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Abstract

We prove that if F is a foliation of a compact manifold with all leaves compact submanifolds,
and the transverse category cat∩| (M,F) is finite, then the leaf space M/F is compact Hausdorff.
The proof is surprisingly delicate, and is based on some new observations about the geometry of
compact foliations. Colman proved in [3, 8] that the transverse category of a compact Hausdorff
foliation is always finite, so we obtain a new characterization of the compact Hausdorff foliations
among the compact foliations as those with cat∩| (M,F) finite.
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1 Introduction

A compact foliation is a foliation of a manifold M with all leaves compact submanifolds. For
codimension one or two, a compact foliation F of a compact manifold M defines a fibration of M
over its leaf space M/F which is a compact orbifold [27, 11, 12, 33, 10]. For codimension three and
above, the leaf space M/F of a compact foliation need not be a Hausdorff space. This was first
shown by an example of Sullivan [30] of a flow on a 5-manifold whose orbits are circles, and the
lengths of the orbits are not bounded above. Subsequent examples of Epstein and Vogt [13, 35]
showed that for any codimension greater than two, there are examples of compact foliations whose
leaf spaces are not Hausdorff.

A compact foliation F with Hausdorff leaf space is said to be compact Hausdorff. The holonomy
of each leaf of a compact Hausdorff foliation is a finite group, a property which characterizes them
among the compact foliations. If every leaf has trivial holonomy group, then a compact Hausdorff
foliation is a fibration. Otherwise, a compact Hausdorff foliation is a “generalized Seifert fibration”,
where the leaf space M/F is a “V-manifold” [29, 17, 22].

A compact foliation whose leaf space is non-Hausdorff has a closed, non-empty saturated subset,
the bad set X1, which is the union of the leaves whose holonomy group is infinite. The image of
X1 in the leaf space M/F consists of the non-Hausdorff points. The work by Edwards, Millet and
Sullivan [10] established many fundamental properties of the geometry of the leaves of a compact
foliation near its bad set, yet there is no general structure theory for compact foliations comparable
to what is understood for compact Hausdorff foliations. The results of §§4, 5 and 6 used to prove
our main theorem provide new insights and techniques for the study of these foliations.

The transverse Lusternik-Schnirelmann (LS) category of foliations was introduced in the 1998 thesis
of H. Colman [3, 8]. The key idea is that of a transversally categorical open set. Let (M,F) and
(M ′,F ′) be foliated manifolds. A homotopy H:M ′ × [0, 1] → M is said to be foliated if for all
0 ≤ t ≤ 1 the map Ht sends each leaf L′ of F ′ into another leaf L of F . An open subset U of M
is transversely categorical if there is a foliated homotopy H:U × [0, 1]→M such that H0:U →M
is the inclusion, and H1:U → M has image in a single leaf of F . Here U is regarded as a foliated
manifold with the foliation induced by F on U .

In other words, an open subset U of M is transversely categorical if the inclusion (U,FU ) ↪→ (M,F)
factors through a single leaf, up to foliated homotopy.

DEFINITION 1.1 The transverse (saturated) category cat∩| (M,F) of a foliated manifold (M,F)
is the least number of transversely categorical open saturated sets required to cover M . If no such
covering exists, then cat∩| (M,F) =∞.

The transverse category cat∩| (M,F) of a compact Hausdorff foliation F of a compact manifold M
is always finite [8], as every leaf admits a saturated product neighborhood which is transversely
categorical. For a non-Hausdorff compact foliation, there is no known construction of categorical
neighborhoods of leaves in the bad set. In fact, as our main result implies, this cannot be done:

THEOREM 1.2 Let F be a compact C1-foliation of a compact manifold M with oriented normal
bundle and non-empty bad set X1. Then there exists a dense set of tame points Xt ⊂ X1 such that,
for each x ∈ Xt, there is no transversely categorical saturated open set containing x.
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Given a foliated manifold M with cat∩| (M,F) <∞, the lifted foliation F̃ on a finite covering M̃ of
M also has finite category [8]. Moreover, the bad set of F̃ is the lift of the bad set of F . Thus, if
we apply Theorem 1.2 to the normal orientation double cover of a compact foliation F , we obtain:

COROLLARY 1.3 Let F be a compact C1-foliation of a compact manifold M with cat∩| (M,F)
finite, then F is compact Hausdorff.

