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Abstract. Let F be a codimension–one, C2-foliation on a manifold M without boundary. In

this work we show that if the Godbillon–Vey class GV (F) ∈ H3(M) is non-zero, then F has a

hyperbolic resilient leaf. Our approach is based on methods of C1-dynamical systems, and does
not use the classification theory of C2-foliations. We first prove that for a codimension–one C1-

foliation with non-trivial Godbillon measure, the set of infinitesimally expanding points E(F) has

positive Lebesgue measure. We then prove that if E(F) has positive measure for a C1-foliation,
then F must have a hyperbolic resilient leaf, and hence its geometric entropy must be positive.

The proof of this uses a pseudogroup version of the Pliss Lemma. The first statement then follows,
as a C2-foliation with non-zero Godbillon-Vey class has non-trivial Godbillon measure. These

results apply for both the case when M is compact, and when M is an open manifold.
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1. Introduction

Godbillon and Vey introduced the invariant GV (F) ∈ H3(M ;R), which is defined for a codimension-
one C2-foliation F of a manifold M without boundary, in the brief note [26]. While the definition of
the Godbillon-Vey class is elementary, understanding its relations to the geometric and dynamical
properties of the foliation F remains an open problem. In the paper [72], Thurston showed that the
Godbillon-Vey class can assume a continuous range of values for foliations of closed 3-manifolds, and
he also introduced the concept of “helical wobble”, which he suggested gives a relation between the
value of this class and the Riemannian geometry of the foliation. This geometric relation was made
precise in a work by Reinhart and Wood [68]. More recently, Langevin and Walczak in [52, 76, 77]
gave further insights into the geometric meaning of the Godbillon-Vey invariant for smooth foliations
of closed 3-manifolds, in terms of the conformal geometry of the leaves of the foliation.

The Godbillon-Vey class appears in a surprising variety of contexts, such as the Connes-Moscovici
work on the cyclic cohomology of Hopf algebras [13, 15, 14] which interprets the class in non-
commutative geometry setting. The works of Leichtnam and Piazza [54] and Moriyoshi and Natsume
[58] gave interpretations of the value of the Godbillon-Vey class in terms of the spectral flow of
leafwise Dirac operators for smooth foliations.

The problem considered in this work was first posed in papers of Moussu and Pelletier [59] and
Sullivan [71], where they conjectured that a codimension-one foliation F with GV (F) 6= 0 must
have leaves of exponential growth. The support for this conjecture at that time was principally a
collection of examples, and some developing intuition for the dynamical properties of foliations. The
geometry of the helical wobble phenomenon is related to geometric properties of contact flows, such
as for the geodesic flow of a compact surface with negative curvature. The weak stable foliations
for such flows have all leaves of exponential growth, and often have non-zero Godbillon-Vey classes
[72, 62, 68, 41, 27]. Moreover, the work of Thurston in [72] implies that for any positive real number
α there exist a C2-foliation of codimension-one on a compact oriented 3-manifold, whose Godbillon-
Vey class is α times the top dimension integral cohomology class. These various results suggest that
a geometric interpretation of GV (F) might be related to dynamical invariants such as “entropy”,
whose values are not limited to a discrete subset of R.

Given a choice of a complete, relatively compact, 1-dimensional transversal X ⊂ M to F , the
transverse parallel transport along paths in the leaves defines local homeomorphisms of X, which
yields a 1-dimensional pseudogroup GF as recalled in Section 2.2. The study of the properties of
foliation pseudogroups has been a central theme of foliation theory since the works of Reeb and
Haefliger in the 1950’s [66, 67, 28, 29].

The geometric entropy h(F) of a C1-foliation F was introduced by Ghys, Langevin and Walczak [24],
and can be formulated in terms of the pseudogroup GF associated to the foliation. The geometric
entropy is a measure of the dynamical complexity of the action of GF on X, and is one of the most
important dynamical invariants of C1-foliations. The Godbillon-Vey class GV (F) vanishes for all
the known examples of foliations for which h(F) = 0, and the problem was posed to relate the non-
vanishing of the geometric entropy h(F) of a codimension-one C2-foliation F with the non-vanishing
of its Godbillon-Vey class.

Duminy showed in the unpublished papers [18, 19] that for a C2-foliation of codimension one,
GV (F) 6= 0 implies there are leaves of exponential growth. (See the account of Duminy’s results in
Cantwell and Conlon [12], and [10, Theorem 13.3.1].) Duminy’s proof began by assuming that a C2-
foliation F has no resilient leaves, or equivalently resilient orbits for GF as in Definition 2.3. Then by
the Poincaré-Bendixson theory for codimension–one, C2-foliations [12, 33], Duminy showed that the
Godbillon-Vey class of F must vanish. Thus, if GV (F) 6= 0 then F must have at least one resilient
leaf. If a codimension–one foliation has a resilient leaf, then by an easy argument it follows that F
has an uncountable set of leaves with exponential growth. Duminy’s proof is “non-constructive”,
as it does not show explicitly how a non-trivial value of the Godbillon-Vey class results in resilient
leaves for the foliation. One of the points of this present work is to give a direct demonstration of
this relation, which we show using techniques of ergodic theory for C1-foliations.

In the work [24], Theorem 6.1 states that for a codimension-one, C2-foliation F , if h(F) 6= 0 then F
must have a resilient leaf. Candel and Conlon gave a proof of this result in [9, Theorem 13.5.3] for
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the special case where the foliation is the suspension of a group action on a circle, but were unable
to extend the proof to the general case asserted in [24]. One concludes that for a C2-foliation F ,
if the geometric entropy h(F) = 0, then F has no resilient leaves and thus GV (F) = 0. The proof
that GV (F) 6= 0 implies h(F) > 0 given in this work, circumvents these difficulties.

The evolution of vanishing theorems for the Godbillon-Vey invariant, starting with Hermann [37]
and progressing up to Duminy’s work [18, 19], is discussed in detail in the survey [44]. The technique
that is used in all of these works was to use dynamical hypotheses on the foliation to obtain upper
bound estimates on the norm of the Godbillon-Vey invariant, defined using smooth forms associated
to the foliation. The paper [36] extended these techniques, by making the relation between the value
of the Godbillon-Vey invariant and measurable forms explicit. This relationship made it possible
to develop more direct relations between the ergodic theory of foliations with the values of their
secondary classes in all codimensions. A key idea introduced in [38, 39], was to use techniques from
the Oseledets theory of cocycles to study the relation between foliation dynamics and the values of
the secondary classes of foliations.

In this paper, we further develop the ergodic theory of C1-foliations, in order to show that for a
C2-foliation F , the assumption GV (F) 6= 0 implies that the foliation F has resilient leaves, and thus
h(F) 6= 0. An important aspect of our proof, is that the subtle techniques of the Poincaré-Bendixson
theory of C2-foliations are avoided, and the conclusion that there exists resilient leaves follows from
straightforward techniques of dynamical systems.

The work of Duminy [18] reformulated the study of the Godbillon-Vey class for C2-foliations in
terms of the Godbillon measure GF , which for a C1-foliation F of a compact manifold M , is a linear
functional defined on the Borel σ-algebra B(F) formed from the leaf-saturated Borel subsets of M ,
and by extension this measure is defined on the saturated measurable subsets of M . These ideas
are introduced and discussed in the papers [12, 18, 19, 36, 38, 39], and recalled in Section 3 below.
Here is our main result, as formulated in these terms:

THEOREM 1.1. If F is a codimension–one, C1-foliation with non-trivial Godbillon measure GF ,
then F has a hyperbolic resilient leaf.

In the course of our proof of this result, resilient orbits of the action of the pseudogroup GF are
explicitly constructed using a version of the Ping-Pong Lemma, first introduced by Klein in his study
of subgroups of Kleinian groups [16], and which is discussed in Section 2.4.

For C2-foliations, Theorem 4.4 below implies that the Godbillon-Vey class is obtained by evaluating
the Godbillon measure on the “Vey class” [v(F)] localized to the hyperbolic set E+(F) ∈ B(F)
introduced in Definition 4.3. Only the definition of the localized class [v(F)]|E+(F) requires that F
be C2. Thus, for a C2-foliation F , GV (F) 6= 0 implies that GF 6= 0, and we deduce:

COROLLARY 1.2. If F is a codimension–one, C2-foliation with non-trivial Godbillon-Vey class
GV (F) ∈ H3(M ;R), then F has a hyperbolic resilient leaf, and thus the entropy h(F) > 0.

We next discuss the strategy of the proof of Theorem 1.1. A key idea in dynamical systems of flows
is to consider the points for which the dynamics is “infinitesimally exponentially expansive” over
long orbit segments, which corresponds to points with positive Lyapunov exponent [2, 5, 61]. The
analog for pseudogroup dynamics is to introduce the set of points in the transversal X for which
there are arbitrarily long words in GF for which the norm of their transverse derivative matrix is
exponentially growing with respect to the word norm on the pseudogroup.

We introduce in Section 4, the F-saturated set E+(F) of points in M where the transverse derivative
cocycle for F has positive exponent. A point x ∈ E+(F) ∩ X if and only if there is a sequence of
holonomy maps such that the norms of their derivatives at x grow exponentially fast as a function
of “word length” in the foliation pseudogroup, and E+(F) is the leaf saturation of this set.

The set E+(F) is a fundamental construction for a C1-foliation. For example, a key step in the
proof of the generalized Moussu–Pelletier–Sullivan conjecture in [38] was to show that for a foliation
F with almost all leaves of subexponential growth, the Lebesgue measure |E+(F)| = 0. Here, we
show in Theorem 4.4 that if a measurable, F-saturated subset B ⊂M is disjoint from E+(F), then
the Godbillon measure must vanish on B.
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The second step in the proof of Theorem 1.1 is to show that for each point x ∈ E+(F), the holonomy
of F has a uniform exponential estimate along the orbit of x for its transverse expansion along
arbitrarily long words in the holonomy pseudogroup. This follows from Proposition 5.3, which is
pseudogroup version of what is called the “Pliss Lemma” in the literature for non-uniform dynamics
[64, 55, 5]. If E+(F) has positive measure, it is then straightforward to construct resilient orbits
for the action of GF on X , as done in the proof of Proposition 6.4. The proof of Theorem 1.1 then
follows by combining Theorem 4.4, Proposition 5.8 and Proposition 6.4.

The proofs of Propositions 5.3 and 5.8 are the most technical aspects of this paper. One important
issue that arises in the study of pseudogroup dynamical systems, is that the domain of a holonomy
map in the pseudogroup may depend upon the “length” of the leafwise path used to define it, so
that composing maps in the pseudogroup often results in a contraction of the domain of definition
for the resulting map. This is a key difference between the study of dynamics of a group acting on
the circle, and that of a pseudogroup associated to a general codimension–one foliation. One of the
key steps in the proof of Proposition 5.8 is to show uniform estimates on the length of the domains
of compositions. The proof uses these estimates to produce an abundance of holonomy pseudogroup
maps with hyperbolic fixed–points.

We point out one application of Proposition 5.8, which complements the main result of [42].

THEOREM 1.3. Let F be a C1-foliation of codimension-one such that no leaf of F has a closed
loop with hyperbolic transverse holonomy, then the hyperbolic set E+(F) is empty.

Finally, the extension of the methods for closed manifolds to the case of open manifolds requires
only a minor modification in the definition of the Godbillon measure, as discussed in Section 7.

For codimension–one foliations, it is elementary that the existence of a resilient leaf implies h(F) > 0.
The converse, that h(F) > 0 implies there is a resilient leaf, was proved in [24] for C2-foliations,
and proved in [43] for C1-foliations. Let “HRL(F)” denote the property that F has a hyperbolic
resilient leaf. Let |E| denote the Lebesgue measure of a measurable subset E ⊂ M . The results of
this paper are summarized by the following implications:

THEOREM 1.4. Let F be a codimension–one, C1-foliation of a manifold M . Then

(1) gF 6= 0 =⇒ |E+(F)| > 0 =⇒ “HRL(F)”⇐⇒ h(F) > 0 .

The collaboration of the authors in Spring 1999 leading to this work was made possible by the support
of the first author by the Université of Bourgogne, Dijon. This support is gratefully acknowledged.

2. Foliation Basics

In this section, we introduce some standard notions and results of foliation geometry and dynamics.
Complete details and further discussions are provided by the texts [8, 9, 25, 34, 75].

We assume that M is a closed oriented smooth Riemannian m-manifold, F is a Cr-foliation of
codimension–1 with oriented normal bundle, for r ≥ 1, and that the leaves of F are smoothly
immersed submanifolds of dimension n ≥ 2, where m = n + 1. This is sometimes referred to as a
C∞,r-foliation, where the holonomy transition maps are Cr, typically for either r = 1 or r = 2.

2.1. Regular Foliation Atlas. A C∞,r-foliation atlas on M , for r ≥ 1, is a finite collection
{(Uα, φα) | α ∈ A} such that:

(1) U = {Uα | α ∈ A} is an open covering of M .
(2) φα : Uα → (−1, 1)m is a C∞,r–coordinate chart; that is, for (u,w) ∈ (−1, 1)n × (−1, 1), the

map φ−1
α (u,w) is C∞ in the “leaf” variable u, and together with all the leafwise derivatives

with respect to u, it is Cr in the “transverse” variable w.
(3) Each chart φα is transversally oriented.
(4) Given x ∈ Uα ∩ Uβ with φα(x) = (u,w), for the change-of-coordinates map (u′, w′) =

φβ ◦ φ−1
α (u,w), the value of w′ is locally constant with respect to u.
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Figure 1. Overlapping foliation charts

The collection of sets

VF ≡
{
Vα,w = φ−1

α (V × {w}) | V ⊂ (−1, 1)n , w ∈ (−1, 1) , α ∈ A
}

form a subbasis for the “fine topology” on M . For x ∈ M , let Lx ⊂ M denote the connected
component of this fine topology containing x. Then Lx is path connected, and is called the leaf of F
containing x. Without loss of generality, we can assume that the coordinates are positively oriented,
mapping the positive orientation for the normal bundle to TF to the positive orientation on (−1, 1).

