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Abstract

We give a direct proof that a codimension–one, C2-foliation F with non-zero Godbillon–Vey
class GV (F) ∈ H3(M) has a hyperbolic resilient leaf. Our approach is based on methods of
C1-dynamics, and does not use the classification theory of C2-foliations. We first prove that
for a codimension–one C1-foliation with non-trivial Godbillon measure, the set of infinitesimally
expanding points E(F) has positive Lebesgue measure. We then prove that if E(F) has positive
measure for a C1-foliation F , then F must have a hyperbolic resilient leaf and hence its geometric
entropy must be positive. For a C2-foliation, GV (F) non-zero implies the Godbillon measure is
also non-zero, and the result follows. These results apply for both the case when M is compact,
and when M is an open manifold.
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1 Introduction

In 1971, Godbillon and Vey [18] introduced their invariant GV (F) ∈ H3(M) for a codimension-one
C2-foliation F of a manifold M . While the definition of the Godbillon-Vey class is elementary,
understanding its geometric and dynamical meaning remains an open problem. There have been
many results and much progress on this problem, especially for codimension one foliations [15, 31],
though far less progress has been made for the case of foliations of codimension greater than one (cf.
[28, 32]). The purpose of this paper is to introduce a new technique for the study of the problem,
which reveals new insights into the codimension one case, and has prospects for generalizing to the
higher codimension case as as well.

Moussu and Pelletier [42] and Sullivan (in [50]) asked whether a foliation F with GV (F) 6= 0 must
have leaves of exponential growth? In 1974, this conjecture was a distant goal, as little was known
beyond a collection of examples, and some developing intuition for the dynamical properties of
foliations. For example, Thurston’s intuitive idea of “helical wobble” [51] is a geometric phenomenon
which Reinhart and Wood showed is necessary for GV (F) 6= 0 [47]. The geometry of the helical
wobble phenomenon is related to a geometric property of an Anosov flow on a compact 3-manifold,
that its transverse 1–form is contact. The weak stable foliations for such flows have all leaves of
exponential growth, and non-zero Godbillon-Vey classes [51, 44, 47, 33]. Thurston [51] showed there
exist examples of codimension–one foliations on compact 3-manifolds for which the Godbillon-Vey
class assumes a continuous range of values, suggesting that a geometric interpretation of GV (F)
might involve continuous-valued dynamical information such as “entropy”.

In a beautiful work, G. Duminy proved that GV (F) 6= 0 implies there are leaves of exponential
growth, and more [10, 11, 8]. Duminy’s proof began by assuming that the foliation has no resilient
leaves, then used the Poincaré-Bendixson theory for codimension–one, C2-foliations [8, 23] to deduce
that the Godbillon-Vey class must vanish. (See section 3 below for a discussion of this approach.)
If a codimension–one foliation has a resilient leaf, then it has an open set of leaves with exponential
growth. Hence, GV (F) 6= 0 implies the set of leaves with exponential growth has positive Lebesgue
measure. Since the appearance of Duminy’s paper, one of the open problems has been to give a
direct proof of the existence of resilient leaves assuming GV (F) 6= 0. In this paper, we will provide
a direct proof of this fact, using methods of ergodic theory and dynamics. Moreover, our proof
of the essential part of the argument requires only that F is a C1-foliation, and it suggests an
approach to studying the analogous question for codimension q > 1.

We introduce in section 2 some basic concepts and terminology of codimension–one foliations [5, 17].
Section 3 briefly discusses the concept of the Godbillon measure introduced by Duminy [10] and its
extensions by Heitsch and Hurder [8, 26, 28, 32]. This is a fundamental technique for our current
understanding of the dynamical meaning of the Godbillon-Vey invariant (see [31]) and Lemma 3.2
is one of the main tools for proving vanishing theorems. Our main result is formulated in terms of
the Godbillon measure:

THEOREM 1.1 If F is a codimension–one, C1-foliation with non-trivial Godbillon measure gF ,
then F has a hyperbolic resilient leaf.

For C2-foliations, the Godbillon-Vey class is obtained by evaluating the Godbillon measure on the
“Vey class”. Hence, if GV (F) 6= 0 then gF 6= 0 and we deduce:

COROLLARY 1.2 If F is a codimension–one, C2-foliation with non-trivial Godbillon-Vey class
GV (F) ∈ H3(M ; R), then F has a hyperbolic resilient leaf.
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The key idea for the proof of Theorem 1.1 is to introduce the F-saturated set E(F) of points
in M where the transverse Radon-Nikodýn cocycle for F has positive exponent. (The transverse
Radon-Nikodýn cocycle is naturally associated to the holonomy of the C1-foliation F ; see § 2.) A
point x ∈ E(F) if there is a sequence of holonomy maps whose derivatives at x grow exponentially
fast as a function of word length. The set E(F) is a fundamental invariant of a C1-foliation. For
example, a key step in the proof of the generalized Moussu–Pelletier–Sullivan conjecture in [28]
was to show that for a foliation F with almost all leaves of subexponential growth, the Lebesgue
measure |E(F)| = 0.

We then show in Theorem 4.4 that if a measurable, F-saturated subset B ⊂ M is disjoint from
E(F), then the Godbillon measure must vanish on B. The proof of Theorem 4.4 is of independent
interest, as it introduces a new tempering procedure to show that the hypotheses of Lemma 3.2 are
satisfied on the complement of E(F). This tempering procedure combines the idea of the proof that
a bounded cocycle is cohomologous to zero, with the tempering methods of [28, 32]. The method
works in any codimension.

The second step in the proof is to show that for each point x ∈ E(F), the holonomy of F has a
uniform estimate of its transverse expansion. That is, the holonomy is transversally expansive on
E(F), which is proved in Proposition 5.3. If E(F) has positive measure, it is then a matter of basic
dynamics that the holonomy of F must contain resilient leaves, as proved in Proposition 5.2. The
proof of Theorem 1.1 now follows by combining Theorem 4.4, Proposition 5.2 and Proposition 5.3.

The proof of Proposition 5.2 is one of the more technical aspects of this paper, though the techniques
used are essentially just calculus. The technical issue is that the domain of a holonomy pseudogroup
map may depend upon the “length” of the leafwise path used to define it, so that iterating such
maps contracts their domains of definitions. This is a key difference between the study of dynamics
of a group acting on the circle, and that of codimension–one foliations. One of the key new ideas
of the proof of Proposition 5.2 is how to use the transversally expansive property of F on E(F) to
get estimates on these domains, and use that to produce an abundance of holonomy pseudogroup
maps with hyperbolic fixed–points. This is the hard work in section 5.

The extension of the methods to the case of open manifolds requires only a minor modification in
the definition of the Godbillon measure, as discussed in section 6.

The geometric entropy h(F) of a C1-foliation F introduced by Ghys, Langevin and Walczak [16]
measures the complexity of its dynamics, and is one of the most important dynamical invariants of
C1-foliations. For codimension–one foliations, it is elementary that the existence of a resilient leaf
implies h(F) > 0. The converse, that h(F) > 0 implies there is a resilient leaf, was proved in [16]
for C2-foliations, and proved by Hurder [29] for C1-foliations. Let “HRL(F)” denote the property
that F has a hyperbolic resilient leaf. Let |E| denote the Lebesgue measure of a measurable subset
E ⊂M . The results of this paper are the summarized by the following logical implications:

THEOREM 1.3 Let F be a codimension–one, C1-foliation of a manifold M . Then

gF 6= 0 =⇒ |E(F)| > 0 =⇒ “HRL(F)” ⇐⇒ h(F) > 0

The collaboration of the authors in Spring 1999 leading to this work was made possible by the
support of the first author by the Université of Bourgogne, Dijon. This support is gratefully
acknowledged. 1

1This manuscript is a revised version of a preprint posted on the internet in September 2000. The statements of
the results and the ideas for the proofs have not changed, but the authors have added significantly more detail to the
proofs of the results in section 5. We have also added several illustrations.
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2 Foliation Basics

We assume that M is a closed oriented smooth Riemannian m-manifold, F is a C1-foliation of
codimension–1 with oriented normal bundle, and that the leaves of F are smoothly immersed
submanifolds. This is sometimes referred to as a C1,∞-foliation. In this section we introduce a
number of standard notions of foliation structure theory and dynamics [5, 17, 24].

Regular Foliation Atlas

A regular foliation atlas for F is a finite collection {(Uα, φα) | α ∈ A} so that:

1. U = {Uα | α ∈ A} is a covering of M by C1,∞–coordinate charts φα : Uα → (−1, 1)m

2. Each coordinate chart φα : Uα → (−1, 1)m admits an extension to a C1,∞–coordinate chart
φ̃α : Ũα → (−2, 2)m where Ũα is convex in M and contains the closure of the open set Uα

3. For each z ∈ (−2, 2), the preimage P̃α(z) = φ̃−1
α ((−2, 2)m−1 × {z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0}×{z}) of the intersection of the leaf of F through φ−1

α ({0}×{z})
with the set Ũα.

