growth exp(nih(F))/pi → 1. By

a pigeon-hole principle, there must be subcollections of exponentially many points exponentially
close which are (ε, ni)-separated. We can assume the set transversal T is a subset of the line so
well-ordered, and the sets are index with xi

k < xi
� for k < 
. Then for each xi

k there is an element
of holonomy γi

k of length at most ni which ε-separates xi
k and xi

k+1. One pictures this as a sheaf of
arrows of length ni with bases concentrated on smaller and smaller regions, the arrows representing
elements of holonomy {γi

k}, and the tips pairwise separating so they end up at least ε apart.
Moreover, the transverse derivatives along these arrows are non-uniformly hyperbolic by the mean
value theorem, so these could be called hyperbolic quivers, which sounds even more formidable.

On the other hand, the tips of the arrows must also land somewhere on T , and since there
are exponentially many arrows, another application of the pigeon-hole principle yields exponential
families of arrows (elements of holonomy) of length ni whose bases and tips are exponentially close.
These are quivers. Thus, there is quite a lot of dynamical information contained in the statement
“h(F) > 0”. As intuitive and imprecise as the image of quivers may seem, it can be formalized in a
variety of contexts to help understand the geometric entropy. For example, it is a key idea behind
the proofs involving entropy in the papers [63, 64, 65]. The main question about quivers is how to
quantify them. It seems likely that any scheme will be analogous to the construction of relative
measure entropy for the geodesic flow of F . There should also be a connection between quivers and
the pseudo-orbit estimates of [2].
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Almost the opposite concept was used in the proof of Theorem 5.1, [37] which proved that
if h(F) = 0 then there exists a holonomy invariant transverse measure. Here, the intuition is
closer to a “straw mat”, as the base of the arrows are uniformly spaced and the tips cluster at a
subexponential rate.

TECHNIQUE 8.5. Ping-pong games and closing

A ping-pong game for a C0-foliation is a basic concept of topological dynamics, which is equivalent
to the idea of resilient orbits, but somehow more natural to construct. The basic idea is that
there should be given an interval I0 ⊂ T in the transversal for F , and elements of holonomy
h1 : I0 → I1 ⊂ I0 and h2 : I0 → I2 ⊂ I0 so that both h1 and h2 are contractions. We also require
that the closures of I1 and I2 are disjoint, and both contained in the interior of I0. It is an exercise
that the orbits of the fixed-points in a ping-pong game generate resilient leaves, and that a foliation
with a ping-pong game must have h(F) > 0. This latter fact was used in [37] to show that a foliation
with a resilient leaf has h(F) > 0. For a C1-foliation, a hyperbolic ping-pong game is one where
the maps are hyperbolic contractions on the set I0, and thus h1 and h2 must each have a unique
hyperbolic fixed-point. Thus, a hyperbolic ping-pong game is like having part of the hypothesis of
a Markov minimal set, except that orbits of the hyperbolic fixed-points are not assumed to lie in
an exceptional minimal set. A C1-foliation with a quiver must have a ping-pong game, and hence
positive entropy – a fact used in the proof of Theorem 1.1 of [65]. The existence of a quiver also
implies there are attracting fixed-points, which is a type of closing lemma that says close to every
quiver is a hyperbolic fixed-point. This idea is developed in detail in section 4 of [64].

TECHNIQUE 8.6. Tempering procedures

Tempering procedures are specialty tools, which often appear to be more technical than useful,
but when needed are indispensable and very powerful. Tempering is a process which converts
asymptotic estimates for a cocycle into local estimates by making a change of scale (coboundary)
for the initial data. For example, if ϕ : Γ×S

1 → S
1 is a C1-action on the circle, then the derivative

dϕ : Γ × S
1 → R is a real-valued cocycle over the action ϕ. We define the exponent of dφ at x by

λ(x) = lim sup
n→∞

log (max{ϕ(γ)′(x) | ‖γ‖ ≤ n})
n

If K ⊂ M is a closed saturated subset such that λ(x) ≤ a for almost all x ∈ K, then for gr(F) the
word growth rate of Γ, choose ε > a + gr(Γ) and define

fε(x) =
∑

γ∈Γ

exp{−ε · ‖γ‖} · dφ(γ, x)

It is then an exercise that the new cocycle φ̃(γ, x) = fε(ϕ(γ)(x)) ·φ(γ, x) ·fε(x)−1 has uniform local
variation bounded by ε.