Note that each leaf L is a smooth, injectively immersed manifold in M . The Riemannian metric on
TM restricts to a smooth metric on each leaf. The path-length metric dF on a leaf L is defined by

dF (x, y) = inf
{
‖γ‖ | γ : [0, 1]→ L is C1 , γ(0) = x , γ(1) = y

}
,

where ‖γ‖ denotes the path length of the C1-curve γ(t). If x, y ∈M are not on the same leaf, then
set dF (x, y) = ∞. It was noted by Plante [63] that for each x ∈ M , the leaf Lx containing the
point x, with the induced Riemannian metric from TM is a complete Riemannian manifold with
bounded geometry, that depends continuously on x. In particular, bounded geometry implies that
for each x ∈M , there is a leafwise exponential map expFx : TxF → Lx which is a surjection, and the
composition ι ◦ expFx : TxF → Lx ⊂M depends continuously on x in the compact-open topology.

We next recall the notion of a regular covering, or what is sometimes called a nice covering in the
literature (see [9, Chapter 1.2], or [34].) For a regular foliation covering, the intersections of the
coverings of leaves by the plaques of the charts have nice metric properties. We first recall a standard
fact from Riemannian geometry, as it applies to the leaves of F .

For each x ∈M and r > 0, let BF (x, r) = {y ∈ Lx | dF (x, y) ≤ r} denote the closed ball of radius r
in the leaf containing x. The Gauss Lemma implies that there exists λx > 0 such that BF (x, λx) is
a strongly convex subset for the metric dF . That is, for any pair of points y, y′ ∈ BF (x, λx) there is
a unique shortest geodesic segment in Lx joining y and y′ and it is contained in BF (x, λx) (cf. [3],
[17, Chapter 3, Proposition 4.2]). Then for all 0 < λ < λx, the disk BF (x, λ) is also strongly convex.
The compactness of M and the continuous dependence of the Christoffel symbols for a Riemannian
metric in the C2-topology on sections of bundles over M yields:

LEMMA 2.1. There exists λF > 0 such that for all x ∈M , BF (x, λF ) is strongly convex.

If F is defined by a flow without periodic points, so that every leaf is diffeomorphic to R, then the
entire leaf is strongly convex, so λF > 0 can be chosen arbitrarily. For a foliation with leaves of
dimension n > 1, the constant λF must be less than the injectivity radius for each of the leaves.

Let dM : M × M → [0,∞) denote the path-length metric on M . For x ∈ M and ε > 0, let
BM (x, ε) = {y ∈ M | dM (x, y) < ε} be the open ball of radius ε about x, and let BM (x, ε) = {y ∈
M | dM (x, y) ≤ ε} denote its closure. Then as above, there exists λM > 0 such that BM (x, λ) is a
strongly convex ball in M for all 0 < λ ≤ λM .
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We use these estimates on the local geometry of M and the leaves of F to construct a refinement of
the given covering of M by foliations charts, which have uniform regularity properties.

Let εU > 0 be a Lebesgue number for the given covering U of M .

Then for each x ∈ M , there exists αx ∈ A be such that x ∈ BM (x, εU ) ⊂ Uαx . It follows that for
each x ∈M , there exists 0 < δx ≤ λF such that BF (x, δx) ⊂ BM (x, εU ).

Let (ux, wx) = φα(x), and note that φα(BF (x, δx)) ⊂ (−1, 1)n × {wx}. Then there exists εx > 0 so
that for each w ∈ (wx − εx, wx + εx) and xw = φ−1

α (ux, w) we have BF (xw, δx) ⊂ BM (x, εU ) ⊂ Uαx
is a leafwise convex subset. Define Ux and Ũx to be unions of leafwise strongly convex disks,

(2) Ux =
⋃

w∈(wx−εx/2,wx+εx/2)

BF (xw, δx/2) ; Ũx =
⋃

w∈(wx−εx,wx+εx)

BF (xw, δx)

so then Ux ⊂ Ũx ⊂ BM (x, εU ) ⊂ Uαx . The restriction φαx : Ũx → (−1, 1)n+1 is then a foliation
chart, though the image is not onto.

Note that for each x′ ∈ φ−1
αx (wx− εx, wx+ εx), the chart φαx defines a framing of the tangent bundle

Tx′Lx′ and this framing depends Cr on the parameter x′, so we can then use the Gram-Schmidt
process to obtain a Cr-family of orthonormal frames as well. Then using the inverse of the leafwise
exponential map and affine rescaling, we obtain foliation charts

ϕ̃αx : Ũx → (−δx, δx)n × (wx − εx, wx + εx) ∼= (−2, 2)n × (−2, 2)

ϕαx : Ux → (−δx/2, δx/2)n × (wx − εx/2, wx + εx/2) ∼= (−1, 1)n × (−1, 1)

where ϕαx is the restriction of ϕ̃αx . Observe that ϕ̃αx(x) = (~0, 0) ∈ (−1, 1)n × (−1, 1) for each x.

The collection of open sets {Ux | x ∈ M} forms an open cover of the compact space M , so there
exists a finite subcover “centered” at the points {x1, . . . , xν} ⊂M . Set

(3) δFU = min{δx1
/2, . . . , δxν/2} ≤ λF/2 .

This covering by foliation coordinate charts will be fixed and used throughout. To simplify notation,

for 1 ≤ α ≤ ν, set Uα = Uxα , Ũα = Ũxα , ϕα = ϕxα , ϕ̃α = ϕ̃xα , and U = {U1, . . . , Uν}.

The resulting collection {ϕα : Uα → (−1, 1)n × (−1, 1) | 1 ≤ α ≤ ν} is a regular covering of M by
foliation charts, in the sense used in [9, Chapter 1.2] or [34].

For each 1 ≤ α ≤ ν, define Tα ≡ (−1, 1) ∼= {~0} × (−1, 1) and T̃α ≡ (−2, 2) ∼= {~0} × (−2, 2). The
extended chart ϕ̃α defines Cr–embeddings

(4) τα : Tα → Uα , τ̃α : T̃α → Ũα .

Let Xα = τα(Tα) and X̃α = τ̃α(T̃α) denote the images of these maps. For n ≥ 3, we can assume

without loss of generality that the submanifolds X̃α and X̃β are disjoint, for α 6= β.

Consider Tα and Tβ as disjoint spaces for α 6= β, and similarly for T̃α and T̃β . Introduce the disjoint
unions of these spaces, as denoted by

T =
⋃

1≤α≤ν

Tα ⊂ T̃ =
⋃

1≤α≤ν

T̃α ,(5)

X =
⋃

1≤α≤ν

Xα ⊂ X̃ =
⋃

1≤α≤ν

X̃α .(6)

Note that X is a complete transversal for F , as the submanifold X is transverse to the leaves of F ,

and every leaf of F intersects X. The same is true for X̃.

Let τ : T → X ⊂ M denote the map defined by the coordinate chart embeddings τα, and similarly

define τ̃ : T̃ → X̃ ⊂M using the maps τ̃α.

Let each T̃α have the metric dT induced from the Euclidean metric on R, where dT (x, y) = |x− y|
for x, y ∈ T̃α. Extend this to a metric on T by setting dT (x, y) =∞ for x ∈ T̃α, y ∈ T̃β with α 6= β.

Let each X̃α have the Riemannian metric induced from the Riemannian metric on M , and let dX

denote the resulting path-length metric on Xα. As before, extend this to a metric on X by setting

dX(x, y) =∞ for x ∈ X̃α, y ∈ X̃β with α 6= β.
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Given r > 0 and x ∈ X̃α let BX̃(x, r) = {y ∈ X̃α | dX(x, y) < r}. Introduce a notation which will be

convenient for later work. Given a point x ∈ X̃α and δ1, δ2 > 0, let

[x− δ1, x+ δ2] ⊂ X̃α

be the connected closed subset bounded below by the point x− δ1 satisfying by dX(x, x− δ1) = δ1
and [x− δ1, x] is an oriented interval in Xα. The set [x− δ1, x+ δ2] is bounded above by the point
x+ δ2 satisfying by dX(x, x+ δ2) = δ2 and [x, x+ δ1] is an oriented interval in Xα.

For each 1 ≤ α ≤ ν, let πα ≡ πt ◦ ϕα : Uα → Tα be the composition of the coordinate map ϕα with
the projection πt : Rn+1 = Rn × R→ R. For each w ∈ Tα, the preimage

Pα(w) = π−1
α (w) ⊂ Uα

is called a plaque of the chart ϕα. Then the plaques for the foliation atlas are indexed by the set T .

For x ∈ Uα, by a small abuse of notation, we use Pα(x) to denote the plaque of the chart ϕα
containing x. Note that Pα(x) is the connected component of the intersection of the leaf Lx of F
through x with the set Uα.

The maps π̃α ≡ πt ◦ ϕ̃α : Ũα → T̃α are defined analogously, with corresponding plaques P̃α(w).

Again, by an abuse of notation, for x ∈ Ũα let P̃α(x) ⊂ Ũα denote the plaque of the chart ϕ̃α
containing x.

Note that each plaque Pα(x) is strongly convex in the leafwise metric, so if the intersection of
two plaques {Pα(x),Pβ(y)} is non-empty, then it is a strongly convex subset. In particular, the
intersection Pα(x) ∩ Pβ(y) is connected. Thus, each plaque Pα(x) intersects either zero or one

plaque in Uβ . The same observations are also true for the extended plaques P̃α(x).

2.2. Holonomy Pseudogroup GF . A pair of indices (α, β) is admissible if Uα ∩Uβ 6= ∅. For each
admissible pair (α, β) define

Tαβ = {x ∈ Tα such that Pα(x) ∩ Uβ 6= ∅},(7)

T̃αβ = {x ∈ T̃α such that P̃α(x) ∩ Ũβ 6= ∅} .(8)

Then there is a well-defined transition function hβ,α : Tαβ → Tβα, which for x ∈ Tαβ is given by

hβ,α(x) = y where Pα(x) ∩ Pβ(y) 6= ∅ .

Note that hα,α : Tα → Tα is the identity map for each α ∈ A.

The holonomy pseudogroup GF associated to the regular foliation atlas for F is the pseudogroup
with object space T , and transformations generated by compositions of the local transformations
{hβ,α | (α, β) admissible}. The C∞,r–hypothesis on the coordinate charts implies that each map
hβ,α is Cr. Moreover, the hypothesis (2) on regular foliation charts implies that each hβα admits

an extension to a Cr-map h̃β,α : T̃αβ → T̃αβ defined in a similar fashion. The number of admissible
pairs is finite, so there exists a uniform estimate on the sizes of the domains of these extensions. We
note the following consequence of these observations.

LEMMA 2.2. There exists ε0 > 0 so that for (α, β) admissible and x ∈ Tαβ, then [x− ε0, x+ ε0] ⊂
T̃αβ. That is, if x ∈ Tα is in the domain of hβ,α then [x− ε0, x+ ε0] is in the domain of h̃β,α.

For 0 < δ < ε0 we introduce the closed subsets of T̃

T [δ] = {y ∈ T̃ | ∃ x ∈ T , dT (x, y) ≤ δ}(9)

Tαβ [δ] = {y ∈ T̃αβ | ∃ x ∈ T αβ , dT (x, y) ≤ δ} .(10)

Thus, the maps hβ,α are uniformly Cr on Tαβ [δ] for δ < ε0.

Composition of elements in GF will be defined via “plaque chains”. Given x, y ∈ T corresponding
to points on the same leaf, a plaque chain P of length k between x and y is a collection of plaques

P = {Pα0
(x0), . . . ,Pαk(xk)},

where x0 = x, xk = y and for each 0 ≤ i < k we have Pαi(xi)∩Pαi+1
(xi+1) 6= ∅. We write ‖P‖ = k.
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A plaque chain P also defines an “extended” plaque chain for the charts {(Ũα, φ̃α)},

P̃ = {P̃α1
(x0), . . . , P̃αk(xk)} .

We say two plaque chains

P = {Pα0
(x0), . . . ,Pαk(xk)} and Q = {Pβ0

(y0), . . . ,Pβ`(y`)}
are composable if xk = y0, hence αk = β0 and Pαk(xk) = Pβ0

(y0)). Their composition is defined by

Q ◦ P = {Pα0(x0), . . . ,Pαk(xk),Pβ1(y1), . . . ,Pβ`(y`)} .

The holonomy transformation defined by a plaque chain is the local diffeomorphism

hP = hαkαk−1
◦ · · · ◦ hα1α0

whose domain DP ⊂ Tα0
contains x0. Note that DP is the largest connected open subset of Tα0

containing x0 on which hα`α`−1
◦ · · · ◦ hα1α0

is defined for all 0 < ` ≤ k. The dependence of the
domain of hP on the plaque chain P is a subtle issue, yet is at the heart of the technical difficulties
arising in the study of foliation pseudogroups.

Let h̃P̃ be the holonomy associated to the chain P̃, with domain D̃P̃ ⊂ T̃α0
the largest maximal open

subset containing x0 on which h̃α`α`−1
◦ · · · ◦ h̃α1α0

is defined for all 1 < ` ≤ k. By the extension

property of a regular atlas, the closure DP ⊂ D̃P̃ and h̃P̃ is an extension of hP .

Given a plaque chain P = {Pα0
(x0), . . . ,Pαk(xk)} and a point y ∈ DP , there is a “parallel” plaque

chain denoted P(y) = {Pα0(y), . . . ,Pαk(yk)} where hP(y) = yk.