4. Pα(z) and P̃α(z) are convex subsets for the induced Riemannian metric on leaves.

Note that the convexity hypotheses (2.1.2) and (2.1.4) imply if Uα ∩ Uβ 6= ∅, then each plaque
Pα(z) intersects exactly one plaque of Uβ. The analogous statement holds for pairs Ũα ∩ Ũβ 6= ∅.
The reader interested in the details of the construction of regular coverings and their properties
should consult Chapter 1.2 of [5].

The inverse images
Pα(z) = φ−1

α ((−1, 1)m−1 × {z}) ⊂ Uα

are smoothly embedded discs contained in the leaves of F , called the plaques associated to the given
foliation atlas. One thinks of the collection of all plaques as “tiling stones” which cover the leaves
in a regular fashion. The convexity hypotheses in (2.1.4) implies that an intersection of plaques
Pα1(z1) ∩ · · · ∩ Pαd

(zd) is either empty, or a convex set.

For each α ∈ A, the extended chart φ̃α defines a C1–embedding

tα = φ−1
α ({0} × ·) : (−2, 2) → Ũα ⊂M

whose image is denoted by T̃α. We will also assume that these images T̃α are pairwise disjoint; this
can be achieved by a small perturbation of the coordinate charts if necessary. We can also assume
that each submanifold T̃α is everywhere perpendicular to the leaves of F by adjusting the given
Riemannian metric on M in an open tubular neighborhood of each T̃α. We may assume that each
T̃α has diameter at most 1.

Define Tα = φ−1
α ({0} × (−1, 1)). The local coordinate on Tα is again denoted by tα : (−1, 1) → Tα.

We use this coordinate to identify each transversal Tα with (−1, 1).

We can assume that the coordinates tα are positively oriented, mapping the positive orientation
for the normal bundle to TF to the positive orientation on R.

The collection of all plaques for the foliation atlas is indexed by the complete transversal

T =
⋃

α∈A
Tα
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For a point x ∈ T , by a mild abuse of language we let Pα(x) = Pα(t−1
α (x)) denote the plaque

containing x.

Given a subset Z ⊂ Uα let ZP denote the union of all plaques in Uα having non-empty intersection
with Z. We set ZT = ZP ∩ Tα. If Z is an open subset of Uα, then ZP is open in Uα and ZT is an
open subset of Tα.

The Riemannian metric on M induces a Riemannian metric and corresponding distance function
dT on each transversal T̃α. For α 6= β and x ∈ Tα, y ∈ Tβ we set dT (x, y) = ∞. Given r > 0 and
x ∈ T̃α let BT (x, r) = {y ∈ T̃α | dT (x, y) < r}. Given a point x ∈ T̃α and δ1, δ2 > 0, we also adopt
the notation

[x− δ1, x+ δ2] = {y ∈ T̃α | dT (x, y) < δ2 if tα(y) > tα(x); dT (x, y) < δ1 if tα(y) < tα(x)}

Holonomy Pseudogroup GF

A pair of indices (α, β) is admissible if Uα ∩ Uβ 6= ∅. For each admissible pair (α, β) define

Tαβ = {x ∈ Tα such that Pα(x) ∩ Uβ 6= ∅}.

Then there is a well-defined transition function hβα: Tαβ → Tβα, which for x ∈ Tαβ is given by

hβα(x) = y where Pα(x) ∩ Pβ(y) 6= ∅

Note that hαα : Tα → Tα is the identity map for each α ∈ A.

The holonomy pseudogroup GF associated to the regular foliation atlas for F is the pseudogroup
with object space T , and transformations generated by compositions of the local transformations
{hβα | (α, β) admissible}. (See [21] or [5] for details of the properties of GF .)

The C1,∞–hypothesis on the coordinate charts implies that each map hβα is C1 for the local
coordinates,

tα : (−1, 1) → Tα and tβ : (−1, 1) → Tβ

Moreover, the hypothesis (2) on regular foliation charts implies that each hβα admits an extension
to a C1-map h̃βα : T̃αβ → T̃αβ defined in a similar fashion. There are only a finite number of
admissible pairs, so it is possible to give a uniform estimate on the domains of these extensions.

LEMMA 2.1 There exists ε0 > 0 so that for every admissible pair (α, β) and x ∈ Tαβ then
[x − ε0, x + ε0] ⊂ T̃αβ. That is, if x ∈ Tα is in the domain of hβα then [x − ε0, x + ε0] is in the
domain of h̃βα. �

For 0 < δ < ε0 we introduce the closed subsets of T̃

T [δ] = {y ∈ T̃ | ∃ x ∈ T , dT (x, y) ≤ δ}

Tαβ [δ] = {y ∈ T̃αβ | ∃ x ∈ Tαβ , dT (x, y) ≤ δ}

Thus, the maps hβα are uniformly C1 on Tαβ [δ] for δ < ε0.

Composition of elements in GF will be defined via “plaque chains”. Given x, y ∈ T on the same
leaf, a plaque chain of length k between them is a collection of plaques

P = {Pα0(x0), . . . ,Pαk
(xk)}
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where x0 = x, xk = y and for each 0 ≤ i < k we have Pαi(xi)∩Pαi+1(xi+1) 6= ∅. A plaque chain P
also defines an “extended” plaque chain for the charts {(Ũα, φ̃α)},

P̃ = {P̃α1(x0), . . . , P̃αk
(xk)}

We say two plaque chains

P = {Pα0(x0), . . . ,Pαk
(xk)} and Q = {Pβ0(y0), . . . ,Pβ`

(y`)}

are composable if xk = y0, hence αk = β0 and Pαk
(xk) = Pβ0(y0)). Their composition is defined by

Q ◦ P = {Pα0(x0), . . . ,Pαk
(xk),Pβ1(y1), . . . ,Pβ`

(y`)}

The holonomy transformation defined by a plaque chain is the local diffeomorphism

hP = hαkαk−1
◦ · · · ◦ hα1α0

whose domain DP ⊂ Tα0 contains x0. Note that DP is the largest connected open subset of Tα0

containing x0 on which hα`α`−1
◦ · · · ◦ hα1α0 is defined for all 0 < ` ≤ k. The dependence of the

domain of hP on the plaque chain P is a subtle issue, yet is at the heart of the technical difficulties
arising in the study of foliation pseudogroups.

Let h̃ eP be the holonomy associated to the chain P̃, with domain D̃ eP ⊂ T̃α0 the largest maximal
open subset containing x0 on which h̃α`α`−1

◦ · · · ◦ h̃α1α0 is defined for all 1 < ` ≤ k. By the
extension property of a regular atlas, the closure DP ⊂ D̃ eP and h̃ eP is an extension of hP .

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} and a point y ∈ DP , there is a “parallel” plaque

chain denoted P(y) = {Pα0(y), . . . ,Pαk
(yk)} where hP(y) = yk.

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)}, we define its length ‖P‖ = ` where Q is the

shortest plaque chain Q = {Pβ0(y0), . . . ,Pβ`
(y`) with y0 = x0 and y` = xk, and P and Q are

“homotopic” through plaque chains. The assumption that the plaque chains are homotopic implies
that the germs at x0 of hP and hQ are equal. Note that the length function P 7→ ‖P‖ makes GF a
metric equivalence relation in the sense of [32].

Radon-Nikodýn Cocycle

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} from x = x0 to y = xk, the derivative map

dhP(x) : TxT̃α1 −→ TyT̃αk

is identified with a real number h′P(x) using the norms induced from the Riemannian metric on
TM . Given composable plaque chains P and Q, with x = x0, y = xk = y0, z = y` then by the chain
rule

h′Q◦P(x) = h′Q(y) · h′P(x) (1)

The map dh:GF → R defined by dh(P, y) = h′P(y)(y) is the Radon-Nikodýn cocycle of the foliation

pseudogroup acting on T̃ .
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Resilient Leaves and Ping-Pong Games

A plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} is closed if x0 = xk. A closed plaque chain P defines a

local diffeomorphism hP : DP → Tα with hP(x) = x, where x = x1 ∈ Tα.

A point y ∈ DP is said to be asymptotic by iterates of hP to x if h`
P(y) ∈ DP for all ` > 0 (where

h`
P denotes the composition of hP with itself ` times), and the iterates lim

`→∞
h`
P(y) = x.

The map hP is said to be a contraction at x if there is some δ > 0 so that every y ∈ BT (x, δ) is
asymptotic to x. The map hP is said to be a hyperbolic contraction at x if 0 < h′P(x) < 1. In this
case, there exists ε > 0 and 0 < λ < 1 so that h′P(y) < λ for all y ∈ BT (x, ε). Hence, every point
of BT (x, ε) is asymptotic to x, and there exists 0 < δ < ε so that the image of the closed δ–ball
about x satisfies

hP(BT (x, δ)) ⊂ BT (x, δ)

DEFINITION 2.2 We say x ∈ T is a hyperbolic resilient point for GF if there exists

1. a closed plaque chain P such that hP is a hyperbolic contraction at x = x0

2. a point y ∈ DP which is asymptotic to x (and y 6= x)

3. a plaque chain R from x to y.