Tempering for linear cocycles over group actions and foliations was introduced by Hurder and
Katok in [67], and used there and in [58] to regularize the transverse derivative cocycle Dϕ for
foliations. A discussion of tempering can also be found in [31]. For example, when the leaves of F
have subexponential volume growth, the transverse Radon-Nikodyn cocycle satisfies λ(x) = 0 for
almost all x, so tempering constructs a transverse measure defining F with arbitrarily small local
variation. The papers [64, 65] introduce another tempering procedure for subexponential growth
cocycles over arbitrary growth foliations, which is applied in [65] to obtain new vanishing theorems
for the Godbillon-Vey classes. Tempering procedures are essentially the only available method for
converting transversally measurable information for a foliation (typically obtained from ergodic
theory considerations) into differential geometric conclusions.
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9. Open questions

“Problem sessions” were held at both the 1976 and 1992 symposia on foliations at Rio de Janeiro,
with the discussion and proposed problems compiled by Paul Schweitzer [102] for the 1976 meeting,
and Remi Langevin [72] for the 1992 meeting. Some of the problems remain unchanged, while a
comparison between these two reports fourteen years apart illustrates some of the advances in
the field, and changing emphasis in research. The survey of the Godbillon-Vey invariant by Ghys
[31] also includes a number of problems with discussions about them. Here, we compile a list of
questions concerning the topics of the present survey. It is not meant to be comprehensive when
compared to the more general problem lists above, but does attempt to include all of the frequently
mentioned problems regarding the Godbillon-Vey classes and foliation dynamics.

Problems on Godbillon-Vey Invariants

PROBLEM 9.1. Give a geometric interpretation of the Godbillon-Vey invariant

The Moussu-Pelletier and Sullivan Conjecture is a one-sided look at GV (F), as it only relates
to dynamical properties of F which can force the Godbillon measure to vanish. The other side is
the “Vey class” which depends upon curvature properties of the leaves and normal bundle. The
Reinhart-Wood formula [98] gave a pointwise geometric interpretation of GV (F) for 3-manifolds.
What is needed is a more global geometric property of F which is measured by GV (F). The helical
wobble description by Thurston [106] is a first attempt at such a result, and the Reinhart-Wood
formula suitably interprets this idea locally. Langevin has suggested that possibly the Godbillon-
Vey invariant can be interpreted in the context of integral geometry and conformal invariants
[3, 73] as a measure in some suitable sense. The goal for any such an interpretation, is that it
should provide sufficient conditions for GV (F) �= 0.

PROBLEM 9.2. Topological invariance of the Godbillon-Vey invariant

Given a homeomorphism h : M → M ′ mapping the leaves of a C2 foliation F on M to the
leaves of a C2-foliation F ′ on M ′, show h∗GV (F ′) = GV (F). As discussed in section 7, if h is C1,
then Raby [94] proved h∗GV (F ′) = GV (F), and when h and its inverse are absolutely continuous,
then Hurder and Katok [67] showed this. An intermediate test case might be to assume h and its
inverse are a Hölder Ca-continuous for some a > 0, and then prove h∗GV (F ′) = GV (F), using
for example arguments from regularity theory of hyperbolic systems and an approach similar to
Ghys and Tsuboi [39]. Alternately, a direct proof may be possible, perhaps based on a solution to
Problem 9.1.

PROBLEM 9.3. The Godbillon-Vey invariant and harmonic measures

The vanishing theorems are based on relating the Godbillon measure to the existence of “almost
invariant” smooth transverse measures for F . A foliation always admits a harmonic measure, but
the structure of that measure depends upon whether F admits transverse invariant measures, or
not. Is it possible to establish relations between the values of the Godbillon-Vey invariant and the
structure of harmonic measures for F? There are other similarities in the properties of both of
these invariants of F which suggests that such a relationship is plausible.