For x ∈ T , let

GF (x) = {y = hP(x) ∈ T | P a plaque chain for which x ∈ DP}
denote the orbit of x under the action of the pseudogroup. If Lξ ⊂ M denotes the leaf containing
ξ ∈ Uα with πα(ξ) = x ∈ Tα, then τ(GF (x)) = Lξ ∩ X.

2.3. The derivative cocycle. Given a plaque chain P = {Pα0
(x0), . . . ,Pαk(xk)} from x = x0 to

y = xk, the derivative h′P(x) is defined using the identifications Tα = (−1, 1) for 1 ≤ α ≤ ν. Note
that the assumption that the foliation charts are transversally orientation preserving implies that
h′P(x) > 0 for all plaque chains P and x ∈ DP .

Given composable plaque chains P and Q, with x = x0, y = xk = y0, z = y` the chain rule implies

(11) h′Q◦P(x) = h′Q(y) · h′P(x) .

Define the map Dh : GF → R by Dh(P, y) = h′P(y)(y), which is called the derivative cocycle for

the foliation pseudogroup GF acting on T . The function ln{Dh(P, y)} : GF → R is the additive
derivative cocycle, or sometimes the modular cocycle for GF .

2.4. Resilient Leaves and Ping-Pong Games. A plaque chain P = {Pα0(x0), . . . ,Pαk(xk)} is
closed if x0 = xk. A closed plaque chain P defines a local diffeomorphism hP : DP → Tα0

with
hP(x) = x, where x = x0 ∈ Tα0

.

A point y ∈ DP is said to be asymptotic by iterates of hP to x, if h`P(y) ∈ DP for all ` > 0 (where
h`P denotes the composition of hP with itself ` times), and lim

`→∞
h`P(y) = x.

The map hP is said to be a contraction at x if there is some δ > 0 so that every y ∈ BT (x, δ) is
asymptotic to x. The map hP is said to be a hyperbolic contraction at x if 0 < h′P(x) < 1. In this
case, there exists ε > 0 and 0 < λ < 1 so that h′P(y) < λ for all y ∈ BT (x, ε). Hence, every point of
BT (x, ε) is asymptotic to x, and there exists 0 < δ < ε so that the image of the closed δ–ball about
x satisfies

hP(BT (x, δ)) ⊂ BT (x, δ) .

DEFINITION 2.3. We say x ∈ T is a hyperbolic resilient point for GF if there exists

(1) a closed plaque chain P such that hP is a hyperbolic contraction at x = x0

(2) a point y ∈ DP which is asymptotic to x (and y 6= x)
(3) a plaque chain R from x to y.
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Figure 2 below illustrates this concept, where the closed plaque chain P is represented by a path
which defines it, and likewise for the plaque chain R from x to y. Note that the terminal point y is
contained in the domain of the contraction hP defined by P.

Figure 2. Resilient leaf with contracting holonomy along loop P

The “ping-pong lemma” is a key technique for the study of 1-dimensional dynamics, which was used
by Klein in his study of subgroups of Kleinian groups [16]. For a pseudogroup, this has the form:

DEFINITION 2.4. The action of the groupoid GF on T has a “ ping-pong game” if there exists
x, y ∈ Tα with x 6= y and

(1) a closed plaque chain P such that hP is a contraction at x = x0

(2) a closed plaque chain Q such that hQ is a contraction at y = y0

(3) y ∈ DP is asymptotic to x by hP and x ∈ DQ is asymptotic to y by hQ

We say that the ping-pong game is hyperbolic if the maps hP and hQ are hyperbolic contractions.

Figure 3 below illustrates the ping-pong dynamics, where the closed plaque chain P is represented
by a path which defines it, and likewise for the plaque chain Q.

Figure 3. Closed paths P and Q with contracting holonomy generate a ping-pong game

These two notions are closely related as follows; for example, see [24] for a more detailed discussion.

PROPOSITION 2.5. GF has a “ping-pong game” if and only if it has a resilient point, and has
a “hyperbolic ping-pong game” if and only if it has a hyperbolic resilient point.



10 STEVEN HURDER AND RÉMI LANGEVIN

3. The Godbillon-Vey invariant

We first recall the definition of the Godbillon-Vey class for C2-foliations in Section 3.1. We then
discuss the Godbillon operator in Section 3.2, as introduced in [18] and [36]. In Section 3.4, we
introduce the Godbillon measure, and discuss its calculation using distributional differentials of
leafwise forms. This technique was introduced in [36], and is a key point for the estimates of the
values of the Godbillon-Vey invariants in terms of dynamical properties of the foliation. In particular,
Proposition 3.5 is the key result used to relate the Godbillon-Vey invariant to foliation dynamics.
These concepts are also discussed in detail by Candel and Conlon in [10, Chapter 7].

The Godbillon-Vey class is well-defined for C2-foliations, and the Godbillon measure for C1-foliations.
However, giving these definitions for Cr-foliations adds a layer of notational complexity which ob-
scures the basic ideas of the constructions. Thus, for clarity of the exposition, we assume in the
following Section 3.1 that F is a C∞-foliation, and leave to the reader the required technical mod-
ifications to show the analogous results for Cr-foliations, for r = 1 or 2. Alternately, consult the
works [18, 36, 38] for further details in these cases.

3.1. The Godbillon-Vey class. Assume that M has a Riemannian metric, and that F is a C∞-
foliation of codimension one. The normal bundleQ→M to TF is then identified with the orthogonal
space to the tangential distribution TF . We may assume without loss of generality that M is
connected, and that both the tangent bundle TM and the normal bundle Q are oriented, as the
dynamical properties of foliations that we will be considering are preserved by passing to finite
coverings of M . We may thus assume that TF is defined as the kernel of a non-vanishing 1-form ω
on M . Throughout this work, H∗(M) will denote the de Rham cohomology groups of M .

We first recall a basic construction that is used throughout the following discussions. Let ~v be a
smooth vector field on M such that ω(~v) = 1. The integrability of the tangential distribution TF
implies that dω ∧ ω = 0. Hence, there exists a 1-form α with dω = ω ∧ α. The choice of the 1-form
α is not canonical, and so we introduce a procedure for choosing a representative for α.

DEFINITION 3.1. Let ω be a non-vanishing 1-form on M whose kernel equals TF , and ~v a vector
field on M such that ω(~v) = 1. Define D~vω = ι(~v) dω.

For brevity of notation, set η = D~vω, and note that η(~v) = 0. Then for any choice of α such that
dω = ω ∧ α, let ~u be tangent to F , then we have

(12) η(~u) = (ι(~v)dω)(~u) = dω(~v, ~u) = (ω ∧ α)(~v, ~u) = α(~u)

as ω(~v) = 1 and ω(~u) = 0 by definition. Thus, for any 1-form α such that dω = ω ∧ α and any leaf
L of F , their restrictions satisfy α|L = η|L. In particular, we have that dω = ω ∧ η, and calculate

(13) 0 = d(dω) = d(ω ∧ η) = dω ∧ η − ω ∧ dη = ω ∧ η ∧ η − ω ∧ dη = −ω ∧ dη .

We conclude from (13) that the 2-form dη is a multiple of ω. Then calculate d(η∧dη) = dη∧dη = 0
as ω ∧ ω = 0, so that η ∧ dη is a closed 3-form on M .

THEOREM 3.2 (Godbillon and Vey, [26]). The cohomology class GV (F) = [η ∧ dη] ∈ H3(M) is
independent of the choice of the 1-forms ω and η.

Moreover, the Godbillon-Vey class GV (F) is an invariant of the foliated concordance class of F , as
noted for example in Thurston [72] and Lawson [53, Chapter 3].

The definition of the Godbillon-Vey class in Theorem 3.2 reveals very little about the relation of
this cohomology class with the dynamics of the foliation F . In the case where the leaves of F are
defined by a smooth fibration M → S1, the defining 1-form ω for F can be chosen to be a closed
form, and it is then immediate from the definition that GV (F) = 0. Herman showed in [37] that
a foliation defined by the suspension of an action of the abelian group Z2 on the circle must have
GV (F) = 0. The proof used an averaging process to obtain a sequence of defining smooth 1-forms
{ωn | n = 1, 2, . . .} for which the corresponding 1-forms Dvnωn → 0.



DYNAMICS AND THE GODBILLON-VEY CLASS OF C1 FOLIATIONS 11

3.2. The Godbillon operator. We again assume there is given a non-vanishing 1-form ω on M
such that TF equals the kernel of ω, and the Froebenius Theorem implies that dω ∧ ω = 0. We
define differential graded subalgebras of the de Rham complex Ω∗(M) of M using this property.

The breakthrough idea of Duminy, which first appeared in his paper with Sergiescu [20], is to separate
the roles of the forms η and dη in the definition of GV (F), and then study how the contribution
from the form η is related to the dynamical properties of F . This is done by introducing the notion
of the Godbillon functional. First, for p ≥ 1, introduce the space

(14) Ap(M,F) ≡ {ξ = ω ∧ β | β ∈ Ωp−1(M)} ⊂ Ω∗(M) ,

which can alternately be defined as the space of p-forms on M which vanish when restricted to each
leaf of F . Let A∗(M,F) ⊂ Ω∗(M) denote the sum of these subspaces, which is then a subalgebra
with trivial products as ω ∧ ω = 0. The identity dω = ω ∧ η implies that A∗(M,F) is closed under
exterior differentiation. More precisely, let ξ = ω ∧ β ∈ Ak(M,F) for k ≥ 1, then

(15) dξ = d(ω ∧ β) = dω ∧ β − ω ∧ dβ = (ω ∧ η) ∧ β − ω ∧ dβ = ω ∧ (η ∧ β − dβ) ∈ Ak+1(M,F).

Thus, A∗(M,F) is a differential graded algebra.

Let H∗(M,F) denote the cohomology of the differential graded complex {A∗(M,F), d}. For a closed
form ξ ∈ Ak(M,F), let [ξ]F ∈ Hk(M,F) denote its cohomology class.

The inclusion of the ideal A∗(M,F) ⊂ Ω∗(M) induces a map on cohomology H∗(M,F)→ H∗(M).
In general, the induced map need not be injective, and the calculation of the cohomology groups
H∗(M,F) is often an intractable problem, as discussed by El Kacimi in [21]. On the other hand,
H∗(M,F) is the domain of the Godbillon operator, as we next discuss, which makes it useful.

Let α be any choice of a 1-form satisfying dω = ω ∧ α. Then by a calculation analogous to (13),
the closed 2-form dα is in the ideal generated by ω, so dα ∈ A2(M,F). Duminy observed in [18]
(see also [10, Chapter 7],[36]) that the class [dα]F ∈ H2(M,F) is independent of the choices of the
1-forms ω and α, and so is an invariant of F , which he called the Vey class of F .

To be precise, we use the form η = D~vω to define the Vey class [dη]F ∈ H2(M,F). The 2-form dη
has some properties analogous to those of a symplectic form on M , especially in the geometric inter-
pretation of the Godbillon-Vey invariant as “helical wobble” in [52, 68, 72]. The geometric meaning
of the class [dη]F remains obscure, although as noted below, [dη]F = 0 implies that GV (F) = 0.

Given a closed form ξ ∈ Ap(M,F), consider the product η ∧ ξ ∈ Ap+1(M,F), and calculate:

(16) d(η ∧ ξ) = dη ∧ ξ = ω ∧ η ∧ ξ = 0 ,

as ω ∧ ξ = 0. Thus, η ∧ ξ is a closed form. Moreover, if ξ = dβ for some form β ∈ Ap(M,F), then
η ∧ β ∈ Ap+1(M,F) and

(17) d(−η ∧ β) = −(dη) ∧ β + η ∧ dβ = η ∧ ξ .

Thus, given [ξ]F ∈ Hp(M,F) we obtain a well-defined class [η ∧ ξ]F ∈ Hp+1(M,F). Multiplication
by the 1-form η thus yields a well-defined map

(18) η· : Hp(M,F)→ Hp+1(M,F) .

Compose the map (18) with the inclusion induced map ι∗ : Hp+1(M,F)→ Hp+1(M) to obtain the
linear functional

(19) g : Hp(M,F)
η·−→ Hp+1(M,F)

ι∗−→ Hp+1(M) ,

which is called the Godbillon operator. It was shown above that the 2-form dη is a multiple of ω,
and is clearly a closed form, so it defines a cohomology class [dη]F ∈ H2(M,F). Then we have
g([dη]F ) = [η ∧ dη] = GV (F) ∈ H3(M). That is, “Godbillon(Vey) = Godbillon-Vey”.
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3.3. The Godbillon functional. The Godbillon operator takes values in the de Rham cohomology
groups H∗(M). For the purposes of showing that this operator vanishes, it is preferable to consider
the closely related mappings with values in R, obtained by integrating the image classes of the
mappings (19) for p = m− 1 over the fundamental class of M , where M has dimension m.

If M is a closed 3-manifold with fundamental class [M ], then evaluating GV (F) on [M ] yields a real
number, the real Godbillon-Vey invariant of F :

〈GV (F), [M ]〉 =

∫
M

η ∧ dη .

If M is an open 3-manifold, then H3(M) = 0 so that GV (F) = 0 in this case. However, the class
GV (F) need not vanish in the case when M is open and M has dimension m > 3. In this case,
it is necessary to introduce cohomology with compact supports, in order to obtain a real-valued
invariants from the class GV (F).

Let Ω∗c(M) ⊂ Ω∗(M) denote the differential subalgebra of forms with compact support. The co-
homology of this ideal is denoted by H∗c (M) which is called with the de Rham cohomology with
compact supports of M . We also consider the differential ideal A∗c(M,F) ⊂ Ω∗c(M) consisting of
forms in A∗(M,F) with compact support. Its cohomology groups are denoted by H∗c (M,F), and
these groups are called the foliated cohomology with compact supports.