Figure 1: Resilient leaf with contracting holonomy along path P

The “ping-pong lemma” is a key technique for the study of 1-dimensional dynamics. J. Tits used
it to prove the existence of free subgroups of non-solvable subgroups of linear groups [52, 9], and it
has found many applications since then for studying group actions, especially actions on the circle.
A closely related idea is fundamental in the study of the transverse dynamics of codimension one
foliations.

DEFINITION 2.3 The action of the groupoid GF on T has a “ping-pong game” if there exists
x, y ∈ Tα with x 6= y and

1. a closed plaque chain P such that hP is a contraction at x = x0

2. a closed plaque chain Q such that hQ is a contraction at y = y0

3. y ∈ DP is asymptotic to x by hP and x ∈ DQ is asymptotic to y by hQ

We say that the ping-pong game is hyperbolic if the maps hP and hQ are hyperbolic contractions.
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Figure 2: Two paths with contracting holonomy that generate a ping-pong game

The relation between “ping-pong games” and resilient orbits was used already by Ghys, Langevin
and Walczak [16], and in the study of 1–dimensional dynamics by the first author in [29, 30] :

PROPOSITION 2.4 GF has a “ping-pong game” if and only if it has a resilient point, and has
a “hyperbolic ping-pong game” if and only if it has a hyperbolic resilient point.

3 The Godbillon Measure

In this section, we recall the basic ideas of the Godbillon measure, and how it is used to estimate
the values of the Godbillon-Vey class. The Godbillon functional was introduced by Duminy in
[10, 11]; it was extended to Borel measurable sets by Heitsch and Hurder [26]; and techniques for
estimating the Godbillon measure were developed in Hurder [28] and Hurder and Katok [32].

Let ~n denote the unit, positively-oriented vector field on M orthogonal to F . Define the 1-form ω
on M by setting ω(~n) = 1, and ω(~u) = 0 for every vector ~u tangent to F . The assumption that F
is C1,∞ implies ω:TM → R is C1, and for each leaf L of F , the restriction ω:TM |L→ L is C∞.

The distribution TF is integrable, so the 2-form dω is in the ideal generated by ω – that is, there is
some 1-form α with dω = ω∧α. Define a C0,∞ 1–form η = ι(~n)dω; then for every vector ~u tangent
to F we have

α(~u) = (ω ∧ α)(~n, ~u) = dω(~n, ~u) = ι(~n)dω(~u) = η(~u)

Hence, dω = ω ∧ η. The 1-form η is the “canonical” representative for α which satisfies α(~n) = 0.
The form η has an alternate description (see section 3 below) in terms of the gradient of the
Radon-Nikodýn derivative along leaves of the “transverse measure” ω.

When F is a C2–foliation, then η is a C1 form, and dη is defined as a continuous 2-form. The
calculation

0 = d(dω) = d(ω ∧ η) = dω ∧ η − ω ∧ dη = ω ∧ η ∧ η − ω ∧ dη = ω ∧ dη

shows that dη is a multiple of ω. Consequently, η ∧ dη is a continuous 3-form φ which is closed in
the sense of distributions. (That is, given any C1 form φ on M of degree (n − 4) with compact

support, the integral
∫

M
η ∧ dη ∧ dφ = 0.) The cohomology class GV (F) ∈ H3(M) determined

by η ∧ dη is the Godbillon-Vey class. The class GV (F) is an invariant of the diffeomorphism and
foliated concordance class of F (for example, see Chapter 3 of Lawson [38].)
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The idea of the Godbillon functional is to separate the roles of the forms η and dη in the definition
of GV (F), and then study just the contribution from the form η. This requires that we place
the 2-form dη in a natural domain. When F is a C∞ foliation, the idea is easy to describe, so
we do that first for clarity. (Alternately, see Chapter 7.1 of [6] for a detailed exposition.) Let
A∗(M,F) ⊂ Ω∗(M) denote the ideal in Ω∗(M) of smooth forms which are a multiple of ω. Since
dω = ω ∧ η, the ideal A∗(M,F) is closed under exterior differentiation, hence forms a graded
complex, whose associated cohomology groups are denoted by H∗(M,F). Given a closed form
ζ ∈ Ap(M,F) we let [ζ]F denotes its class in Hp(M,F). Duminy observed in [10] that the class
[dη]F ∈ H2(M,F) is independent of the choice of Riemannian metric on M , hence is an invariant
of F , which he called the Vey class of F .

The construction of the Vey class can be extended to foliations of lower differentiability by modi-
fying the definition of the ideal A∗(M,F) and taking more care with the definition of the exterior
derivative on this ideal. Let Ω∗(r)(M) denote the graded algebra of Cr–forms on M , for r ≥ 0,
and Ω∗(r,s)(M) ⊂ Ω∗(r)(M) the ideal of forms whose restrictions to leaves of F are Cs forms, for
r ≤ s ≤ ∞. Now let A∗(0,∞)(M,F) ⊂ Ω∗(0,∞)(M) denote the ideal in Ω∗(0,∞)(M) of forms which are a

multiple of ω: a form ζ ∈ Ap+1
(0,∞)(M,F) if there exists a p–form φ ∈ Ωp

(0,∞)(M) such that ζ = ω∧φ.
For example, the defining 1-form ω of F satisfies ω ∈ A1

(0,∞)(M,F), and dω ∈ A2
(0,∞)(M,F).

Define a linear operator dF :Ap+1
(1,∞)(M,F) → Ap+2

(0,∞)(M,F), where for ζ = ω ∧ φ with φ a C1-form,
we set dF (ζ) = ω∧dφ. Note that if ζ = ω∧φ1 = ω∧φ2, then ω∧(φ1−φ2) = 0 hence φ1−φ2 = ω∧β
for some (p− 1)-form β, and thus

ω ∧ d(φ1 − φ2) = ω ∧ d(ω ∧ β) = ω ∧ dω ∧ β = 0

It follows that dF (ζ) is well-defined. A calculation in local coordinates adapted to the foliation
F shows that dF (ζ) depends only on the leafwise exterior derivative of the restrictions of the
form φ to the leaves of F , hence the operator dF admits a continuous extension to a linear map
dF :Ap+1

(0,∞)(M,F) → Ap+2
(0,∞)(M,F). Note that dF (dFζ) = 0 for ζ ∈ Ap+1

(2,∞)(M,F), hence the

extension to Ap+1
(0,∞)(M,F) satisfies dF (dFζ) = 0.

The operator dF is callled the “leafwise differential” in the literature [13, 25, 35].

The operator dF can be “twisted” to obtain an extension d:Ap+1
(0,∞)(M,F) → Ap+2

(0,∞)(M,F) of the
usual exterior differential on smooth forms by setting, for ζ = ω ∧ φ,

dζ = dFζ + dω ∧ φ = dFζ − η ∧ ζ

Then

d(dζ) = d(dFζ − η ∧ ζ) = dF (dFζ − η ∧ ζ)− η ∧ (dFζ − η ∧ ζ) = η ∧ dFζ − η ∧ dFζ = 0

so (A∗(0,∞)(M,F), d) is a graded exterior differential complex, whose associated cohomology groups

are denoted by Hp+1
(0,∞)(M,F). Given a closed form ζ ∈ Ap

(0,∞)(M,F), let [ζ]F denote its class in
Hp

(0,∞)(M,F).

When F is a C2–foliation, then dη ∈ A2
(0,∞)(M,F) and d(dη) = 0, hence there is a well-defined

class [dη]F ∈ H2
(0,∞)(M,F), the Vey class of F .

For a general foliation F , the calculation of the cohomology groups Hp+1
(0,∞)(M,F) is an intractable

problem. Rather, the usefulness of these groups is the existence of pairings with other cohomology
theories, and their maps to the usual cohomology groups [26].
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Note that the inclusion of the ideal Ap
(0,∞)(M,F) ⊂ Ω∗(0,∞)(M) induces a map on cohomology

H∗
(0,∞)(M,F) → H∗

(0,∞)(M) ∼= H∗(M).

Given a closed form ζ ∈:Ap+1
(0,∞)(M,F), the product η ∧ ζ ∈ Ωp+2

(0,∞)(M) is again closed. If ζ = dξ

for some form ξ ∈ Ap
(0,∞)(M,F) then d(−η ∧ ξ) = −dη ∧ ξ + η ∧ dξ = η ∧ ζ. Thus, [ζ]F determines

a well-defined class g([ζ]F ) = [η ∧ ζ]F ∈ Hp+2
(0,∞)(M,F). The Godbillon operator is the composition

g:Hp+1(M,F) → Hp+2(M,F) → Hp+2(M) , g([ζ]F ) = [η ∧ ζ].

The point is that g([dη]F ) = [η ∧ dη] ∈ H3(M), or “Godbillon(Vey) = Godbillon-Vey”.