PROBLEM 9.4. What is meaning of thickness?
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The concept of “thickness” introduced by Duminy [26, 27, 12] was given in terms of the structure
theory of C2-foliations, yet its application is to show the foliation admits almost invariant transverse
volume forms on an open saturated subset, which is a purely dynamical consideration. Does the
thickness have an interpretation as a dynamical property of the foliation geodesic flow, or some
other ergodic property of F?

PROBLEM 9.5. Suppose that F has codimension q > 1 and there is some non-zero secondary
class (or possibly Weil measure). Does this imply h(F) > 0?

Hurder [56] showed that for a C2-foliation of codimension q > 1, if there is a leaf L whose linear
holonomy map Dϕ : π1(L, x) → GL(Rq) has non-amenable image, then F has leaves of exponential
growth. The proof actually constructs a modified ping-pong game for F , using the C2-hypothesis
to show that the orbits of the holonomy pseudogroup shadow the orbits of the linear holonomy
group which has an actual ping-pong game by Tits [107]. Thus, it seems probable that this proof
also shows h(F) > 0 with these hypotheses. Since the Weil measures vanish for a foliation whose
transverse derivative cocycle Dϕ : GF → GL(Rq) has amenable algebraic hull [66], it should be
possible to combine the methods of [56, 66, 63] to solve this problem.

Problems on Minimal Sets

PROBLEM 9.6. Let K be an exceptional minimal set for a codimension one C2-foliation F .
Show

1. The Lebesgue measure of K is zero;
2. K has only a finite number of semi-proper leaves;
3. Every leaf of K has a Cantor set of ends.
4. Every semiproper leaf of K has germinal holonomy infinite cyclic, generated by a contraction.
5. K is Markov.

The first four questions were posed at least 20 years ago. Note that K has only a finite number
of semiproper ends if and only if its complement in M has only a finite number of connected open
components. Duminy’s Theorem [16] shows that the semiproper leaves of K must have a Cantor
set of ends. A number of authors have shown the measure of K is zero for special cases [68, 80, 69].
Cantwell and Conlon showed that if K is Markov, then the first four properties follow [13, 15].

PROBLEM 9.7. For a codimension one C2-foliation F , give an example of an exceptional min-
imal set K with non-trivial Godbillon-Vey measure.

This is most likely impossible, as it contradicts (9.6.1) above. If a counter-example to (9.6.1)
can be constructed, then it will automatically have non-zero Godbillon measure, as an exceptional
minimal set must be hyperbolic for a C2-foliation, so it would then be plausible to ask that whether
the Godbillon-Vey class localized to K is non-zero.

PROBLEM 9.8. For a codimension one, C1- or C2-foliation F , give a structure theorem for the
exceptional minimal sets of F .

This is asking first for an understanding of how many semiproper leaves there are, and then for
some sort of generalized Markov structure on K. In other words, it is asking a lot!
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PROBLEM 9.9. Let Γ be a closed subgroup of Homeo+(S1) acting transitively. Is Γ conjugate to
one of the subgroups SO(R2), PSLk(R2), or Homeok,+(S1) of Homeo+(S1)?

This question was posed by Ghys as Problem 4.4, [35]. The hypothesis the group is closed
is essential, so unless the group is finite it must be non-discrete. The problem is included as
an understanding of this question would surely help with understanding the minimal actions of
countable groups on S

1. (Note that the subscript k in the question indicates the k-fold covering
group.)

Problems on Geometric Entropy

PROBLEM 9.10. Give a definition of the measure entropy, or some other entropy-type invariant,
of a C1-foliation F , which can be used to establish positive lower bounds for the geometric entropy.

This problem was asked in the original paper of Ghys, Langevin and Walczak [37]. Their earlier
paper [36] gave a possible definition, but the connection to the geometric entropy is unclear. The
paper by Hurder [59] proposes a definition of the measure entropy in terms of invariant measures
for the associated geodesic flow. If well-defined, these measure entropies will estimate the entropy
of the geodesic flow relative to the invariant foliation almost by definition. A special case is to show
there exists a good definition of measure entropies for codimension 1 foliations. Another approach
might be to define measure entropy for a foliation in terms of its harmonic measures.