Given a closed form ζ ∈ Ap(M,F), let ξ ∈ Ωkc (M) be a closed form with compact support, then
the product ζ ∧ ξ ∈ Ak+p(M,F) is again closed with compact support. If either form ζ or ξ is the
boundary of a form with compact support, then ζ ∧ ξ is also the boundary of a form with compact
support. Thus, there is a well-defined pairing

(20) Hp(M,F)×Hk
c (M)→ Hk+p

c (M,F) .

In particular, given a class [ξ] ∈ Hm−3
c (M) represented by a smooth closed form ξ ∈ Ωm−3

c (M),
then the pairing [dη]F ∪ [ξ] = [dη ∧ ξ]F ∈ Hm−1

c (M,F) is well-defined.

Recall that the manifold M is assumed to be oriented and connected, so by Poincaré duality the
pairing Hp(M) ⊗ Hm−p

c (M) → Hm
c (M) ∼= R is non-degenerate for 0 ≤ p < m. In particular, the

value of the class [η ∧ dη] ∈ H3(M) is determined by its pairings with classes in Hm−3
c (M). This is

the idea behind the definition of the Godbillon functional.

The Godbillon operator in (19) applied to a class in Hm−1
c (M,F) yields a closed m-form with

compact support on M , which can be integrated over the fundamental class to obtain a real number.
This composition yields the Godbillon functional, denoted by

(21) G : Hm−1
c (M,F)→ R, G([ξ]F ) = 〈[η ∧ ξ], [M ]〉 =

∫
M

η ∧ ξ .

Note that we use the notation “g” for the Godbillon operator between cohomology groups, and the
notation “G” for the linear functional on the cohomology group Hm−1

c (M,F).

With these preliminary preparations, we have the basic result as observed by Duminy in [18]:

PROPOSITION 3.3. The value of the Godbillon-Vey class GV (F) ∈ H3(M) is determined by
the Godbillon functional G in (21). In particular, if G ≡ 0 then GV (F) = 0.

Proof. For the case when the dimension m = 3 and M is compact, this follows by applying the
linear functional G to the class [dη]F ∈ H2(M,F) = H2

c (M,F). For m > 3, then by Poincaré
duality, the value of GV (F) ∈ H3(M) is determined by pairing the 3-form η ∧ dη with closed forms
ξ ∈ Ωm−3

c (M), followed by integration, to obtain

〈GV (F) ∪ [ξ], [M ]〉 =

∫
M

(η ∧ dη) ∧ ξ.

Note that [dη∧ξ]F ∈ Hm−1
c (M,F), so that 〈GV (F)∪[ξ], [M ]〉 = G([dη∧ξ]F ). The claim follows. �

The strategy to proving that GV (F) = 0 is thus to obtain dynamical properties of a foliation which
suffice to show that the linear functional G vanishes.



DYNAMICS AND THE GODBILLON-VEY CLASS OF C1 FOLIATIONS 13

3.4. The Godbillon measure. Duminy showed that the integral of the expression η ∧ ξ in (21)
over a saturated Borel subset of M is independent of the choices made to define η, and thus gives
a localized invariant for F . This observation was systematically generalized in the work [36], to
show that the Godbillon functional G extends to a measure on the σ-algebra of Lebesgue measurable
saturated subsets of M . We show how this observation is used to calculate the Godbillon functional.

A set B ⊂ M is F–saturated if for all x ∈ B, the leaf Lx through x is contained in B. Let B(F)
denote the σ-algebra of Lebesgue measurable F–saturated subsets of M .

THEOREM 3.4. [18, 36] For each B ∈ B(F), there is a well-defined linear functional

(22) GF (B) : Hm−1
c (M,F)→ R , GF (B)([ξ]F ) =

∫
B

η ∧ ξ

where ξ ∈ Am−1
c (M,F) is closed. Moreover, the correspondence

B 7→ GF (B) ∈ Homcont(H
m−1
c (M,F),R)

is a countably additive measure on the σ-algebra of Borel subsets in B(F). Note that if B has
Lebesgue measure zero, then GF (B) = 0. Thus, GF extends to the full σ-algebra of Lebesgue
measurable saturated subsets of M . This is called the Godbillon measure.

Part of the claim of Theorem 3.4 is that the linear functional (22) is independent of the choice of
the smooth 1-form ω defining F . Much more is true, as described below. The key idea, introduced
in [36], is to consider representatives for η which belong to the space of leafwise forms on F which
are leafwise smooth, but need only be measurable as functions on M .

Introduce the graded differential algebra Ω∗(F) consisting of leafwise forms. That is, for k ≥ 0,
the space Ωk(F) consists of sections of the dual to the k-th exterior power Λk(TF) of the leafwise
tangent bundle TF . Given ξ ∈ Ωk(F), then for each x ∈ M and k-tuple (~v1, . . . , ~vk) of vectors in
the tangent space TxF to the leaf Lx containing x, we obtain a real number ξ(~v1, . . . , ~vk) ∈ R. We
impose on the sections in Ωk(F) the following regularity condition: given ξ ∈ Ωk(F), for each leaf
L of F , the restriction ξ|L to L is a smooth form.

For ξ ∈ Ωk(F), define DF (ξ) ∈ Ωk+1(F) is as follows. For each leaf L of F , the restriction ξ|L is a
smooth k-form on L, so there is a well-defined exterior differential d(ξ|L). The collection of leafwise
forms {d(ξ|L) ∈ Ωk+1(L) | L ⊂M} defines DF (ξ) ∈ Ωk+1(F). Thus, there is a well-defined leafwise
exterior differential operator,

(23) DF : Ωk(F)→ Ωk+1(F) , DF (ξ)|L = d(ξ|L) for each leaf L ⊂M .

The cohomology of {Ω∗(F), DF} is called the foliated cohomology of F .

A key observation in the definition of the exterior differential in (23) is that it does not require any
regularity for the transverse behavior of the leafwise forms. Thus, one can consider the subcomplex
Ω∗∞(F) ⊂ Ω∗(F) of smooth leafwise forms, and the differential DF restricted to Ω∗∞(F) yields
a differential graded subalgebra. Its smooth foliated cohomology groups H∗∞(F) were used, for
example, by Heitsch in [35] to study the deformation theory of foliations. We can also consider the
the differential graded subalgebra Ω∗c(F) ⊂ Ω∗(F) consisting of the continuous leafwise forms, whose
cohomology spaces H∗c (F) were studied by El Kacimi-Alaoui in [21].

Finally, one can also consider the differential graded subalgebra Ωkme(F) ⊂ Ω∗(F) of measurable
(or bounded measurable) sections of the dual to the k-th exterior power of the leafwise tangent
bundle TF . A form ξ ∈ Ωkme(F) is required to be smooth when restricted to leaves of F , but is
only required to be a Borel measurable function on M . We also demand that for ξ ∈ Ωkme(F), its
leafwise differential DFξ ∈ Ωk+1

me (F). The cohomology H∗me(F) of the complex Ω∗me(F) is called the
measurable leafwise cohomology of F . These groups were used by Zimmer in [79, 80] to study the
rigidity theory for measurable group actions.

A function f : M → R is said to be transversally measurable if it is a measurable function, and
for each leaf L of F , the restriction f |L is smooth and the leafwise derivatives of f are measurable
functions as well. Such a function f is the typical element in Ω0

me(F). Given a function f ∈ Ω0
me(F)

and a form ξ ∈ Ωkc (F), then the product f · ξ ∈ Ωkme(F).
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We next introduce norms on the spaces Ωkme(F). For each x ∈M , the Riemannian metric on TxM
defines a norm on TxM , which restricts to a norm on the leafwise tangent space TxF . The norm on
the space TxF induces a dual norm on the cotangent bundle T ∗xF , and also induces norms on each
exterior vector space ΛkTxF and on its dual Ωk(TxF), for all k > 1. We denote this norm by ‖ · ‖x
in each of these cases. For a function f ∈ Ω0

me(F), let ‖f‖x = |f(x)|. Given a subset B ⊂M , and a
leafwise form ξ ∈ Ωkme(F) for k ≥ 0, define the sup-norm over B by

‖ξ‖B = sup
x∈B

‖ξ‖x .

Next, given a smooth function f : M → R, set ωf = exp(f) · ω. Let ~v be a vector field such that
ω(~v) = 1, then set ~vf = exp(−f) · ~v so that ωf (~vf ) = 1. Then by Definition 3.1,

D~vfωf = exp(−f) · ι(~v) d{exp(f) · ω} = ι(~v) (df ∧ ω + dω) .

Thus, for ζ ∈ Ap(M,F) we evaluate

(24) (D~vfωf ) ∧ ζ = −df ∧ ζ +D~vω ∧ ζ = −DFf ∧ ζ +D~vω ∧ ζ .

By the Leafwise Stokes’ Theorem [36, Proposition 2.6], given a closed form with compact support
ζ ∈ Am−1

c (M,F) and B ∈ B(F), then

(25)

∫
B

(D~vfωf ) ∧ ζ =

∫
B

D~vω ∧ ζ .

Observe that for ζ a closed form, the leafwise coboundary term DFf ∧ ζ in (24) depends only on
the leafwise derivatives of f . This observation is the idea behind the proof of [36, Theorem 2.7]
which shows that if f ∈ Ω0

me(F) satisfies ‖DFf‖B <∞, and ζ ∈ Am−1
c (M,F) is a closed form with

compact support, then

(26) GF (B)([ζ]F ) =

∫
B

−DFf ∧ ζ +D~vω ∧ ζ ,

where DFf is defined by (23). The formula (26) is the motivation for introducing the following
terminology, where given f ∈ Ω0

me(F), set ωf = exp(f) · ω and ~vf = exp(−f) · ~v, then define

(27) D
~vf
ωf = −DFf +D~vω .

If the function f is smooth on M and ζ ∈ Am−1
c (M,F), then (D

~vf
ωf )∧ ζ = (D~vfωf )∧ ζ, where the

latter term is defined in the sense of Definition 3.1. Thus, the definition (27) can be viewed as the
extension of the Definition 3.1 in the sense of distributions to the measurable complex Ω∗me(F).

We now recall a fundamental result, Theorem 4.3 of [38], which is a broad generalization of the ideas
in the seminal work by Herman [37].

PROPOSITION 3.5. Let B ∈ B(F). Suppose there exists a sequence of transversally measurable
functions {fn | n = 1, 2, . . .} on M so that the 1-forms {ωn = exp(fn) ·ω | n = 1, 2, . . .} on M satisfy

‖D~vn
ωn‖B < 1/n where ~vn = exp(−fn) · ~v. Then GF (B) = 0.

Proof. For each n ≥ 1, set

(28) ηn = D
~vn
ωn = −DFfn +D~vω .

For [ζ]F ∈ Hm−1
c (M,F) and each n ≥ 1, then by (26) we have

(29) GF (B)([ζ]F ) =

∫
B

ηn ∧ ζ .

Estimate the norms of the integrals in (29):

|GF (B)([ζ]F )| = lim
n→∞

∣∣∣∣∫
B

ηn ∧ ζ
∣∣∣∣

≤ lim
n→∞

∫
B

‖ηn‖B ‖ζ‖B dvol

≤ lim
n→∞

(1/n) ·
∫
B

‖ζ‖B dvol = 0 .

As this holds for all [ζ]F ∈ Hm−1
c (M,F), the claim follows. �
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We note two important aspects of the proof of Proposition 3.5. First, the n-form ηn ∧ ζ in the
integrand of (29) depends only on the restrictions ηn|L for leaves L of F . Thus, the pairing ηn ∧ ζ
is well-defined when F is a C∞,1-foliation. Also, the convergence of the integral in (29) as n → ∞
uses the Lebesgue dominated convergence theorem, and can be applied assuming only that the form
ζ ∈ Am−1

c (M,F) is continuous. In particular, for a C∞,2-foliation the form dη is continuous, so the
calculation above applies to multiples of this form as required for the proof of Proposition 3.3.

Proposition 3.5 gives an effective method for showing that the Godbillon-Vey class vanishes on a set
B ∈ B(F), provided that one can construct a sequence of 1-forms {ωn = exp(fn)·ω | n = 1, 2, . . .} on
M satisfying the hypotheses of Proposition 3.5. In hindsight, one can see that an analogous estimate
was used in the previous works [20, 37, 56, 57, 74, 78] to show that GV (F) = 0 for C2-foliations of
codimension one, for foliations with various types of dynamical properties.

For a C2-foliation F , Sacksteder’s Theorem [70] implies that if F has no resilient leaf, then there are
no exceptional minimal sets for F . Hence, by the Poincaré-Bendixson theory, all leaves of F either
lie at finite level, or lie in “arbitrarily thin” open subsets U ∈ B(F). In his works [18, 19], Duminy
used a result analogous to Proposition 3.5 to show that GF (B) = 0, where B is a union of leaves
at finite level. Thus, for a C2-foliation with no resilient leaves, the Godbillon measure vanishes on
the union of the leaves of finite level, and also vanishes on any Borel set in their complement. Thus,
GV (F) = 0 for a C2-foliation of codimension-one with no resilient leaves. See [9, 12] for a published
version of this proof. In the next two sections, we follow a different, more direct approach to obtain
this conclusion. From the assumption GF 6= 0, we conclude that the holonomy pseudogroup of a
C∞,1-foliation F must contain resilient orbits. Thus for a C2-foliation F with GV (F) 6= 0, we have
that GF 6= 0 and hence F must contain resilient leaves.

4. Asymptotically expansive holonomy

In this section, we assume there is given a codimension-one foliation F on a compact manifold M ,
so that M admits a finite regular C∞,1-foliation atlas {ϕα : Uα → (−1, 1)n × (−1, 1) | 1 ≤ α ≤ ν}
which is a regular covering of M by foliation charts, as in Section 2.1, with associated transversal
T , and associated holonomy pseudogroup GF as in Section 2.2. Then GF is generated by a finite
collection of local C1-diffeomorphisms defined on open subsets of T . Recall that the charts in the
foliation atlas are assumed to be transversally oriented, so for each plaque chain P, the derivative
h′P(x) > 0 for all x ∈ DP in its domain.