Proof: Suppose that F is compact foliation with cat∩| (M,F) finite, and the bad set X1 is non-
empty. Then there is a finite covering M̃ of M whose lifted foliation F̃ has oriented normal and
tangent bundles, and there exists transversely categorical open saturated sets {U1, . . . , Uk} which
cover M̃ . By Proposition 5.2 there exists a tame point x∗ ∈ X̃1, and there exist some 1 ≤ ` ≤ k so
that x∗ ∈ U`. As U` is transversely categorical, this contradicts Proposition 6.1. �

COROLLARY 1.4 Let F be a compact C1-foliation of a compact manifold M with cat∩| (M,F)
finite, then there is an upper bound on the volumes of the leaves of F , the transverse holonomy
groups of all leaves of F are finite groups, and F admits a transverse Riemannian metric which is
holonomy invariant.

Proof: Millett [22] and Epstein [12] and showed that for a compact Hausdorff foliation F of a
manifold M each leaf has finite holonomy, and thus M admits a Riemannian metric so that the
foliation is Riemannian. �

Recall that a foliation is geometrically taut if the manifold M admits a Riemannian metric so that
each leaf is an immersed minimal manifold [28, 31, 15]. Rummler proved in [28] that a compact
foliation is Hausdorff if and only if it is taut, and thus we can conclude:

COROLLARY 1.5 A compact C1-foliation of a compact manifold M with cat∩| (M,F) < ∞ is
geometrically taut. �

The idea of the proof of Theorem 1.2 is as follows. The formal definition of the exceptional set
X1 in §3 is that it consist of leaves of F such that every open neighborhood of the leaf contains
leaves of arbitrarily large volume. The bad set X1 is the center of a dynamical system formed by
leaves in a saturated open neighborhood of X1 and thus by definition is the “calm in the middle of
a dynamical storm”.

This dynamical characterization of the bad set intuitively suggests that it should be a rigid set. That
is, any foliated homotopy of an open neighborhood of a point in the bad set should preserve these
dynamical properties, hence the open neighborhood cannot be continuously retracted to a single
leaf. The proof of this statement is surprisingly delicate, and requires a very precise understanding
of the properties of leaves in an open neighborhood of the bad set. A key result is Proposition 5.2,
an extension of the Moving Leaf Lemma in [10], which establishes the existence of “tame points”.

The overview of the paper is as follows: The first two sections consist of background material,
which we recall to establish notations, and also present certain results in the form that we require.
In §2 we give some basic results from foliation theory, and in §3 we recall some basic results about
compact foliations, especially the structure theory for the good and the bad sets. Then in §4 we
establish the local rigidity properties for compact leaves under deformation by a homotopy. These
results are of general interest, as they are part of the general study of the topological properties of
compact foliations. The most technical results of the paper are contained in §5, where we prove
that tame points are dense in the bad set. Finally, in §6 prove that an open saturated set containing
a tame point is not categorical. Theorem 1.2 follows immediately from Propositions 5.2 and 6.1.
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2 Foliation preliminaries

We assume that M is a smooth compact Riemannian manifold without boundary of dimension
m = p + q, that F is a C1-foliation of codimension-q with oriented normal bundle, and that the
leaves of F are smoothly immersed submanifolds. This is sometimes referred to as a C1,∞-foliation.

We assume that both TF and Q are orientable subbundles of TM . This suffices for the proof of
Theorem 1.2, as the lift of a categorical open set is a categorical open set [8].

We recall below some well-known facts about foliations, and introduce some conventions of notation.
The books [2, 14, 16] provide excellent basic references; our notation is closest to that used in [2].

For each x ∈M , denote by Lx the leaf of F containing x.

Note that the analysis of the bad sets in later sections requires careful estimates on the foliation
geometry; not just in each leaf, but also for nearby leaves of a given leaf. This requires an explicit
description of the local metric geometry of a foliation, which we provide in this section.

2.1 Tangential and normal geodesic geometry

Let TF denote the tangent bundle to F and Π:Q → M its normal bundle, identified with the
subbundle TF⊥ ⊂ TM of vectors orthogonal to TF . The Riemannian metric on TM induces a
Riemannian metrics on both TF and Q by fiberwise restriction. For a vector ~v ∈ TxM , let ‖~v‖
denote its length in the Riemannian metric. Then for ~v ∈ TxF the length in the leafwise metric is
again ‖~v‖ so we use the same notation.

Let dM :M ×M → [0,∞) be the distance function associated to the Riemannian metric on M .