Problems on Ergodic Theory

PROBLEM 9.11. Show the set of leaves with non-exponential growth, and not subexponential
growth, has Lebesgue measure zero.

Hector’s construction in [47] of examples with leaves of this special type appear to produce a set
(of such leaves) with measure zero. This growth condition, that lim sup �= lim inf, implies a high
degree of non-uniformity for the asymptotics of the leaf. If there exists a set of positive measure
consisting of such leaves, then recurrence within the set should imply a uniformity of the growth,
contradicting the hypothesis.

PROBLEM 9.12. Can a codimension one foliation have higher rank?

The celebrated theorems of Burger and Monod [5] and Ghys [34] show that a higher rank group
does not admit an effective C1-action on the circle. One can view these results as about the
holonomy groups of a codimension one foliation transverse to a circle bundle. Can these theorems
be generalized to codimension one foliations which are not transverse to a circle bundle? Part of
the problem is to give a suitable definition of higher rank for a foliation (cf. Zimmer [123].)

PROBLEM 9.13. Does restricted orbit equivalence preserve geometric entropy?

Given foliated compact manifolds (M,F) and (M ′,F ′), a restricted orbit equivalence between
F and F ′ is a measurable isomorphism h : M → M ′ which maps the leaves of F to the leaves of
F ′, and the restriction of h to leaves is a coarse isometry for the leaf metrics. Note that h and its
inverse are assumed to preserve the Lebesgue measure class, but need not preserve the Riemannian
measure. Such a map preserves the Mackey range of the Radon-Nikodyn cocycle [122]. Restricted
orbit equivalence also preserves the entropy positive condition, for ergodic Z

n actions. Does a
corresponding result hold for geometric entropy: if h(F) > 0, must h(F ′) > 0 also?
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PROBLEM 9.14. How is the flow of weights for F related to the dynamics of F?

Connes has show that the Godbillon-Vey class, or more precisely the Bott-Thurston 2-cocycle
defined by it, can be calculated from the flow of weights for the von neumann algebra M(M,F)
(see [22], Chapter III.6, [23].) This gives another proof of the theorem of Hurder and Katok [66]
that if GV (F) �= 0 then M(M,F) has a factor of type III. The flow of weights is determined by
the flow on the Mackey range of the modular cocycle, so that a type III factor corresponds to a
ergodic component of the Mackey range with no invariant measure. However, almost nothing else
is known about how the flow of weights is related to the topological dynamics of F . In particular,
Alberto Candel has asked whether the existence of a resilient leaf can be proven using properties
of the flow of weights.
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[46] G. Hector. Quleques exemples de feuilletages espèces rares. Ann. Inst. Fourier, Grenoble, 26:239–264, 1976.
[47] G. Hector. Leaves whose growth is neither exponential nor polynomial. Topology, 16:451–459, 1977.
[48] G. Hector. Croissance des feuilletages presque sans holonomie. In Foliations and Gelfand-Fuks Cohomology, Rio

de Janeiro (1976). Lect. Notes Math. Vol. 652, pages 141–182. Springer–Verlag, New York and Berlin, 1978.
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Presses Univ. Montréal, 1974.
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Math. Jour., 34:343–365, 1982.
[115] N. Tsuchiya. On decompositions and approximations of foliated manifolds. In Foliations, pages 135–158. Ad-

vanced Studies in Pure Math. Vol. 5, North-Holland, Amsterdam, 1985.
[116] P. Walczak. Dynamics of the geodesic flow of a foliation. Ergodic Theory Dynamical Systems, 8:637–650, 1988.
[117] P. Walczak. On the geodesic flow of a foliation of a compact manifold of negative constant curvature. Suppl.

Rend. Circ. Mat. Palermo, 21:349–354, 1989.
[118] P. Walczak. Jacobi operator for leaf geodesics. Coll. Math., 45:213–226, 1993.
[119] P. Walczak. Existence of smooth invariant measures for geodesic flows of foliations of Riemannian manifolds.

Proc. Amer. Math. Soc., 120:903–906, 1994.
[120] P. Walczak. Hausdorff dimension of Markov invariant sets. Journal Math. Society of Japan, 48:125–133, 1996.
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