We are interested in the values of the cohomology class [η∧dη] ∈ H3(M). Since M is assumed to be
closed and oriented, Poincaré duality implies that the pairing H3(M)⊗Hm−3(M) → Hm(M) ∼= R
is non-degenerate, hence the class [η ∧ dη] is determined by its pairings with classes in Hm−3(M).

Given a closed form ζ ∈ Ap+1
(0,∞)(M) and a closed smooth form ξ ∈ Ωk(M), the product ζ ∧ ξ ∈

Ak+p+1(M,F) is again closed, and if either form is exact in its complex, it is easy to see that ψ ∧ ξ
is also exact. Thus, there is a well-defined pairing

Hp+1
0,∞ (M,F)⊗Hk(M) → Hk+p+1

0,∞ (M,F) (2)

In particular, given a class u ∈ Hm−3(M) we can choose a smooth closed form ξ ∈ Ωm−3(M) with
u = [ξ], and then form the pairing [dη]F ∪ [ξ] = [dη ∧ ξ]F ∈ Hm−1

(0,∞)(M,F).

The Godbillon operator applied to a class in Hm−1
(0,∞)(M,F) yields an m-form on M , which can be

integrated over the fundamental class to obtain a real number. This composition yields a linear
functional denoted by

G:Hm−1
(0,∞)(M,F) → R, G([ζ]F ) = 〈[η ∧ ζ], [M ]〉 =

∫
M
η ∧ ζ (3)

Given a class u ∈ Hm−3(M) represented by the smooth closed form ξ ∈ Ωm−3(M), observe that

G([η ∧ dη ∧ ξ]F ) = 〈[η ∧ dη ∧ ζ], [M ]〉 = 〈[η ∧ dη] ∪ [ζ], [M ]〉

Poincaré duality for M implies that the values of the pairing 〈[η ∧ dη] ∪ [ζ], [M ]〉 determine the
values of the cohomology class [η ∧ dη] ∈ H3(M). Hence, the values of the Godbillon operator
in (3) completely determines the value of the Godbillon-Vey class for F . This elementary, but
fundamental observation by Duminy in [10] implies that GV (F) = 0 if G is the trivial functional.
The study of the Godbillon-Vey class is thus approached by analyzing the linear functional of (3).

The linear functionalG possesses properties that were hinted at in the literature preceding Duminy’s
work (see the survey [31] for a fuller discussion of the ideas leading up to Duminy’s work.) In
particular, Duminy showed that G can be restricted to open saturated sets. This observation was
systematically generalized by the first author in his work with James Heitsch [26] to show that that
G extends to a measure on the measurable saturated subsets of M . Moreover, the values of the
measure can be calculated using measurable cocycle data. The extension to measurable data allows
the introduction of techniques of ergodic theory. Let us formulate these notions more precisely.
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A set B ⊂ M is F–saturated if for all x ∈ B the leaf Lx through x is contained in B. Let B(F)
denote the Σ-algebra of Lebesgue measurable F–saturated subsets of M .

THEOREM 3.1 [10, 26] For each B ∈ B(F), there is a well-defined linear functional

GB:Hm−1
(0,∞)(M,F) → R (4)

defined by GB([ζ]F ) =
∫

B
η ∧ ζ. Moreover, the correspondence

B 7→ GB ∈ Homcont(Hm−1
(0,∞)(M,F),R)

is a countably additive measure on B(F) which vanishes on sets of Lebesgue measure zero.

GB is called the Godbillon measure of F . We adopt the notation GF (B) = GB to emphasize that
this is an invariant of F . If F is C2, we can also define the Godbillon-Vey measure for F ,

GVF (B):Hm−3(M,F) → R (5)

by setting, for [ζ] ∈ Hm−3
(0,∞)(M,F),

GVF (B)([ζ]) = 〈GB([dη]), [ζ]) =
∫

B
η ∧ dη ∧ ζ

The linear functional GVF (M) ∈ Hom(Hm−3(M,F),R) is just the Poincaré dual class of GV (F).

Part of the claim of Theorem 3.1 is that the linear functional (4) is independent of the choice of
the form ω defining F , which in our construction of ω is determined by the choice of Riemannian
metric on M . A remarkable property of the Godbillon measure, proved by Heitsch and Hurder
[26], is that ω can be allowed to be transversally measurable. That is, η = ι(~n)dFω can be defined
given a 1-form ω which vanishes on leaves of F and a tranverse vector field ~n satisfying ω(~n) = 1,
such that ω is leafwise smooth and ι(~n)dFω is uniformly bounded on M .

This remark is the idea behind the proof of a more general result, Theorem 4.3 of [28], which we
restate and prove in our context:

LEMMA 3.2 Let B ∈ B(F). Suppose there exists a sequence of measurable, leafwise smooth,
non-vanishing transverse 1-forms {ωn | n = 1, 2, . . .} on M for which ‖ι(~n)dFωn‖B < 1/n, where
‖ι(~n)dFωn‖B denotes the sup norm over B. Then GF (B) = 0, and hence GVF (B) = 0. If this
estimate holds for a conull set B (the measure of M −B is zero), then GV (F) = 0.

Proof: Let [ζ]F ∈ Hm−1
(0,∞)(M,F), then

|GF (B)([ζ]F )| = lim
n→∞

∣∣∣∣∫
B

(ι(~n)dFωn) ∧ ζ
∣∣∣∣

≤ lim
n→∞

∫
B
‖ι(~n)dFωn‖ ‖ζ‖ dvol

≤ lim
n→∞

n−1 ·
∫

B
‖ζ‖ dvol

= 0 �
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For foliations of differentiability at least C2, Sacksteder’s Theorem [49] implies that if F has no
resilient leaf, then there are no exceptional minimal sets for F . Hence, by the Poincaré-Bendixson
theory for C2–foliations [7, 23], all leaves of F either lie at finite level, or lie in “arbitrarily thin”
open subsets U ∈ BO(F). Thus, for a C2 foliation without resilient leaves, the problem of showing
that the Godbillon-Vey class must vanish can be reduced to showing that the Godbillon measure
vanishes on sets consisting of leaves at finite level, and then to show that it vanishes on thin open
saturated subsets.

Duminy used a version of Lemma 3.2 for continuous transverse forms on open saturated subsets
to show the Godbillon measure vanishes on the sets of leaves at finite level. This part of his proof
mimicked the previous results on this problem [54, 27, 41, 40, 53].

The complements of the sets of leaves at finite level are called “thin sets”, and in the brilliant note
[11], Duminy introduced new techniques to show that Godbillon measure vanishes on “thin sets”.
Thus, the problem is solved for C2 foliations. For published details of his arguments, see [5, 8].

In the next two sections, we follow a different line of reasoning to obtain a stronger result about
the Godbillon measures, but it is still very interesting to compare the ideas involved. The first
part of Duminy’s arguments, showing that the Godbillon measure vanishes on leaves of finite level,
is very much the same in both approaches. However, Duminy’s idea of “thin sets” is still not
well-understood as an ergodic theory property of a foliation.
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4 |E(F)| = 0 implies gF = 0

In this section, we introduce a measure of the infinitesimal expansion of leaves and the set E(F).
The main theorem is that the Godbillon measure vanishes on the complement of E(F). Hence, if
the Godbillon measure is non zero, since it is non-singular with respect to Lebesgue measure, the
set E(F) must have positive measure. In the next section, we will show that if E(F) has positive
measure, then F has resilient leaves.

We fix a regular foliation atlas for F , with associated transversal T and holonomy groupoid GF .

For x ∈ T and each integer N ≥ 0, define the function

µN (x) = max{h′P(x) | x ∈ DP & ‖P‖ ≤ N} (6)

The identity transformation is the holonomy for a plaque chain of length zero, so µN (x) ≥ 1. For
N > 1, µN (x) is the maximal transverse infinitesimal expansion of holonomy maps of length at
most N . The function µN is the maximum of a finite set of continuous functions, so is Borel on T .

Figure 3 below illustrates this definition, where we illustrate a disk of radius N in a given leaf Lx.
Several plaque chains starting at x are indicated by the paths traced through their centers on the
given leaf. The transverse line segments represent the expansion of a small initial transversal by
the holonomy induced by the foliation. Of course, we only care about the infinitesimal expansion
of these segments, which is approximated by the lengths of the image segments.

Figure 3: Paths defining plaque chains of length ≤ N and their holonomy maps

The following is a basic property of the family of infinitesimal expansion functions µN .

LEMMA 4.1 Let x ∈ T and Q = {Pα(x),Pβ(y)} so that hβα(x) = y. Then for all N > 0,

µN−1(x) ≤ µN (y) · h′βα(x) ≤ µN+1(x) (7)

Proof : Let P be a plaque chain at y with ‖P‖ ≤ N , then P ◦ Q is a plaque chain at x with
‖P ◦ Q‖ ≤ N + 1, so

h′P(y) · h′βα(x) = h′P◦Q(x) ≤ µN+1(x)

As this is true for all plaque chains at y with ‖P‖ ≤ N , we obtain µN (y) · h′βα(x) ≤ µN+1(x).