The main result of this section, Theorem 4.4, implies that the Godbillon measure GF is supported
on the set E+(F) introduced in Section 4.2. That is, for any B ∈ B(F), we have GF (B) =
GF (B ∩ E+(F)). Hence, GF 6= 0 implies the set E+(F) must have positive Lebesgue measure..

4.1. The transverse expansion exponent function. We introduce the notion of asymptotically
expansive holonomy for a leaf of F . For all x ∈ T , set µ0(x) = 1. Then for each integer n ≥ 1,
define the maximal n-expansion function

(30) µn(x) = sup {h′P(x) | x ∈ DP & ‖P‖ ≤ n} .
The function x 7→ µn(x) is the maximum of a finite set of continuous functions, so is a Borel function
on T , and µn(x) ≥ 1 as the identity transformation is the holonomy for a plaque chain of length 1.

LEMMA 4.1. Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain of length 1. For the
holonomy map hβ,α of this length-one plaque-chain, we have hβ,α(x) = y. Then for all n > 0,

(31) µn−1(x) ≤ µn(y) · h′β,α(x) ≤ µn+1(x) .

Proof. Let P be a plaque chain at y with ‖P‖ ≤ n, then P ◦ Q is a plaque chain at x with
‖P ◦ Q‖ ≤ n+ 1, so

h′P(y) · h′β,α(x) = h′P◦Q(x) ≤ µn+1(x) .

As this is true for all plaque chains at y with ‖P‖ ≤ n, we obtain µn(y) · h′β,α(x) ≤ µn+1(x).

Given a plaque chain P at x with ‖P‖ ≤ n− 1, the chain R = P ◦ Q−1 at y has ‖R‖ ≤ n and

(32) h′P(x) = h′R(y) · h′β,α(x) ≤ µn(y) · h′β,α(x) .
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As (32) holds for all plaque chains at x with ‖P‖ ≤ n− 1, we have µn−1(x) ≤ µn(y) · h′β,α(x). �

Define λn(x) = ln (µn(x)), so that λn(x) = sup {ln(h′P(x)) | x ∈ DP & ‖P‖ ≤ n}.

Then the transverse expansion exponent at x ∈ T is defined by

(33) λ∗(x) = lim sup
n→∞

λn(x)

n
.

LEMMA 4.2. The transverse expansion exponent function λ∗ is Borel measurable on T , and
constant on the orbits of GF .

Proof. For each n ≥ 1, the function λn(x)/n is Borel, so the supremum function in (33) is also Borel.

Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain, then the estimate (31) implies that,

(34)
ln(µn+1(x))

n+ 1
≥

ln(µn(y) · h′β,α(x))

n
· n

n+ 1
=

{
ln(µn(y))

n
+

ln(h′β,α(x))

n

}
· n

n+ 1

so that

(35) λ∗(x) = lim sup
n→∞

{
ln(µn+1(x))

n+ 1

}
≥ lim sup

n→∞

{
ln(µn(y))

n

}
= λ∗(y) .

The converse inequality follows similarly.

Thus, λ∗(x) = λ∗(y) if there is a plaque chainQ = {Pα(x),Pβ(y)}. The pseudogroup GF is generated
by the holonomy defined by plaque chains of length 1, so that for each point y ∈ GF (x), there is a
finite plaque chain P = {Pα0(x0), . . . ,Pαk(xk)} with x0 = x and xk = y. Then λ∗(x`) = λ∗(x`+1)
for each 0 ≤ ` < k, from which it follows that λ∗(x) = λ∗(y). �

4.2. The expansion decomposition. The transverse expansion exponent function λ∗ is defined
on the space T . We use the conclusion of Lemma 4.2 to lift the function λ∗ from T to M , and then
use this lifted function to define a Borel saturated decomposition of M .

Let X ⊂ M be the transversal to F as defined in (6). For each ξ ∈ X there exists 1 ≤ α ≤ ν such
that ξ ∈ Xα, and xα ∈ Tα with τα = x. Define the function λ∗ on X by setting λ∗(ξ) = λ∗(xα).
Extend the function λ∗ to a function on M , where for ξ ∈M choose and index 1 ≤ α ≤ ν such that
ξ ∈ Uα, then set λ∗(ξ) = λ∗(πα(ξ)). The value λ∗(x) is independent of the choice of open set with
ξ ∈ Uα by Lemma 4.2. Moreover, the function λ∗ is then constant on leaves, as the function λ∗ is
constant on the orbits of GF . By abuse of notation, we denote by λ∗(L) this constant value, so that
λ∗(L) = λ∗(ξ) for some ξ ∈ L.

DEFINITION 4.3. Define the GF -saturated Borel subsets of T
E+(T ) = {x ∈ T | λ∗(x) > 0}
E+
a (T ) = {x ∈ T | λ∗(x) > a}, for a ≥ 0

S(T ) = T − E+(T ) ,

and the F-saturated Borel subsets of M

E+(F) = {ξ ∈M | λ∗(ξ) > 0}
E+
a (F) = {ξ ∈M | λ∗(ξ) > a}, for a ≥ 0

S(F) = M − E+(F) .

A point x ∈ E+(F) is said to be infinitesimally expansive. The set E+(F) is called the hyperbolic set
for F , and is the analog for codimension-one foliations of the hyperbolic set for diffeomorphisms in
Pesin theory [2, 61]. The set S(F) consists of the leaves of F for which the transverse infinitesimal
holonomy has “slow growth”. Both sets E+(F) and S(F) are fundamental for the study of the
dynamics of the foliation F .

Note that for x ∈ T , if there is an holonomy map hP with x ∈ DP , hP(x) = x and h′P(x) = λ > 1,
then x ∈ E+(T ). If P is a plaque-chain of length k, then x ∈ E+

a (T ) for any 0 < a < ln(λ)/k.
The plaque chain P determines a closed loop γP based at x in the leaf Lx, and the transverse
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holonomy along γP is linearly expanding in some open neighborhood of x. Such transversally
hyperbolic elements of the leaf holonomy have a fundamental role in the study of foliation dynamics,
in particular in the works by Sacksteder [70], by Bonatti, Langevin and Moussu [4], and the works
[40, 42]. However, given x ∈ E+(T ) there may not be a holonomy map hP with hP(x) = x and
h′P(x) = λ > 1. What is always true, is that there exists a sequence of holonomy maps whose
lengths tend to infinity, each of which has infinitesimally expansive holonomy at x. We make this
statement precise.

Consider a point x ∈ E+
a (T ) for a > 0, and choose λ with a < λ < λ∗(x). Then for all N > 0, there

exists n ≥ N such that λn(x) ≥ nλ. By the definition of λn(x), this means there exists a plaque
chain P with length ‖P‖ ≤ n starting at x such that h′P(x) ≥ exp{nλ}. By the continuity of the
derivative function on T , there exists εn > 0 such that on the open interval (x− εn, x+ εn) ⊂ T ,

h′P(y) ≥ exp{nλ/2} for all x− εn ≤ y ≤ x+ εn .

By the Mean Value Theorem, h′P is expanding on the interval (x − εn, x + εn) by a factor at least
exp{nλ/2}. Thus, the assumption λ∗(x) > λ > 0 and the definition in (33) implies that we can
choose a sequence of plaque chains P` with lengths ‖P`‖ = n` starting at x such that n` is strictly
increasing, and so tends to infinity, and the corresponding holonomy maps satisfy

(36) h′P`(y) ≥ exp{n`λ/2} for all x− εn` ≤ y ≤ x+ εn` .

The constant εn` > 0 in (36) depends upon `, λ and x, and is exponentially decreasing as `→∞.

It is a strong condition to have a sequence of holonomy maps as in (36) for elements of the holonomy
pseudogroup at points x, whose plaque lengths tend to infinity. This is what gives the set E+(F) a
fundamental role in the study of foliation dynamics, exactly in analog with the role of the Pesin set
in smooth dynamics [2, 51, 61, 69]. The works [46, 47] give further study of the relation between
the hyperbolic set E+(F) and the dynamics of the foliation. In contrast, for the slow set S(F), the
dynamics of F on S(F) has “less complexity”, as discussed in [47].

4.3. A vanishing criterion. For an arbitrary saturated Borel set B ∈ B(F), we have

(37) GF (B) = GF (B ∩ E+(F)) +GF (B ∩ S(F)) .

We use the criteria of Proposition 3.5 to show that GF (S(F)) = 0, so that GF 6= 0 implies the set
E+(F) must have positive Lebesgue measure.

The strategy is to construct a sequence of transversally measurable, non-vanishing transverse 1-forms
{ωn | n = 1, 2, . . .} on M for which ‖D ~vnωn‖S(F) < 1/n, where the leafwise 1-form D ~vnωn is defined
as in (28) The construction of the forms {ωn} follows the method introduced in [38]. The first, and
crucial step, is to construct an ε–tempered cocycle over the pseudogroup GF which is cohomologous
to the additive derivative cocycle, using a procedure adapted from [39]. This tempered cocycle is
then used to produce the sequence of defining 1-forms ωn, using the methods of [7] and [48, 50].
These are the ingredients used in the proof of the following result.

THEOREM 4.4. The Godbillon measure GF (S(F)) = 0. Hence, by (37) for any set B ∈ B(F),
the Godbillon measure GF (B) = GF (B ∩ E+(F)). In particular, if E+(F) has Lebesgue measure
zero, then GF (B) = 0 for all B ∈ B(F).

Proof. The first step in the proof is to use the properties of the holonomy action for points in the
slow set S(T ) to construct the forms {ωn} as mentioned above.

Fix ε > 0. For x ∈ S(T ), by the definition of λ∗(x) = 0 in (33), there exists Nε,x such that n ≥ Nε,x
implies ln{µn(x)} ≤ nε/2, and hence the maximal n-expansion µn(x) ≤ exp{nε/2}.

We define the coboundary gε function next. Set gε(x) = 1 for x ∈ T but x 6∈ S(T ). For x ∈ S(T ) set

(38) gε(x) =

∞∑
n=0

exp{−nε} · µn(x).

For x in the slow set S(T ), the sum in (38) converges as the function exp{−nε} · µn(x) decays
exponentially fast as n → ∞. Note that while gε(x) is finite for each x ∈ T , there need not be an
upper bound for its values on S(T ). Also, gε is a Borel measurable function defined on all of T .
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The definition of the function gε in (38) is analogous to the definition of the Lyapunov metric in
Pesin theory. Its role is to give a “change of gauge” with respect to which the expansion rates of the
dynamical system is “normalized” for the action of GF on T , as made precise by Lemma 4.5 below.

Let x ∈ T , and let Q = {Pα(x),Pβ(y)} be a plaque chain of length 1. Let hβ,α denote the holonomy
map of the plaque-chain Q, with hβ,α(x) = y. The following result estimates the value of gε under
a change of coordinates, for charts such that Pα(x) ∩ Pβ(y) 6= ∅. Let Sα = πα(S(F) ∩ Uα) ⊂ Tα.

LEMMA 4.5. For x ∈ Sα and Q = {Pα(x),Pβ(y)},

(39) exp{−ε} · gαε (x) ≤ gβε (y) · h′β,α(x) ≤ exp{ε} · gαε (x) .

Proof. Use the estimate (31), noting that hβ,α(x) = y, to obtain:

gβε (y) · h′β,α(x) =

{ ∞∑
n=0

exp{−nε} · µn(y)

}
h′β,α(x)

≤
∞∑
n=0

exp{−nε} · µn+1(x)

< exp{ε} ·

{ ∞∑
n=1

exp{−nε} · µn(x) + µ0(x)

}
= exp{ε} · gαε (x) .(40)

Similarly, we have

gβε (y) · h′β,α(x) =

{ ∞∑
n=0

exp{−nε} · µn(y)

}
h′β,α(x)

≥
∞∑
n=1

exp{−nε} · µn−1(x) + µ0(x) · h′β,α(x)

≥ exp{−ε} · gαε (x) .(41)

This completes the proof of Lemma 4.5. �

Introduce the notation, for x ∈ Uα ∩ Uβ ,

(42) kε,β,α(x) = gβε ◦ hβ,α ◦ πα(x) · h′β,α ◦ πα(x) .

Note that kε,αα = gαε ◦ πα. Then in this notation, the estimate (39) implies that

(43) exp(−ε) · kε,αα(x) ≤ kε,β,α(x) ≤ exp(ε) · kε,αα(x) .

We next use the given covering {Uβ | 1 ≤ β ≤ ν} of M to construct a smooth 1-form ω on M
which defines F . Recall that Tβ ≡ (−1, 1), and let dxβ denote the coordinate 1-form on Tβ . Use the
projection πβ : Uβ → Tβ along plaques to pull-back the form dxβ to the closed 1-form ωβ = π∗β(dxβ).

Choose a partition of unity {ρβ | 1 ≤ β ≤ ν} subordinate to the cover {Uβ | 1 ≤ β ≤ ν}. Then for

each 1 ≤ β ≤ ν, the 1-form ρβ · ωβ has support contained in Uβ , and set ω =
∑

1≤β≤ν

ρβ · ωβ .

Next, for ε > 0 we construct a measurable 1-form ωε on M . Recall that the function gε on T was
defined by (38). For each 1 ≤ β ≤ ν, introduce the notation gβε = gε|Tβ , and define the 1-form

φεβ = gβε dxβ on Tβ . Then define ωβε = π∗β(φεβ) =
(
gβε ◦ πβ

)
· ωβ which is a transversally measurable

leafwise 1-form on Uβ . Recall that ωβ = π∗β(dxβ), so that dωβ = 0, and hence DFω
β
ε = 0 on Uβ .

Finally, define the 1-form ωε =
∑

ρβ · ωβε on M .