Given a plaque chain at x with ‖P‖ ≤ N − 1, the chain R = P ◦ Q−1 at y has ‖R‖ ≤ N and

h′P(x) = h′R(y) · h′βα(x) ≤ µN (y) · h′Q(x)

As this is true for all plaque chains at x with ‖P‖ ≤ N −1, µN−1(x) ·h′βα(x) ≤ µN (y) ·h′βα(x). �
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Define the transverse exponent at x by

λ∗(x) = lim sup
N→∞

ln{µN (x)}
N

(8)

The definition states, in words, that given any 0 < λ < λ∗(x) and any n > 0, there exists N > n
and plaque chain P with length ‖P‖ ≤ N so that h′P(x) ≥ exp{Nλ}.

LEMMA 4.2 The function λ∗ is Borel measurable on T , and constant on the orbits of GF .

Proof: For each N > 0 the function ln{µN (x)}/N is Borel, so the supremum function is Borel
measurable.

Let x ∈ T and Q = {Pα(x),Pβ(y)} then by the estimate (7),

ln{µN+1(x)}
N + 1

≥
ln{µN (y) · h′βα(x)}

N
· N

N + 1
=

{
ln{µN (y)}

N
+

ln{h′βα(x)}
N

}
· N

N + 1

so that

λ∗(x) = lim sup
N→∞

{
ln{µN+1(x)}

N + 1

}
≥ lim sup

N→∞

{
ln{µN (y)}

N

}
= λ∗(y)

The converse inequality follows similarly.

Thus, the function y 7→ λ∗(y) is constant when x and y are joined by a plaque chain of length
2. The pseudogroup GF is generated by the holonomy of plaque chains of length 2, and as each
point y in the intersection of Lx with the transversal T is in the orbit of x under the holonomy
pseudogroup GF , y 7→ λ∗(y) is constant on all such points as claimed. �

Given a leaf L, set λ∗(L) = λ∗(x) for some x ∈ L ∩ T . The following is a fundamental concept.

DEFINITION 4.3 E(F) = {z ∈M | λ∗(x) > 0}. For a ≥ 0, Ea(F) = {x ∈M | λ∗(x) > a}.

By Lemma 4.2, E(F) and Ea(F) for a ≥ 0 are saturated subsets of M .

A point x ∈ E(F) is said to be infinitesimally expansive. If there is an holonomy map hP with
x ∈ DP and hP(x) = x, h′P(x) 6= 1, then x ∈ E(F). This case is classical, and the study of
the dynamics of such local hyperbolic elements originated in the work of Poincaré [46], and also
appeared in fundamental way in the works of Sacksteder [49], Bonatti, Langevin and Moussu [2]
and many other authors. However, a point x ∈ E(F) may not be expanded by a just single element
of holonomy – it may happen there is a sequence of holonomy elements whose length tends to
infinity which realizes the condition λ∗(x) > 0 in definition (8), but which are not the powers of
single hyperbolic element of holonomy as happens in the classical case. In fact, the sequence of
holonomy elements need not even be associated to an infinite word of which each finite path is a
truncation. This makes the analysis of the set E(F) much more delicate.

To understand the properties of the sets Ea(F) better, consider a point x ∈ T ∩Ea(F) and λ with
a < λ < λ∗(x). Then for all n > 0, there exists N > n and plaque chain P with length ‖P‖ ≤ N
so that h′P(x) ≥ exp{Nλ}. By the continuity of the derivative function on T , there exists an open
interval (x− ε, x+ ε) ⊂ T so that

h′P(y) ≥ exp{Nλ/2} , for all x− ε ≤ y ≤ x+ ε

14



Thus, by the Mean Value Theorem, hP expands the interval (x − ε, x + ε) by an exponential
amount. Of course, ε > 0 depends upon the choices of N , λ and x, and in particular ε may become
exponentially small as N →∞. It is a strong condition to have this expansiveness at a fixed point
x for all N →∞, and this is what makes the set E(F) a fundamental part of the study of foliation
dynamics, exactly in analog with the role of the Pesin set in smooth dynamics.

Here is the main result of this section:

THEOREM 4.4 For any set B ∈ B(F), the Godbillon measure GF (B) = GF (B ∩ E(F)).
Hence, if E(F) has Lebesgue measure zero, then GF (B) = 0 for all B ∈ B(F). That is,

|E(F)| = 0 =⇒ GF = 0

Proof: It suffices to show that GF (M − E(F)) = 0, as for any B ∈ B(F), we have

GF (B ∩ (M − E(F))) ≤ GF (M − E(F)) = 0, so

GF (B) = GF (B ∩ E(F)) +GF (B ∩ (M − E(F))) = GF (B ∩ E(F))

Set B = M − E(F). By Lemma 3.2, it will suffice to construct a sequence of measurable, leafwise
smooth, non-vanishing transverse 1-forms {ωn | n = 1, 2, . . .} for which ‖dFωn‖B < 1/n, where
the norm is the sup norm over B. The construction of the forms {ωn} follows the method of
[28]. The first, and crucial step, is to construct an ε–tempered cocycle over the foliations which is
cohomologous to the Radon-Nykodyn additive cocycle. This cocycle is then used to produce the
1-forms {ωn} , using a procedure adapted from the methods of [3] and [34, 36]. We define local
1–forms {ωα

ε | n = 1, 2, . . .} on the coordinate charts Uα, then use a partition of unity to extend
these to a 1-form ωε on all of M .

For x ∈ T ∩ B, λ∗(x) = 0 implies that for all ε > 0, there exists Nε so that N ≥ Nε implies
ln{µN (x)} ≤ Nε/2 and hence µN (x) ≤ exp{Nε/2}. Define a Borel function fε on T ∩B by

fε(x) =
∞∑

N=0

exp{−Nε} · µN (x)

which converges by the above estimates. Note that while fε(x) is finite for each x ∈ T ∩ B, there
need not be an upper bound for its values on T ∩B.

For x ∈ T but x 6∈ B, set fε(x) = 1. We then obtain a measurable function fε defined on all of T .

Let dx denote the Riemannian volume form on T , so that h∗Q(dx) = h′Q dx. On the transversal Tα

set ωα
ε = fε dx. Extend each form ωα

ε from Tα to Uα via the projection Uα → Tα along plaques.

Choose a partition of unity {ρα | α ∈ A} subordinate to the cover {Uα | α ∈ A}. Note that the
form ωα

ε on Uα is constant along the plaques, so on Uα its leafwise differential dFωα
ε = 0.

Define the 1-form ωε on M by specifying its restriction to each open set Uα

ωε|Uα =
∑

Uβ∩Uα 6=∅

ρβ h∗βα(ωβ
ε ) (9)

We will calculate the Godbillon measure of B starting with the 1-form ωε. We make a preliminary
estimate.
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LEMMA 4.5 For all α, x ∈ Tα ∩B and Q = {Pα(x),Pβ(y)},

exp{−ε} · ωα
ε ≤ h∗βα(ωβ

ε ) ≤ exp{ε} · ωα
ε (10)

Proof: Calculate for x ∈ Tα using the estimate (7),

h∗βα(ωβ
ε )(x) = fε(hβα(x)) h′βα(x) dx

=

{ ∞∑
N=0

exp{−Nε} · µN (y) h′βα(x)

}
dx

≤
∞∑

N=0

exp{−Nε} · µN+1(x)

≤ exp{ε} ·
∞∑

N=1

exp{−Nε} · µN (x)

< exp{ε} · ωα
ε (x) (11)

Similarly, we have

h∗βα(ωβ
ε )(x) ≥

∞∑
N=1

exp{−Nε} · µN−1(x)

≥ exp{−ε} ·
∞∑

N=0

exp{−Nε} · µN (x)

> exp{−ε} · ωα
ε (x) � (12)

Recall that ~n denotes the unit, positively-oriented vector field onM orthogonal to F . The Godbillon
measure can then be calculated using the form ηε = ι(~n)dωε/ωε(~n). We estimate the norm ‖ηε‖.
First, consider the restriction of ηε when restricted to Uα. For α fixed, we set φβ(x) = fε(hβα(x)) ·
h′βα(x). Note that φα(x) = fε(x), and by Lemma 4.1,

exp{−ε}fε(x) ≤ φβ(x) ≤ exp{ε}fε(x)

Now estimate, using that 0 = dF (1) = dF (
∑
ρβ) =

∑
dFρβ :

‖ηε|Uα‖ =
∥∥∥∥ ι(~n)dωε

ι(~n)ωε

∥∥∥∥
=

∥∥∥∥∥
∑

Uβ∩Uα 6=∅ (dFρβ) fε(hβα(x)) · h′βα(x)∑
Uβ∩Uα 6=∅ ρβ fε(hβα(x)) · h′βα(x)

∥∥∥∥∥
=

∥∥∥∥∥
∑

Uβ∩Uα 6=∅ (dFρβ) (φβ(x)− φα(x))∑
Uβ∩Uα 6=∅ ρβ φβ(x)

∥∥∥∥∥
≤

∑
Uβ∩Uα 6=∅ ‖dFρβ‖ ‖φβ(x)− fε(x)‖

exp{−ε} · fε(x)

≤ {exp{2ε} − 1} ·
∑

Uβ∩Uα 6=∅

‖dFρβ‖

The right hand side tends to 0 as ε→ 0. For each n > 0 we choose εn > 0 so that ‖ηεn‖ ≤ 1/n and
set ωn = ωεn . �

COROLLARY 4.6 If GV (F) 6= 0, then E(F) has positive Lebesgue measure.
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5 |E(F)| > 0 implies h(F) > 0

The purpose of this section is to prove:

THEOREM 5.1 Let F be a C1 foliation of a compact manifold. If E(F) has positive Lebesgue
measure, then F has a hyperbolic resilient leaf, and hence h(F) > 0.

Proof: The assumption that |E(F)| > 0 is used in two ways in the proof. First, the set E(F) is an
increasing union of the sets Ea(F) for a > 0, so |E(F)| > 0 implies Ea(F) has positive Lebesgue
measure for some a > 0. Secondly, almost every point of a measurable set is a point of positive
Lebesgue density, so |Ea(F)| > 0 implies that Ea(F) has a “pre-perfect” subset of points with
expansion greater than a. Following these two observations, we construct an infinite sequence of
hyperbolic fixed-points arbitrarily close to the support of Ea(F) with domains of uniform length.
These domains have to overlap since T is bounded, and this will produce the ingredients for
the ping-pong game, unless a resilient leaf is encountered first. We formulate these two steps as
independent propositions, as they are of independent interest for the study of foliation dynamics.

PROPOSITION 5.2 Given a > 0, there exists δ > 0 so that for all η > 0, 0 < λ < 1, and
x ∈ Ea(F) ∩ T , there exists x∗ ∈ T such that (x∗ − 2δ, x∗ + 2δ) ⊂ T̃ and a holonomy map k∗ with

1. (x∗−2δ, x∗+2δ) ⊂ T̃ is in the domain of k∗, hence also the closed interval Jx = [x∗−δ, x∗+δ]
is in the domain of k∗

2. k∗(x∗) = x∗ and Ix = k∗(Jx) ⊂ Jx

3. 0 < k′∗(y) < λ for all y ∈ Jx

4. there exists a holonomy map hP defined on an open neighborhood of Ix so that x ∈ hP(Ix)
and |hP(Ix)| < η, hence dT (x, hP(x∗)) < η, where dT is the distance on the tranversal T .

Thus, the leaf Lx∗ through x∗ has a closed loop whose holonomy is a uniform hyperbolic contraction,
and Lx∗ approaches within distance η of the initially given point x.

Proof of Proposition 5.2: Let η > 0, 0 < λ < 1, and x ∈ Ea(F) ∩ T be given, so λ∗(x) > a.

Recall that by Lemma 2.1, there exists ε0 > 0 so that for every admissible pair (α, β) and x ∈ Tαβ

then [x− ε0, x+ ε0] ⊂ T̃αβ . That is, if x ∈ Tα is in the domain of hβα then [x− ε0, x+ ε0] is in the
domain of h̃βα.

Choose 0 < ε0 < a/100 so that the conclusions of Lemma 2.1 are valid. Then, by uniform continuity,
there exists δ > 0 with 0 < 8δ < ε0 so that if y, z ∈ Tαβ [8δ] and dT (y, z) ≤ 8δ, then∣∣∣log{h̃′βα(y)} − log{h̃′βα(z)}

∣∣∣ < ε0 (13)

Choose M > 0 satisfying 1/M≤ h̃′βα(y) ≤M for all admissible (α, β) and y ∈ Tαβ [8δ].

The key to the proof of Proposition 5.2 is the following technical proposition, which shows that the
pseudogroup GF expands an exponentially small neighborhood of x in T to a 2δ-wide interval.
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PROPOSITION 5.3 For each integer n > 0, there exists a closed interval Ix
n ⊂ Tα containing x

in its interior, and holonomy map hx
n: Ix

n → Jx
n such that

1. xn = hx
n(x) ∈ Ix

n

2. Jx
n = [xn − 4δ, xn + 4δ] ⊂ T̃

3. (hx
n)′(y) > exp{na/2} ∀y ∈ Ix

n

4. |Ix
n | < 8δ exp{−na/2}.

Proof: Choose a plaque chain {Pn} starting at x such that `n = ‖Pn‖ ≥ n and log{h′Pn
(x)}/`n > a.

The maps hPn are the initial candidates for the hx
n of the proposition, but there is a serious technical

problem to overcome. We are given that h′Pn
(x) > exp{`na} and would like to conclude this holds

in an interval about x. To show this, we write the map hPn as a composition of adjacent holonomy
elements, and then apply the uniform estimate (13). The technical point is that this requires that
the domains of the maps appearing in the compositions of pseudogroup elements stay bounded
above in length so that they remain in the domain of the succeeding maps in the composition.

Another technical problem is that h′Pn
(x) is the product of the derivatives of a sequence of factors in

a composition, and it might happen that some of these factors expand much faster than “average”,
and others contract. The rapid expansion could inflate the images so fast that they no longer satisfy
the uniform continuity hypotheses, so we loose control over the estimates. The solution is to remove
any sections of the plaque chain which are “unnecessarily contracting”, or at least to make sure
these contractions take place at the end of the composition, and then to omit them. The solution
to this problem given below is reminiscent of techniques used in Pesin Theory. (The original works
of Pesin [43] and its applications in Ruelle [48] and Katok [37] are the best place to start exploring
this topic, though the more recent book by Pollicott [45] gives a gentler introduction, and there is
also now a textbook on the subject by Barreira and Pesin [1].)

Fix an index n > 0, and let Pn = {Pα0(z0), . . . ,Pα`n
(z`n)}. Here, α0 = α and z0 = x. For

each 1 ≤ j ≤ `n let hαj ,αj−1 be the holonomy transformation defined by {Pαj−1 ,Pαj}, and so
h−1

αj ,αj−1
= hαj−1,αj . Introduce the notation H0 = Id, and for 1 ≤ j ≤ `n

Hj = hαj ,αj−1 ◦ · · · ◦ hα1,α0 (14)

Note that zj = Hj(x), and that we have the recursion relation Hj+1 = hαj+1,αj ◦Hj for 1 ≤ j < `n.

For each 1 ≤ j ≤ `n set λj = log{H′
αj−1,αj

(zj)} = − log{H′
αj ,αj−1

(zj−1)}. Then

log{H′
`n

(x)} = −(λ1 + · · ·+ λ`n)

An index 1 ≤ j ≤ `n is said to be ε0-regular if all of the partial sum estimates hold:

λj + ε0 < 0
λj−1 + λj + 2ε0 < 0

... (15)
λ1 + · · ·+ λj + jε0 < 0

The conditions (15) imply that for fixed j > 0 and each i < j, the composition hαi,αi+1◦· · ·◦hαj−1,αj

is a uniformly strong linear contraction on a prescribed domain so that we have control of the
estimates on its derivatives under composition. (This will be discussed in detail below.)
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LEMMA 5.4 There exists an ε0-regular value j = ξn where 1 ≤ ξn ≤ `n which satisfies

λ1 + · · ·+ λξn ≤ (−a+ ε0) `n (16)

Proof: An index k ≤ `n is ε0-irregular if

λk + · · ·+ λ`n + (`n − k + 1)ε0 ≥ 0 (17)

If there is no irregular index, then ξn = `n is an ε0-regular index. Otherwise, suppose that there
exists some index k which is ε0-irregular. We are given that

λ1 + · · ·+ λ`n ≤ −a`n ≤ −ε0 `n (18)

so the index j = 1 is not ε0-irregular, hence k > 1. Let j0 ≥ 2 be the least ε0-irregular index.

Set ξn = j0 − 1. We claim that ξn is an ε0-regular index. If not, then there is some i ≤ ξn with

λi + · · ·+ λξn + (ξn − i+ 1)ε0 ≥ 0 (19)

Add the estimates (19) to (17) to obtain that i < j0 is also an ε0-irregular index, contrary to the
choice of j0. As ε0 + 1 = j0 is irregular, subtract (17) from (18) to obtain

λ1 + · · ·+ λξn ≤ −a`n + (`n − j0)ε0 ≤ (−a+ ε0) `n

which yields the inequality (16). �

The inequality (16) means that almost all of the “infinitesimal expansion” of the map H`n at x is
achieved by the action of Hξn .