For each 1 ≤ α ≤ ν, consider the 1-forms ω and ωε restricted to the chart Uα:

ω|Uα =
∑

Uβ∩Uα 6=∅

ρβ |Uα · ωβ |Uα(44)

ωε|Uα =
∑

Uβ∩Uα 6=∅

ρβ |Uα · ωβε |Uα =
∑

Uβ∩Uα 6=∅

ρβ |Uα ·
(
gβε ◦ πβ

)
· ωβ |Uα .(45)
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We express the terms on the right-hand-sides of (44) and (45) in terms of the 1-form ωα. For β
with Uα ∩ Uβ 6= ∅, let Q = {Pα(x),Pβ(y)} be the plaque chain with holonomy map hβ,α. Then
h∗β,α(dxβ) = h′β,α · dxα and so by the identity πβ = hβ,α ◦ πα on Uα ∩ Uβ we have

ωβ |Uα∩Uβ = π∗β(dxβ)|Uα∩Uβ = π∗α ◦ h∗β,α(dxβ)|Uα∩Uβ = π∗α(h′β,α · dxα)|Uα∩Uβ
= (h′β,α ◦ πα) · ωα|Uα∩Uβ .(46)

Using the identity h∗β,α(φεβ) =
(
gβε ◦ hβ,α

)
· h′β,α · dxα, we obtain the corresponding expression

ωβε |Uα∩Uβ = π∗β(dxεβ)|Uα∩Uβ = π∗α ◦ h∗β,α(dxεβ)|Uα∩Uβ = π∗α(gβε ◦ hβ,α · h′β,α · dxα)|Uα∩Uβ
= (gβε ◦ hβ,α ◦ πα) · (h′β,α ◦ πα) · ωα|Uα∩Uβ .(47)

Thus, for x ∈ Uα ∩ Uβ , we have ωβε |x = kε,β,α(x) · ωα|x. For each 1 ≤ α ≤ ν, on Uα define:

(48) Φα =
∑

Uβ∩Uα 6=∅

ρβ |Uα · h′β,α ◦ πα , Φεα =
∑

Uβ∩Uα 6=∅

ρβ |Uα · kε,β,α .

We then have

(49) ω|Uα = Φα · ωα|Uα , ωε|Uα = Φεα · ωα|Uα .

We return to the proof that GF (S(F)) = 0. Let ~v be a vector field on M such that ω(~v) = 1. Then
set η = D~vω = ι(~v)dω, as in Definition 3.1 Define a function fε ∈ Ω0

me(F) by ωε = exp(fε) · ω, and
set ~vε = exp(−fε) · ~v so that ωε(~vε) = 1. Then as in (27), define

(50) ηε = D
~vε
ωε = −DFfε +D~vω = −DFfε + η ,

where the 1-form DFfε is defined by (23). Then by (26), the Godbillon measure GF (B) can be
calculated using the 1-form ηε restricted to B.

Next, estimate the norm ‖ηε‖x for x ∈ Uα using the expression (50). We first calculate

(51) η|Uα = ι(~v)d(ω|Uα) = ι(~v)d(Φα · ωα|Uα) = ι(~v)d(exp{ln(Φα)} · ωα|Uα) = −DF ln(Φα|Uα) .

Then by (49), we have exp(fε)|Uα · Φα = Φεα, so fε|Uα = ln (Φεα)− ln (Φα), and calculate

(52) ηε|Uα = −DFfε|Uα + η|Uα = ({DF ln (Φα)−DF ln (Φεα)} − {DF ln (Φα)} = −DF ln (Φεα) .

Note that DFkε,β,α = 0, as each function kε,β,α is constant along the plaques in Uα ∩ Uβ , so its
leafwise differential is zero. Use this observation and the definition (48) to obtain:

(53) ‖ηε|x‖ = ‖DF ln (Φεα)‖x = (Φεα(x))−1 ·

∥∥∥∥∥∥
∑

Uβ∩Uα 6=∅

DFρβ |Uα · kε,β,α

∥∥∥∥∥∥
x

.

The leafwise differential of the constant function is zero, so we have the identity

0 = DF1 = DF (
∑

ρβ) =
∑

DFρβ

which implies that

(54)
∑

Uβ∩Uα 6=∅

DFρβ · kε,αα = kε,αα ·
∑

Uβ∩Uα 6=∅

DFρβ = 0 .

Then continuing from (53), and using the identities (54) and (43), for x ∈ Uα we have:

‖ηε|x‖ = (Φεα(x))−1 ·

∥∥∥∥∥∥
∑

Uβ∩Uα 6=∅

DFρβ · {kε,β,α − kε,αα}

∥∥∥∥∥∥
x

≤ (Φεα(x))−1 ·
∑

Uβ∩Uα 6=∅

‖DFρβ‖x · |kε,β,α(x)− kε,αα(x)|

≤ (Φεα(x))−1 · sup
x∈Uα

‖DFρβ‖x ·
∑

Uβ∩Uα 6=∅

|kε,β,α(x)− kε,αα(x)|

≤ (Φεα(x))−1 · sup
x∈Uα

‖DFρβ‖x ·
∑

Uβ∩Uα 6=∅

(exp(ε)− 1) · kε,αα(x) .(55)
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It remains to estimate (Φεα(x))−1 in (55). Use (48) and the estimates (43) to obtain for x ∈ Uα that

(56) Φεα(x) =
∑

Uβ∩Uα 6=∅

ρβ(x) · kε,β,α(x) ≥
∑

Uβ∩Uα 6=∅

ρβ(x) · exp(−ε) · kε,αα(x) = exp(−ε) · kε,αα(x) .

Thus, we obtain the estimate

(57) (Φεα(x))−1 ≤ exp(ε) · kε,αα(x)−1 .

Then combining (55) and (57), and noting that the number of indices β for which Uβ ∩ Uα 6= ∅ is
bounded by the cardinality ν of the covering, we obtain

(58) ‖ηε|x‖ ≤ sup
x∈Uα

‖DFρβ)‖x · ν · exp(ε) · (exp(ε)− 1)

Note that the right hand side in (58) tends to 0 as ε → 0, so that for each n > 0, we can choose
εn > 0 such that ‖ηεn‖ ≤ 1/n. Then set ωn = ωεn , and the claim of the Theorem 4.4 follows from
Proposition 3.5. �

5. Uniform hyperbolic expansion

In this section, we assume that F is a C1-foliation with non-empty hyperbolic set E+(F), and
show that there exists a hyperbolic fixed-point for the holonomy pseudogroup GF . The proof uses
a pseudogroup version of the Pliss Lemma, which is fundamental in the study of non-uniformly
hyperbolic dynamics (see [1] or [5, Lemma 11.5], or the original article by Pliss [64].)

The goal is to construct hyperbolic contractions in the holonomy pseudogroup. The length of the
path defining the holonomy element is not important, but rather it is important to obtain uniform
estimates on the size of the domain of the hyperbolic element thus obtained, estimates which are
independent of the length of the path. This is a key technical point for the application of the
constructions of this section in the next Section 6, where we construct sufficiently many contractions
so that they result in the existence of a resilient orbit for the action of the holonomy pseudogroup.

We note that the existence of a hyperbolic contraction can also be deduced using the foliation
geodesic flow methods introduced in [42], though that method does not yield estimates on the size
of the domain of the hyperbolic element in the foliation pseudogroup.

5.1. Uniform hyperbolicity and the Pliss Lemma. We fix a regular covering on M as in

Section 2.1, with transversals X and X̃ as in (6), and let GF denote the resulting pseudogroup acting

on the spaces T and T̃ as in (5). Recall that by Lemma 2.2, there exists ε0 > 0 so that for every

admissible pair (α, β) and x ∈ Tαβ then [x− ε0, x+ ε0] ⊂ T̃αβ . Recall that the space Tαβ was defined

in (7), and T̃αβ was defined in (8).

DEFINITION 5.1. Given 0 < ε1 ≤ ε0, a constant 0 < δ0 ≤ ε1 is said to be a logarithmic modulus
of continuity for GF with respect to ε1, if for y, z ∈ Tαβ [δ0] with dT (y, z) ≤ δ0, then

(59)
∣∣∣log{h̃′β,α(y)} − log{h̃′β,α(z)}

∣∣∣ ≤ ε1 .
LEMMA 5.2. Given 0 < ε1 ≤ ε0, there exists a constant 0 < δ0 ≤ ε1 which is a logarithmic
modulus of continuity for GF with respect to ε1.

Proof. By the choice of 0 < ε1 ≤ ε0, for each admissible pair {α, β}, the logarithmic derivative

log{h̃′β,α(y)} is continuous on the compact subset Tαβ [ε1] ⊂ T̃αβ . Thus, there exists δ0(α, β) > 0

such that (59) holds for this choice of {α, β}. Define δ0 = min{δ0(α, β) | {α, β} admissible}. As the
number of admissible pairs is finite, we have δ0 > 0. �

The next result shows that if E+(F) is non-empty, then there are words in GF of arbitrarily long
length, along which the holonomy is “uniformly expansive”. That is, there exists a constant λ∗ > 0
such that for such a word hn defined by a plaque chain P of length n, then h′n(y) ≥ exp{nλ∗) for all
y ∈ DP . The proof is technical, but also notable as it develops a version for pseudogroup actions of
the Pliss Lemma, which is used in the study of the dynamics of partially hyperbolic diffeomorphisms,
as for example in [5, 55, 64].



DYNAMICS AND THE GODBILLON-VEY CLASS OF C1 FOLIATIONS 21

Note that Definition 4.3 implies that the set E+(F) is an increasing union of the sets E+
a (F) for

a > 0, and thus given ξ ∈ E+(F), there exist a > 0 such that ξ ∈ E+
a (F).

We introduce a convenient notation for working with the set E+
a (F). For each 1 ≤ α ≤ ν, let

E+
a (F) ∩ Tα = πα(E+

a (F) ∩ Uα) ⊂ Tα
E+
a (F) ∩ T = (E+

a (F) ∩ T1) ∪ · · · ∪ (E+
a (F) ∩ Tν).

Recall that the transversals Xα and their images Tα in the coordinates Uα were defined in (4).

PROPOSITION 5.3. Let x ∈ E+
a (F) ∩ T for a > 0, let 0 < ε1 < min{ε0, a/100}, and let δ0 be

the logarithmic modulus of continuity for GF with respect to ε1, as chosen in Lemma 5.2.

Then for each integer n > 0, there exist a point yn ∈ GF (x), a closed interval Ixn ⊂ T̃α containing x in
its interior, and a holonomy map hxn : Ixn → Jxn such that for yn = hxn(x), Jxn = [yn−δ0/2, yn+δ0/2] ⊂
T̃ and Ixn = (hxn)−1(Jxn), we have

(60) (hxn)′(z) > exp{na/2} for all z ∈ Ixn .

It follows that |Ixn | < δ0 exp{−na/2}. This is illustrated in Figure 4.

Figure 4. Expanding holonomy map hxn

Proof. Fix a choice of 0 < ε1 < min{ε0, a/100}, and then choose a logarithmic modulus of continuity
δ0 > 0 as in Lemma 5.2.

The set Tαβ [ε1], as defined in (10) for δ = ε1, is compact, so there exists C0 > 0 so that for all (α, β)

admissible and y ∈ Tαβ [ε1], we have 1/C0 ≤ h̃′β,α(y) ≤ C0.

From the definition of λ∗(x) as a lim sup in (33), the assumption that λ∗(x) > a implies that for each
integer n > 0, we can choose a plaque chain of length `n ≥ n, given by Pn = {Pα0

(z0), . . . ,Pα`n (z`n)}
with z0 = x, such that log{h′Pn(z0)} > `n · a. Fix n and the choice of the plaque chain Pn as above.

For each 1 ≤ j ≤ `n let hαj ,αj−1 be the holonomy transformation defined by {Pαj−1 ,Pαj}, and so

h−1
αj ,αj−1

= hαj−1,αj . Introduce the notation ĥ0 = Id, and for 1 ≤ j ≤ `n let

(61) ĥj = hαj ,αj−1
◦ · · · ◦ hα1,α0

denote the partial composition of generators. Note that zj = ĥj(z0) and z0 = x, and that we have

the relations ĥj+1 = hαj+1,αj ◦ ĥj and zj+1 = hαj+1,αj (zj) for 0 ≤ j < `n. For each 1 ≤ j ≤ `n, set

(62) λj = log{ĥ′αj−1,αj (zj)} = − log{ĥ′αj ,αj−1
(zj−1)} .

In particular, log{ĥ′`n(x)} = −(λ1 + · · · + λ`n). Note that if λj < 0 then the map ĥαj−1,αj is an

infinitesimal contraction at zj , and ĥαj ,αj−1 is an infinitesimal expansion at zj−1.

The following algebraic definition and lemma provide the key to the analysis of the hyperbolic

expansion properties of the partial compositions of the maps ĥj .
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DEFINITION 5.4. Let {λ1, . . . , λm} be given, and ϑ > 0. An index 1 ≤ j ≤ m is said to be
ϑ-regular if the following sequence of partial sum estimates hold:

λj + ϑ < 0

λj−1 + λj + 2ϑ < 0

...(63)

λ1 + · · ·+ λj + jϑ < 0 .

Condition (63) is a weaker hypothesis than assuming the uniform estimates λi < −ϑ for all 1 ≤ i ≤ j,
but is sufficient for our purposes. The next result shows that ϑ-regular indices always exist.

LEMMA 5.5. Assume there are given real numbers {λ1, . . . , λm} such that

(64) λ1 + · · ·+ λm ≤ −am .

Then for any 0 < ε1 < a, there exists an ε1-regular index qm, for some 1 ≤ qm ≤ m, which satisfies

(65) λ1 + · · ·+ λqm ≤ (−a+ ε1)m .