Recall that h̃α,β denotes the continuous extension of the map hα,β. Define extensions of H`n and
its inverse by

hx
n = h̃αξn ,αξn−1

◦ · · · ◦ h̃α1,α0 (20)

gx
n = h̃α0,α1 ◦ · · · ◦ h̃αξn−1,αξn

(21)

Set xn = hx
n(x) and Jx

n = [xn − 4δ, xn + 4δ]. Then by the inequality (16) we have

log{(gx
n)′(xn)} = λ1 + · · ·λξn ≤ (−a+ ε0) `n

LEMMA 5.5 Jx
n is in the domain of gx

n and for all y ∈ Jx
n ,

exp{(−a− 2ε0) `n} ≤ (gx
n)′(y) ≤ exp{(−a+ 2ε0) `n} (22)

Hence, for Ix
n = gx

n(Jx
n),

|Ix
n | ≤ 8δ exp{(−a+ 2ε0) `n} (23)

Proof: By the choice of δ, the uniform continuity estimate (13) implies that for all y ∈ Jx
n∣∣∣log{h̃′αξn−1,αξn

(y)} − log{h̃′αξn−1,αξn
(xn)}

∣∣∣ ≤ ε0
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Thus, by the definition of λξn we have for all y ∈ Jx
n

exp{λξn − ε0} ≤ h̃′αξn−1,αξn
(y) ≤ exp{λξn + ε0}

hence for all y ∈ Jx
n

4δ exp{λξn − ε0} ≤ dT (h̃αξn−1,αξn
(xn), h̃αξn−1,αξn

(y)) ≤ 4δ exp{λξn + ε0} (24)

Now the assumption that ξn is ε0-regular implies λξn−ε0 < λξn+ε0 < 0, hence 4δ exp{ε0+λξn} < 4δ.

Now proceed by downward induction. For 0 < j ≤ ξn set

gx
n,j = h̃αj−1,αj ◦ · · · ◦ h̃αξn−1,αξn

, Jx
n,j = gx

n,j(J
x
n) , xn,j = gx

n,j(x)

Assume that for 1 < j ≤ ξn we are given for all y ∈ Jx
n,j the two estimates

exp{λj + · · ·+ λξn − (ξn − j + 1) ε0} ≤ (gx
n,j)

′(y) ≤ exp{λj + · · ·+ λξn + (ξn − j + 1) ε0} (25)

dT (xn,j , y) ≤ 4δ (26)

For y ∈ Jx
n,j the uniform continuity of the maps h̃′α,β, the choice of δ and the hypothesis (26) imply∣∣∣log{h̃′αj−2,αj−1

(y)} − log{h̃′αj−2,αj−1
(xn,j)}

∣∣∣ ≤ ε0

Thus, by the definition of λj−1 = log{h̃′αj−2,αj−1
(xn,j) we have for all y ∈ Jx

n,j

exp{λj−1 − ε0} ≤ h̃′αj−2,αj−1
(y) ≤ exp{λj−1 + ε0} (27)

Then by the chain rule, the estimates (27) and the inductive hypothesis (25) yield the estimates

exp{λj−1 + · · ·+λξn − (ξn− j+2) ε0} ≤ (gx
n,j−1)

′(y) ≤ exp{λj−1 + · · ·+λξn +(ξn− j+2) ε0}. (28)

Now the assumption that ξn is ε0-regular implies λj−1 + · · · + λξn + (ξn − j + 2) ε0 < 0 hence
2δ exp{λj−1 + · · · + λξn + (ξn − j + 2) ε0} < 2δ. By the Mean Value Theorem, this yields the
distance bound (26) for j − 1.

Take j = 1 in inequality (25) then combined with the inequality (16), we obtain for all y ∈ Jx
n,j

(gx
n)′(y) ≤ exp{λ1 + · · ·+ λξn + ξn ε0} ≤ exp{−a `n + (`n + ξn) ε0} ≤ exp{(−a+ 2ε0) `n}

The estimate (23) then follows by the Mean Value Theorem. �

Since a− 2ε0 > a/2 and `n ≥ n, this completes the proof of Proposition 5.3. �

We now complete the proof of Proposition 5.2. Recall that 0 < λ < 1 and η > 0 are given, we have
fixed the choices of δ > 0 and 0 < ε0 < a/100. We need to exhibit the fixed-point x∗ and the maps
k∗ and hP satisfying the conclusions of 5.2.

By Proposition 5.3, for each integer n > 0 we can choose a map hx
n: Ix

n → Jx
n , where xn = hx

n(x),
and Jx

n = [xn − 4δ, xn + 4δ] with inverse map gx
n = (hx

n)−1: Jx
n → Ix

n .

The set {xn | n = 1, 2, . . .} ⊂ T has an accumulation point x∗ ∈ T ⊂ T̃ , and passing to a
subsequence if necessary, we can assume xn → x∗ and dT (x∗, xn) < min{η/2, δ/2} for all n > 0.
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Define J∗ = [x∗ − 3δ, x∗ + 3δ].

For all n > 0, xn ∈ (x∗ − δ, x∗ + δ) ⊂ J∗. Moreover, if y ∈ J∗ then

dT (y, xn) ≤ dT (y, x∗) + dT (x∗, xn) ≤ 2δ + δ/2 < 3δ

hence J∗ ⊂ Jx
n . In particular, x1 ∈ (x∗−δ, x∗+δ) ⊂ J∗ ⊂ Jx

1 is an interior point of J∗ so x = gx
1 (x1)

is an interior point of gx
1 (J∗).

Note that x ∈ Ix
n for all n, and the interval Ix

n = gx
n(Jx

n) has length |Ix
n | < 8δ exp{−na/2}, so

for n � 0 the interval Ix
n is in the interior of gx

1 (J∗). Without loss of generality, we pass to a
subsequence of the index set {`n | n = 1, 2, . . .} to obtain Ix

n ⊂ gx
1 (J∗) and `n > `n−1 for all n > 0.

Combine these inclusions to obtain

gx
n(J∗) ⊂ gx

n(Jx
n) = Ix

n ⊂ gx
1(J∗) (29)

Thus hx
1 ◦ gx

n: J∗ → hx
1 ◦ gx

1(J∗) = J∗. As J∗ is compact, hx
1 ◦ gx

n has a fixed point in J∗.

LEMMA 5.6 hx
1 ◦ gx

n is a hyperbolic contraction on J∗ for n � 0. Thus, there exists a unique
fixed-point yn ∈ J∗ for hx

1 ◦ gx
n.

Proof: By the choice of M we have (hx
1)′(y) ≤Mξ1 while gx

n satisfies the estimates (22), so for all
y ∈ J∗ the composition hx

1 ◦ gx
n satisfies

(hx
1 ◦ gx

n)′(y) ≤Mξ1 exp{(−a+ 2ε0) `n} (30)

and Mξ1 exp{(−a+ 2ε0) `n} < 1 for n sufficiently large. �

Now choose n sufficiently large so that

Mξ1 exp{−a `n/2} < λ/12 (31)
exp{−a `n/2} < η/2δ (32)

Then set k∗ = hx
1 ◦ gx

n and hP = gx
1 . Set x∗ = yn and Jx = [yn − δ, yn + δ]. See Figure 4.

Figure 4: Construction of the contracting holonomy map k∗

We next check that the conditions (5.2.1) to (5.2.4) are satisfied.
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Note that xn, yn ∈ J∗ implies dT (xn, yn) < 6δ, so by the Mean Value Theorem and the estimates
(22) we have

dT (x,gx
n(yn)) = dT (gx

n(xn),gx
n(yn)) < 6δ exp{−a `n/2} (33)

Now by the definition of M and the hypothesis (31) the images under hx
1 satisfy

dT (x1, yn) = dT (hx
1(x),hx

1(gx
n(yn))) <Mξn 6δ exp{−a `n/2} < δ λ/2 < δ/2

Thus, dT (x∗, yn) ≤ dT (x∗, x1) + dT (x1, yn) < δ/2 + δ/2 = δ and hence the open interval

(yn − 2δ, yn + 2δ) ⊂ (x∗ − 3δ, x∗ + 3δ) ⊂ J∗

lies in the domain of k∗ = hx
1 ◦ gx

n. This proves (5.2.1).

The condition (5.2.2) states that k∗(yn) = yn and k∗([yn − δ, yn + δ]) ⊂ [yn − δ, yn + δ] which are
both true by choice of the map k∗.

The condition (5.2.3) that k′∗(y) < λ for y ∈ Jx now follows from estimates (30) and (31)

k′∗(y) = (hx
1 ◦ gx

n)′(y) ≤Mξ1 exp{(−a+ 2ε0) `n} <Mξ1 exp{−a `n/2} < λ/12 < 1

Finally, hP(Ix) = gx
1(hx

1 ◦ gx
n(Jx)) = gx

n(Jx)) so by inequalities (22) and (32) we obtain

|hP(Ix)| < exp{−a `n/2} 2 δ < η

This shows (5.2.4) and completes the proof of Proposition 5.2. �

The second part of the proof of Theorem 5.1 is to show that the uniformly hyperbolic contractions
constructed in Proposition 5.2 force the existence of a resilient orbit. By our previous remarks,
|E(F)| > 0 implies there exists some a > 0 such that |Ea(F)| > 0, and hence there is a subset
E ⊂ Ea(F) with positive Lebesgue measure for which every point y ∈ E has positive Lebesgue
density. What we need to show - that there exists resilient leaves – is actually much weaker than
|Ea(F)| > 0, so we formulate and prove Proposition 5.8 in this greater generality.