Proof. The existence of the index qm satisfying this property is shown by contradiction. We in-
troduce the concept of an ε1-irregular index, for which the ε1-regular condition fails, and show by
contradiction that not all indices can be ε1-irregular.

We say that an index k ≤ m is ε1-irregular if

(66) λk + · · ·+ λm + (m− k + 1)ε1 ≥ 0 .

If there is no irregular index, then observe that qm = m is an ε1-regular index. Otherwise, suppose
that there exists some index k which is ε1-irregular. The inequality (64) states that the index k = 1
is not ε1-irregular. Let jm ≤ m be the least ε1-irregular index, so that

(67) λjm + · · ·+ λm + (m− jn + 1)ε1 ≥ 0

By (64), jm = 1 is is not ε1-irregular, so we have 2 ≤ jm ≤ m.

Set qm = jm − 1, then we claim that qm is an ε1-regular index. If not, then at least one of the
inequalities in (63) must fail to hold. That is, there is some i ≤ qm with

(68) λi + · · ·+ λqm + (qm − i+ 1)ε1 ≥ 0 .

Add the inequalities (67) and (68), and noting that qm = jm − 1, we obtain that i is also an
ε1-irregular index. As i < jm, this is contrary to the choice of jm. Hence, qm is an ε1-regular index.

It remains to show that the estimate (65) holds. As jm = qm + 1 is irregular, subtract (66) for
k = jm from (64) to obtain

λ1 + · · ·+ λqm ≤ −am+ (m− qm)ε1 ≤ (−a+ ε1)m

as claimed. �

We return to considering the maps ĥj defined by (61), and the exponents λj defined by (62). The
following result then follows directly from Lemma 5.5 and the definitions.

COROLLARY 5.6. Assume that there is given a > 0 with x ∈ E+
a (F) ∩ T , a choice of integer

n > 0, and plaque-chain Pn = {Pα0(z0), . . . ,Pα`n (z`n)} with `n ≥ n, such that log{h′Pn(z0)} ≥ `n ·a
and z0 = x. Given 0 < ε1 < a, by Lemma 5.5 there exists an ε1-regular index qn, for some

1 ≤ qn ≤ `n chosen as in Lemma 5.5, such that for the map ĥqn defined by (61),

(69) log{ĥ′qn(x)} ≥ (a− ε1) `n ≥ (a− ε1)n .

The estimate (69) can be interpreted as stating that “most” of the infinitesimal expansion of the

map ĥ`n at z0 is achieved by the action of the partial composition ĥqn .

Recall that we have a fixed choice of 0 < ε1 < min{ε0, a/100}, as given in the statement of Proposi-
tion 5.3, and δ0 > 0 is chosen so that the uniform continuity estimate (59) in Lemma 5.2 is satisfied.
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Then let 1 ≤ qn ≤ `n be the ε1-regular index defined in Lemma 5.5 which satisfies (65). We next

use the ε1-regular condition to obtain uniform estimates on the domains for which the inverses ĥ−1
j

are contracting, for 1 ≤ j ≤ qn.

Recall that h̃β,α denotes the continuous extension of the map hβ,α to the domain T̃αβ . Introduce

extensions hxn of ĥqn and gxn of its inverse ĥ−1
qn , which are defined by

hxn = h̃αqn ,αqn−1
◦ · · · ◦ h̃α1,α0

(70)

gxn = (hxn)−1 = h̃α0,α1
◦ · · · ◦ h̃αqn−1,αqn

.(71)

Set yn = hxn(x) = z`n , then by the estimate (69) we have

(72) log{(gxn)′(yn)} = λ1 + · · ·+ λqn ≤ (−a+ ε1) `n < 0 .

We next show that gxn is uniformly contracting on an interval with uniform length about yn.

LEMMA 5.7. Set δ′0 = δ0/8. Then the interval Jxn = [yn − 4δ′0, yn + 4δ′0] is in the domain of gxn,
and for all y ∈ Jxn ,

(73) exp{(−a− 2ε1) `n} ≤ (gxn)′(y) ≤ exp{(−a+ 2ε1) `n} .

Hence, for Ixn = gxn(Jxn),

(74) |Ixn | ≤ δ0 exp{(−a+ 2ε1) `n} < exp{(−a/2) `n} .

Proof. By the choice of δ′0, the uniform continuity estimate (59) implies that for all y ∈ Jxn∣∣∣log{h̃′αqn−1,αqn
(y)} − log{h̃′αqn−1,αqn

(yn)}
∣∣∣ ≤ ε1 .

Thus, by the definition of λqn we have that, for all y ∈ Jxn ,

exp{λqn − ε1} ≤ h̃′αqn−1,αqn
(y) ≤ exp{λqn + ε1} .

The assumption that qn is ε1-regular implies λqn + ε1 < 0, hence exp{λqn + ε1} < 1. Thus, for all
y ∈ Jxn we have

(75) dT (h̃αqn−1,αqn
(yn), h̃αqn−1,αqn

(y)) ≤ 4δ′0 exp{λqn + ε1} < 4δ′0 .

Now proceed by downward induction. For 0 < j ≤ qn set

gxn,j = h̃αj−1,αj ◦ · · · ◦ h̃αqn−1,αqn
, Jxn,j = gxn,j(J

x
n) , yn,j = gxn,j(yn) = zj−1 .

Assume that for 1 < j ≤ qn, we are given that for all y ∈ Jxn,j the estimates

(76) exp{λj + · · ·+ λqn − (qn − j + 1) ε1} ≤ (gxn,j)
′(y) ≤ exp{λj + · · ·+ λqn + (qn − j + 1) ε1} ,

(77) dT (y, yn,j) ≤ 4δ′0 .

The choice of δ0 and the hypothesis (77) imply that for y ∈ Jxn,j ,∣∣∣log{h̃′αj−2,αj−1
(y)} − log{h̃′αj−2,αj−1

(yn,j)}
∣∣∣ ≤ ε1 .

Recall that zj−1 = yn,j , and that λj−1 = log{h̃′αj−2,αj−1
(yn,j)} by (62), so for all y ∈ Jxn,j we have

for the inverse map h̃αj−2,αj−1
= h̃−1

αj−1,αj−2
that

(78) exp{λj−1 − ε1} ≤ h̃′αj−2,αj−1
(y) ≤ exp{λj−1 + ε1} .

Then by the chain rule, the estimates (78) and the inductive hypothesis (76) yield the estimates

(79) exp{λj−1 + · · ·+λqn− (qn− j+2) ε1} ≤ (gxn,j−1)′(y) ≤ exp{λj−1 + · · ·+λqn +(qn− j+2) ε1}.

Now the assumption that qn is ε1-regular implies λj−1 + · · · + λqn + (qn − j + 2) ε1 < 0 hence
exp{λj−1 + · · ·+ λqn + (qn − j + 2) ε1} < 1.
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By the Mean Value Theorem, this yields the distance bound dT (yn,j−1, y) ≤ 4δ′0, which is the
hypothesis (77) for j − 1. This completes the inductive step. Thus, we may take j = 1 in inequality
(76) and combined with the inequality (65), for all y ∈ Jxn we have that

(80) (gxn)′(y) ≤ exp{λ1 + · · ·+ λqn + qn ε1} ≤ exp{−a `n + (`n + qn) ε1} ≤ exp{(−a+ 2ε1) `n} .

Set Ixn = gxn(Jxn), then the estimate (74) follows by the Mean Value Theorem. �

Since a− 2ε1 > a/2 and `n ≥ n, this completes the proof of Proposition 5.3. �

5.2. Hyperbolic fixed-points. We show the existence of hyperbolic fixed-points for GF contained

in the closure of E+(F) ∩ T in T̃ , with uniform estimates on the lengths of their domains of con-
traction.

PROPOSITION 5.8. Let x ∈ E+
a (F) ∩ T for a > 0, let 0 < ε1 < min{ε0, a/100}, and let δ0 be

chosen as in Lemma 5.2, and set δ′0 = δ0/8. Given 0 < δ1 < δ′0 and 0 < µ < 1, then there exists
holonomy maps φ1, ψ1 ∈ GF , points u1, v1 ∈ T such that dT (x, v1) < δ1, such that we have:

(1) Φ1 = φ1 ◦ ψ1 has fixed point Φ1(u1) = u1;
(2) J1 ≡ [u1 − δ′0, u1 + δ′0] is contained in the domain of Φ1;
(3) Φ′(y) < µ for all y ∈ J1;
(4) Ψ1 = ψ1 ◦ φ1 has fixed point Ψ1(v1) = v1;
(5) K1 ≡ ψ1(J1) ⊂ (x− δ1, x+ δ1).

Proof. The idea of the proof is to consider a sequence of maps as given by Proposition 5.3, for n ≥ 1,
and consider a subsequence of these for which the sequence of points {yn = hxn(x) = z`n | n ≥ 1}
cluster at a limit point. We then use the estimates (74) on the sizes of the domains to show that the
appropriate compositions of these maps are defined, and have a hyperbolic fixed point. The details
of this argument follow.

Set δ∗ = min{1, δ′0/4, δ1/4}. Then by Proposition 5.3, for each integer n > 0, we can choose a
map hxn : Ixn → Jxn as in (70), which satisfies condition (60). Label the resulting sequence of points
yn = hxn(x) ∈ T , and the inverse maps gxn = (hxn)−1. Let pn denote the length of the plaque chain
defining hxn, then pn equals the ε1-regular index 1 ≤ qn ≤ `n chosen as in the proof of Corollary 5.6.

Recall that T has compact closure in T̃ , so there exists an accumulation point y∗ ∈ T ⊂ T̃ for the
set {yn | n > 0} ⊂ T . We can assume that dT (y∗, yn) < δ∗/4 for all n > 0, first by passing to a
subsequence {yni} which converges to y∗ and satisfies this metric estimate, and then reindexing the
sequence.

Let Jxn = [yn − 4δ′0, yn + 4δ′0], and set J∗ = [y∗ − 3δ′0, y∗ + 3δ′0]. Then for all n > 0, we have
yn ∈ (y∗ − δ′0, y∗ + δ′0) ⊂ J∗ ⊂ Jxn . In particular, y1 ∈ J∗ ⊂ Jx1 is an interior point of J∗, so
x = gx1 (y1) is an interior point of gx1 (J∗).

Also recall from Proposition 5.3, that Ixn = gxn(Jxn) with x ∈ Ixn for all n, and the interval Ixn has
length |Ixn | < δ0 exp{−na/2} = 8δ′0 exp{−na/2}. Hence, for n sufficiently large, the interval Ixn is
contained in the interior of gx1 (J∗). Without loss of generality, we again pass to a subsequence and
reindex the sequence, so that we have Ixn ⊂ gx1 (J∗) and `n+1 > `n for all n > 0. We then have the
inclusions

(81) gxn(J∗) ⊂ gxn(Jxn) = Ixn ⊂ gx1 (J∗) .

Thus, for each n > 0 the composition hx1 ◦ gxn : J∗ → hx1 ◦ gx1 (J∗) ⊂ J∗ is defined. (See Figure 5.)

Recall that p1 denotes the length of the plaque-chain which defines hx1 , and C0 is the Lipschitz
constant defined in the proof of Proposition 5.3. Let N0 be chosen so that for n ≥ N0 we have

Cp10 exp{−an/2} < min {µ, 1/2}(82)

δ′0 exp{−an/2} < δ1/2 .(83)

With the above notations, we then have:
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Figure 5. The contracting holonomy map hx1 ◦ gxn

LEMMA 5.9. Fix n ≥ N0, then the map hx1 ◦ gxn is a hyperbolic contraction on J∗ with fixed-point
v∗ ∈ J∗ satisfying dT (v∗, yn) ≤ δ1/2 and (hx1 ◦ gxn)′(v∗) < µ.

Proof. By the choice of C0 we have (hx1)′(y) ≤ Cp10 for all y in its domain. Recall that gxn is the
inverse of hxn which is defined by a plaque-chain of length `n ≥ n, so the same holds for gxn. The
derivative of gxn satisfies the estimates (73) by Lemma 5.7, so we have

(84) exp{(−a− 2ε1) `n} ≤ (gxn)′(y) ≤ exp{(−a+ 2ε1)n} .

Thus by (82), for all y ∈ J∗ the composition hx1 ◦ gxn satisfies

(85) (hx1 ◦ gxn)′(y) ≤ Cp10 exp{(−a+ 2ε1)n} < Cp10 exp{−an/2} < min {µ, 1/2}

where we use that the choice of ε1 < a/100 implies that (−a + 2ε1) < −a/2. Thus, hx1 ◦ gxn is a
hyperbolic contraction on J∗ and it follows that hx1 ◦ gxn has a unique fixed-point v∗ ∈ J∗. Define a
sequence of points w` = (hx1 ◦ gxn)`(yn) ∈ J∗ for ` ≥ 0, then v∗ = lim

`→∞
w`.

Observe that hx1 ◦ gxn(yn) = hx1(x) = y1, and recall that dT (y∗, yn) < δ∗/4 for all n, hence,
dT (y1, yn) < δ∗/2. Since w0 = yn and w1 = y1, the estimate (85) implies that

dT (w`, w`+1) < 2−` · dT (w0, w1) < 2−` · δ∗/2 .

Summing these estimates for ` ≥ 1, we obtain that dT (w0, v∗) = dT (yn, v∗) ≤ δ∗ so that

(86) dT (y∗, v∗) ≤ dT (y∗, yn) + dT (yn, v∗) < 2δ∗ ≤ δ1/2 .

Then by (85) we have (hx1 ◦ gxn)′(v∗) ≤ µ, as was to be shown. �

The conclusions of Lemma 5.9 essentially yield the proof of Proposition 5.8, except that it remains
to make a change of notation so the results are in the form stated in the proposition, and check that
conditions (1) to (5) of Proposition 5.8.1 are satisfied. This change of notation is done so that the
conclusions are in a standard format, which will be invoked recursively in the following Section 6 to
prove there exists “ping-pong” dynamics in the holonomy pseudogroup GF .

Choose n ≥ N0 so that the hypotheses of Lemma 5.9 are satisfied, then define φ1 = hx1 and ψ1 = gxn
so that Φ1 = φ1 ◦ ψ1 = hx1 ◦ gxn, and recall that gx1 (J∗)

(87) J∗ = [y∗ − 3δ′0, y∗ + 3δ′0] ⊂ Jxn = [yn − 4δ′0, yn + 4δ′0]

for δ′0 and y∗ as defined above. Set u1 = v∗ and v1 = gxn(v∗).

We check that conditions (5.8.1) and (5.8.4) of Proposition 5.8 are satisfied:

Φ1(u1) = φ1 ◦ ψ1(u1) = hx1 ◦ gxn(v∗) = v∗ = u1 ,

Ψ1(v1) = ψ1 ◦ φ1(v1) = gxn ◦ hx1(gxn(v∗)) = gxn(v∗) = v1 .
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Next, for J1 = [u1 − δ′0, u1 + δ′0] = [v∗ − δ′0, v∗ + δ′0] as defined in (5.8.2), by the estimate (86) we
have dT (y∗, v∗) < 2δ∗ ≤ δ′0/2 from which it follows that J1 ⊂ J∗. Then condition (5.8.3) follows
from (85) since u1 = v∗ ∈ J∗.

Finally, to show condition (5.8.5) of Proposition 5.8 is satisfied, recall that ψ1(yn) = gx1 (yn) = x,
that dT (yn, v∗) < δ∗ ≤ 1 by the proof of Lemma 5.9, and that δ∗ = min{1, δ′0/4, δ1/4}. Also, the
estimate (73) combined with (83) and the choice of δ′0 ≤ 1 in Definition 5.1 yields that, for all y ∈ J∗
(88) (gxn)′(y) ≤ exp{(−a+ 2ε1) `n} < δ′0 · exp{−an/2} < δ1/2 .

Thus, by the Mean Value Theorem and the estimate dT (yn, v∗) ≤ δ∗ ≤ 1, we have that

dT (x, v1) = dT (gxn(yn),gxn(v∗)) ≤ δ1/2 · dT (yn, v∗) ≤ δ1/2 .
For any y ∈ J1 = [v∗ − δ′0, v∗ + δ′0] we also have that

dT (gxn(y), v1) = dT (gxn(y),gxn(v∗)) ≤ δ1/2 · dT (y, v∗) ≤ δ′0δ1/2 < δ1/2 .

Thus,

dT (gxn(y), x) ≤ dT (gxn(y), v1) + dT (x, v1) < δ1 ,

so that K1 = ψ1(J1) ⊂ [x− δ1, x+ δ1], as was to shown.

This completes the proof of Proposition 5.8. �

6. Hyperbolic sets with positive measure

The main result of this section is:

THEOREM 6.1. Let F be a C1-foliation of codimension-one of a compact manifold M for which
E+(F) has positive Lebesgue measure. Then F has a hyperbolic resilient leaf, and hence the geometric
entropy h(F) > 0.

The assumption that the Lebesgue measure |E+(F)| > 0 is used in two ways. First, the set E+(F)
is an increasing union of the sets E+

a (F) for a > 0, so |E+(F)| > 0 implies |E+
a (F)| > 0 for some

a > 0. For each x ∈ E+
a (F), we obtain from Proposition 5.8 uniform hyperbolic contractions with

fixed-points arbitrarily close to the given x ∈ E, and with prescribed bounds on their domains.

Secondly, almost every point of a measurable set is a point of positive Lebesgue density, hence
|E+
a (F)| > 0 implies that E+

a (F) has a “pre-perfect” subset of points with expansion greater than a.
This observation enables us to construct an infinite sequence of hyperbolic fixed-points arbitrarily
close to the support of E+

a (F), whose domains have to eventually overlap since the closure T is
compact. This yields the existence of a resilient orbit for GF , hence a ping-pong game dynamics as
defined in Section 2.4, which implies that h(F) > 0.

DEFINITION 6.2. A set E is said to be pre-perfect if it is non-empty, and its closure E is a
perfect set. Equivalently, E is pre-perfect if it is not empty, and no point is isolated.

The following observation is a standard property of sets with positive Lebesgue measure.

LEMMA 6.3. If X ⊂ Rq has positive Lebesgue measure, then there is a pre-perfect subset E ⊂ X.

Proof. Let E ⊂ X be the set of points with Lebesgue density 1. Recall that this means that for each

x ∈ X and each δ > 0, the Lebesgue measure |BX(x, δ) ∩X| > 0, and lim
δ→0

|BX(x, δ) ∩X|
|BX(x, δ)|

= 1.

It is a standard fact of Lebesgue measure theory that |E| = |X|, so that |X| > 0 implies that E 6= ∅.
Moreover, if x ∈ E is isolated in E , then x is a point with Lebesgue density 0, thus each x ∈ E cannot
be isolated. It follows that E is pre-perfect. �

Theorem 6.1 now follows from Lemma 6.3 and the following result:

PROPOSITION 6.4. Let a > 0, and suppose there exists a pre-perfect subset E ⊂ E+
a (F), then

F has a resilient leaf contained in the closure E+
a (F).
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Proof. Let a > 0 and let E ⊂ E+
a (F) be a pre-perfect set. The saturation of a pre-perfect set under

the action of the holonomy pseudogroup GF is pre-perfect, so we can assume that E is saturated.

We assume that F does not have a resilient leaf in E+
a (F), and show this leads to a contradiction.

We follow the notation introduced in the proof of Proposition 5.8, which will be invoked repeatedly,
and the resulting maps and constants will be labeled according to the stage of the induction. Choose
0 < ε1 < min{ε0, a/100}, and let δ0 be chosen as in Definition 5.1.

Fix a choice of 0 < µ < 1, and choose 0 < δ1 < δ0 and x1 ∈ E ∩ Tα. Then by Proposition 5.8, there
exists holonomy maps φ1, ψ1 ∈ GF and points u1 ∈ T and v1 = ψ1(u1), such that dT (x1, v1) < δ1
and which are fixed-points for the maps Φ1, Ψ1 respectively. Moreover, we have the sets

(1) J1 ≡ [u1 − δ0, u1 + δ0]
(2) I1 ≡ Φ1(J1) ⊂ (u1 − δ0, u1 + δ0)
(3) K1 ≡ ψ1(J1) ⊂ (x1 − δ1, x1 + δ1)

whose properties were given in Proposition 5.8. In particular, Φ1 : J1 → I1 ⊂ J1 is a hyperbolic

contraction with fixed-point u1. In particular, note that
⋂
`>0

Φ`1(J1) = {u1}.

If the orbit of u1 under GF intersects J1 in a point other than u1, then by definition, u1 is a hyperbolic
resilient point, which by assumption does not exist. Therefore, the GF -orbit of u1 intersects the
interval J1 exactly in the interior point u1, and intersects K1 exactly in the interior point v1.

Note that x1 ∈ K1∩E so there exists x2 ∈ (K1−{x1, v1})∩E as E is pre-perfect. Choose 0 < δ2 < δ1
so that (x2−δ2, x2 +δ2) ⊂ (K1−{x1, v1}). The GF -orbit of v1 intersects K1 only in the point v1, thus
the interval (x2− δ2, x2 + δ2) is disjoint from the orbit of v1. We then repeat the construction in the
proof of Proposition 5.8, to obtain holonomy maps φ2, ψ2 ∈ GF and points u2 ∈ T and v2 = ψ2(u2),
such that dT (x2, v2) < δ2 and which are fixed-points for the maps Φ2, Ψ2 respectively. Again, define
the sets

(1) J2 ≡ [u2 − δ0, u2 + δ0]
(2) I2 ≡ Φ2(J2) ⊂ (u2 − δ0, u2 + δ0)
(3) K2 ≡ ψ2(J2) ⊂ [x2 − δ2, x2 + δ2] .

We then repeat this construction recursively. Let {u1, u2, . . .} ⊂ T be the resulting centers of
contraction for the hyperbolic maps {Φi | i > 0}. As T is compact, there exists an accumulation
point u∗ ∈ T . In particular, there exists distinct indices i1, i2 > 0 such that dT (u∗, ui1) < δ0/10
and dT (u∗, ui2) < δ0/10 and thus dT (ui1 , ui2) < δ0/5.

Recall that the intervals Ji1 = [ui1 − δ0, ui1 + δ0] and Ji2 = [ui2 − δ0, ui2 + δ0] have uniform width,
and moreover {ui1 , ui2} ⊂ Ji1 ∩Ji2 . As ui1 and ui2 are disjoint fixed-points of hyperbolic attractors,
we can choose integers m1,m2 > 0 so that Φm1

i1
(Ji1)∩Φm2

i2
(Ji2) = ∅ and Φ

mj
ij

(Jij ) ⊂ J = Ji1 ∩Ji2
for j = 1, 2. Then the action of the contracting maps H = Φm1

i1
and G = Φm2

i2
on J define a

“ping-pong game” as in Definition 2.4.

Now let x = ui1 , y = G(x) 6= x, then H`(y)→ x as `→∞, so that the orbit of x under the action
GF is resilient, contrary to assumption.

Hence, if there exists a pre-perfect set E ⊂ E+
a (F) for a > 0, then there exists a resilient leaf. �

7. Open manifolds

In this section, we extend the methods above from compact manifolds to open manifolds, using the
techniques of [38, Section 5].

THEOREM 7.1. Let F be a codimension-one C2-foliation of an open complete manifold M . If
the Godbillon-Vey class GV (F) ∈ H3(M ;R) is non-zero, the F has a hyperbolic resilient leaf.

Proof. The class GV (F) ∈ H3(M ;R) is determined by its pairing with the compactly supported
cohomology group Hm−3

c (M ;R), so GV (F) 6= 0 implies there exists a closed m − 3 form ξ with
compact support on M such that 〈GV (F), [ξ]〉 6= 0. Let |ξ| ⊂M denote the support of ξ, which is a
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compact set. As the support |ξ| is compact, there is a finite open cover of |ξ| by a regular foliation
atlas {(Uα, φα) | α ∈ A} for F on M (as in Section 2 above). Let M0 denote the union of the
sets {Uα | α ∈ A}, then the closure M0 is a compact subset of M and |ξ| ⊂ M0. Thus we have
GV (F|M0) 6= 0. If M0 is not connected, we can choose a connected component M1 ⊂M0 for which
GV (F|M1) 6= 0. Thus, we may assume that M0 is connected.

The proof of Theorem 4.4 used only the properties of the pseudogroup generated by a regular
foliation atlas {(Uα, φα) | α ∈ A} – the compactness of M was not used except in the construction
of this atlas. The definition and properties of the Godbillon measure also apply to open manifolds,
as was discussed in [38, Section 5]. Hence, by the same proof we obtain that the set E+(F|M0) has
positive measure.

The proofs of Propositions 5.8 and 6.4 use only the assumption that the pseudogroup GF is compactly
generated, as defined by Haefliger [32], and do not require the compactness of M , hence apply directly
to show that GF|M0 has a hyperbolic resilient point if E(F|M0) has positive measure. Thus, F|M0

must have a resilient leaf, and so also must F . �

Here is an application of Theorem 7.1. Let BΓ
(2)
1 denote the Haefliger classifying space of codimension–

one C2-foliations [30, 31]. There is a universal Godbillon-Vey class GV ∈ H3(BΓ
(2)
1 ;R) such that for

every codimension–one C2-foliation F of a manifold M , there is a classifying map hF : M → BΓ
(2)
1

such that h∗FGV = GV (F) (see [6, 53].) The first two integral homotopy groups π1(BΓ
(2)
1 ) =

0 = π2(BΓ
(2)
1 ), while Thurston showed in [72] that the Godbillon-Vey class defines a surjection

GV : π3(BΓ
(2)
1 )→ R. It follows from Thurston’s work in [73], that for a closed oriented 3-manifold

M and any a > 0, there exists a codimension–one foliation Fa on M such that 〈GV (Fa), [M ]〉 = a.
Each such foliation Fa for a 6= 0 must then have resilient leaves.

More generally, given any finite CW complex X, a continuous map h : X → BΓ
(2)
1 defines a foliated

microbundle over X, whose total space M is an open manifold with a codimension–one foliation
Fh such that h∗GV = GV (Fh). This is discussed in detail by Haefliger [31], who introduced the
technique. (See also Lawson [53].) Thus, using homotopy methods to construct the map h so that
h∗GV 6= 0, one can construct many examples of open foliated manifolds with non-trivial Godbillon-
Vey classes. Theorem 7.1 implies that all such examples have resilient leaves.
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Čech cohomology, In Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford

Univ., Stanford, Calif., 1973), Amer. Math. Soc., Providence, R.I., 1975:283–294.
[51] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes tudes Sci.

Publ. Math., 51:137–173, 1980.



30 STEVEN HURDER AND RÉMI LANGEVIN
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Jour., 32:9–34, 1980.

[61] Ja.B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32:55–112,
1977.

[62] J. Plante and W. Thurston, Anosov flows and the fundamental group, Topology, 11:147–150, 1972.

[63] J. Plante, Foliations with measure-preserving holonomy, Ann. of Math., 102:327–361, 1975.
[64] V.A. Pliss, On a conjecture of Smale, Differencial′nye Uravnenija, 8:268–282, 1972.

[65] H. Poincaré, Mémoires sur les courbes définies par une équation différentielle, J. Math. Pure et Appl. (Série
3), 7:375–422,1881.

[66] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualité Sci. Indust. 1183, Hermann,

Paris (1952).
[67] G. Reeb, Sur les structures feuilletées de codimension un et sur un théorème de M. A. Denjoy, Ann. Inst.
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