Say that a set E is pre-perfect if it is non-empty and its closure E is a perfect set. Equivalently, E
is pre-perfect if it is not empty, and no point is isolated.

LEMMA 5.7 If X ⊂ Rq has positive Lebesgue measure, then there is a pre-perfect subset E ⊂ X.

Proof: Let X denote the closure of X. The closure can be written as a disjoint union of sets
X = Y ∪ Z, where Z is perfect and Y is countable. Then

0 < |X| = |X ∩X| = |X ∩ Y |+ |X ∩ Z| = |X ∩ Z|

as Y is a countable set. Thus X ∩Z is not empty. We set E = Z ∩X, and then note that Z closed
implies E = X ∩ Z = X ∩ Z = Z. �
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PROPOSITION 5.8 Let a > 0. If there exists a pre-perfect subset E ⊂ Ea(F), then F has a
resilient leaf.

Proof of Proposition 5.8: Let a > 0 and let E ⊂ Ea(F) be a pre-perfect set. The saturation of
a pre-perfect set under the action of the holonomy pseudogroup Γ is pre-perfect, so we can assume
that E is saturated. Let δ > 0 be the constant chosen in the proof of Proposition 5.2. We assume
that F does not have a resilient leaf, and show this leads to a contradiction.

Choose x ∈ E , then following the proof of Proposition 5.2 with a slight modification of notation,
let J1 = [x∗ − δ, x∗ + δ], and let k1 = k∗ = hx

1 ◦ gx
n:J1 → J1 be a uniform hyperbolic contraction

with fixed-point z1 ∈ J1. Let I1 denote the image k1(J1), and for the holonomy map hP set
K1 = hP(I1) which by hypothesis (5.2.3) can be chosen so that |K1| < η for any prescribed value
of 0 < η < 1. Note that Proposition 5.2 gives that x1 ∈ K1 is an interior point.

If the orbit of z1 under GF intersects K1 (or J1) in a point other than z1, then by definition, z1 is a
hyperbolic resilient point, which by assumption does not exist. Therefore, the leaf Lz1 through z1
intersects the interval K1 exactly in one interior point, which we denote by w1. Note this implies
the leaf Lz1 is proper.

We next use induction to show the existence of an infinite sequence of uniform contractions with
domains of uniform width. Assume that we are given, for 1 ≤ i ≤ n,

• distinct points {x1, x2, . . . , xn} ⊂ E

• distinct points {z1, z2, . . . , zn}

• intervals Ji = [zi − δ, zi + δ]

• uniformly hyperbolic contractions ki:Ji → Ji with ki(zi) = zi

which satisfy the conditions

• the closed intervals Ki = hP,i(Ii) where Ii = ki(Ji) form a proper descending nested chain,

K1 ⊃ int(K1) ⊃ K2 ⊃ int(K2) ⊃ · · · ⊃ Kn

• the orbit of z` is disjoint from Ki for ` < i

• the orbit of zi intersects Ki exactly in one interior point, denoted by wi

• xi ∈ int(Ki) for i ≤ i ≤ n

By assumption, the orbit of zn under the holonomy pseudogroup intersects Kn in exactly one point,
while the orbits of zk for k < n are disjoint. Moreover, int(Kn) is an open neighborhood of xn ∈ E
so by the hypothesis that E is pre-perfect, there exists xn+1 ∈ E ∩ (In − {xn, wn}). Let η > 0 be
chosen so that [xn+1− η, xn+1 + η] ⊂ In−{xn, wn}. Then by Proposition 5.2 we can find zn+1 ∈ T̃
and a uniformly hyperbolic contraction kn+1:Jn+1 → In+1 ⊂ Jn+1 with ki(zn+1) = zn+1 where
Jn+1 = [zn+1 − δ, zn+1 + δ]. Moreover, there is a holonomy map hP,n+1: In+1 → T̃ whose image
contains xn+1 in its interior, and has length |hP,n+1(In+1)| < η.
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Set Kn+1 = hP,n+1(In+1), so that Kn+1 ⊂ (xn+1 − η, xn+1 + η) ⊂ int(Kn). By the induction
hypotheses and the choice of η, this implies that the orbit of zk is disjoint from Kn+1 for k ≤ n.

Moreover, the intersection of the orbit of zn+1 with Kn+1 contains the point wn+1 = hP,n+1(zn+1).
If the orbit of zn+1 intersects Kn+1 in a second point, then this implies the orbit of zn+1 also
intersects the domain of the contraction kn+1:Jn+1 → Jn+1 in a point distinct from zn+1, which
contradicts the assumption that there are no resilient orbits.

This completes the inductive step, so by inductive recursion, we obtain a sequence of points
{z1, z2, . . .} ⊂ T [8δ] and maps as above. Let z∗ ∈ T [8δ] denote an accumulation point for this
sequence. Then there exists indices m,n� 0 so that dT (zm, z∗) < δ/100 and dT (zn, z∗) < δ/100.
In the proof of Proposition 5.2 the uniform contractions ki:Ji → Ji were actually chosen with
exponents less than λ/12, hence km:Jm → J∗ and kn:Jm → J∗. Thus, km and kn define a “ping-
pong game” as in Definition 2.3, which by Proposition 2.4 implies there is a resilient orbit. This is
contrary to assumption.

Hence, if there exists a pre-perfect set E ⊂ Ea(F) for a > 0 then there exist a resilient leaf. �
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6 Open manifolds

Let BΓ(2)
1 denote the Haefliger classifying space of codimension–one C2-foliations [19, 20]. There

is a universal Godbillon-Vey class GV ∈ H3(BΓ(2)
1 ) such that for every codimension–one C2-

foliation F of a manifold M , there is a classifying map hF :M → BΓ(2)
1 such that h∗FGV = GV (F)

(see [4, 38].) It is known that the first two integral homotopy groups π1(BΓ(2)
1 ) = 0 = π2(BΓ(2)

1 ).
Thus, a consequence of Thurston’s construction of codimension–one foliations on a compact 3-
manifold (M3,Fa) with 〈GV (Fa, [M ]〉 = a for any a > 0 is that evaluation of the universal
Godbillon-Vey class defines a surjection of the integral homotopy group, GV :π3(BΓ(2)

1 ) → R.

One of the points of the introduction of the classifying space BΓ(2)
1 is that given any finite CW

complex X, a map h:X → BΓ(2)
1 defines a foliated microbundle over X, whose total space M is an

open manifold with a codimension–one foliation Fh such that h∗GV = GV (Fh). This is discussed in
detail by Haefliger [20], who introduced the technique. (A similar approach to classifying foliations
via foliated microbundles was also introduced by Milnor [39].) Thus, using homotopy methods
to construct the map h so that h∗GV 6= 0, one can construct many examples of open foliated
manifolds with non-trivial Godbillon-Vey classes. In this section, we comment on how to apply the
methods of this paper in this open manifold case, to conclude that every codimension-one foliation
with non-trivial Godbillon-Vey class must have a hyperbolic resilient leaf.

Let M be an open m-manifold with a codimension–one C2-foliation F such that GV (F) 6= 0.
The class GV (F) is then determined by its pairing with the compactly supported cohomology
group Hm−3

c (M), so there exists a closed m − 3 form ξ with compact support on M such that
〈GV (F), [ξ]〉 6= 0. Let |ξ| ⊂ M denote the closed support of ξ. Then there exists an open subset
M0 ⊂M such that the closure M0 is a compact subset of M and |ξ| ⊂M0. Choose a Riemannian
metric on TM whose restriction to M0 will then have bounded geometry. That is, there is a positive
lower bound on the injectivity radius in M for points in M0. This is all that is required to construct
a finite open cover of |ξ| by a regular foliation atlas {(Uα, φα) | α ∈ A} for F on M (as in section
2 above) contained in M0 (see Chapter 1.2 of [5].)

Let V ⊂ M0 given by the union of the open sets in this open cover of |ξ|, then note that |ξ| ⊂ V
hence GV (F|V) 6= 0. The proof of Theorem 4.4 used only the properties of the pseudogroup
generated by the regular foliation atlas {(Uα, φα) | α ∈ A} – the compactness of M was not used
except in the construction of this atlas. The definition and properties of the Godbillon measure
also applies to open manifolds, as was discussed in section 5 of [28]. Hence, by the same proof we
obtain that the set E(F|V) has positive measure.

The proofs of Propositions 5.2 and 5.8 were formulated strictly in terms of the groupoid GF and
also do not use the compactess of M , hence apply directly to show that GF|V has a hyperbolic
resilient point if E(F|V) has positive measure. Thus, F|V must have a resilient leaf.

These remarks complete the proof of Theorem 1.1 for open manifolds.
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14:131–148, 1974.

[43] Ja.B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk,
32:55–112, 1977.

[44] J. Plante and W. Thurston, Anosov flows and the fundamental group, Topology, 11:147–150, 1972.

27



[45] M. Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London
Mathematical Society Lecture Note Series, Vol. 180, Cambridge University Press, Cambridge, 1993.
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