Given R > 0 and x ∈ K ⊂M , set

BM (x,R) = {y ∈M | dM (x, y) < R}
BM (K,R) = {y ∈M | dM (K, y) < R}

Let dL:L × L → [0,∞) be the distance function on the leaf L induced by the restriction of the
Riemannian metric to L. That is, for x, x′ ∈ L the distance dL(x, x′) is the length of the shortest
leafwise geodesic between x and x′. As M is compact, the manifold L with the metric dL is
a complete metric space. We introduce the notation dF for the collection of leafwise distance
functions, where dF (x, y) = dL(x, y) if x, y ∈ L and otherwise dF (x, y) =∞. This is a very useful
notation when considering paths in M and the leafwise distances to points on the path.

Given R > 0 and x ∈ K ⊂ L, set

BF (x,R) = {y ∈M | dF (x, y) < R} ⊂ L
BF (K,R) = {y ∈M | dF (K, y) < R} ⊂ L

Let exp = expM :TM →M ×M denote the exponential map for dM . Denote by p1:M ×M →M
the projection on the first factor, then p1 ◦ exp:TM → M is the bundle projection onto the
basepoint. Let p2:M × M → M denote the projection on the second factor, then for x ∈ M ,
expx ≡ p2 ◦ exp:TxM →M is the exponential map at x.

For x ∈ L, we let expFx :TxL → L denote the leafwise exponential map. Then expFx maps the ball
BTxL(0, R) of radius R in TxL onto the set BF (x,R).
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Throughout this section, we will define (and redefine) a constant ε0 > 0 by successively imposing
conditions which must be met. These conditions should be prefaced by the phrase “As M is
compact, for ε0 > 0 sufficiently small, . . . ”. To avoid repetition, this phrase will be understood,
and so omitted. Initially, we assume that 0 < ε0 < 1. Formally, ε0 is the minimum of a finite set of
positive constants, but for notational convenience, we just keep redefining ε0.

For ε > 0, let TM ε ⊂ TM denote the disk subbundle of vectors with length less than ε, and
TF ε ⊂ TF and Qε ⊂ Q the corresponding disk subbundles of TF and Q, respectively.

For each x ∈ M , the differential d0 expx:TMx
∼= T (TMx)0 → TMx is the identity map. It follows

that expx is a diffeomorphism in a sufficiently small neighborhood of 0 ∈ TMx. For all x ∈ M ,
assume that the restriction exp:TM ε →M ×M is a diffeomorphism onto it image. Thus, ε0 is less
than the injectivity radius of the Riemannian metric on M .

We also require that for all x ∈M , BM (x, ε0) is a totally normal neighborhood of x for the metric
dM This means that for any pair of points y, z ∈ BM (x, ε0) there is a unique geodesic contained in
BM (x, ε0) between y and z. In particular, BM (x, ε0) is geodesically convex (cf. page 72, [9].)

For the leafwise Riemannian metric, we require that for all x ∈ M , the leafwise exponential map
expFx :TF ε0

x → Lx is a diffeomorphism onto it image.

We also require that for all x ∈ M , BF (x, ε0) ⊂ Lx be a totally normal neighborhood of x for the
leafwise metric dF .

Let expQ
x :Qx → M denote the restriction of the exponential map to the normal bundle at x. We

assume that for all x ∈ M , expQ
x :Qε0

x → M is transverse to F , and that the image expQ
x (Qε0

x ) of
the normal disk has angle at least π/4 with the leaves of the foliation F .

The exponential map expQ
x :Qx →M is the restriction of expM

x , hence for all x ∈M , expQ
x :Qε0

x →M
is a diffeomorphism onto its image.

We use the normal exponential map to define a normal product neighborhood of a subset K ⊂M .
Given 0 < ε ≤ ε0, let Q(K, ε)→ K denote the restriction of the ε-disk bundle Qε →M to K. The
normal neighborhood N (K, ε) is the image of the map, expQ:Q(K, ε)→M . If K = {x} is a point
and 0 < ε < ε0, then N (x, ε) is a uniformly transverse normal disk to F .

2.2 Quasi-isometric geometry

The restriction of the ambient metric dM to a leaf L need not coincide (locally) with the leafwise
geodesic metric dF – unless the leaves of F are totally geodesic submanifolds of M . In any case, the
Gauss Lemma implies that the two metrics are locally equivalent. We assume that for all x ∈ M
and y, y′ ∈ BF (x, ε0), then dF and dM are related by

dM (y, y′)/2 ≤ dF (y, y′) ≤ 2 dM (y, y′) (1)

Let dvol denote the leafwise volume p-form associated to the Riemannian metric on TF . Given any
bounded, Borel subset A ⊂ L for the leafwise metric, define its leafwise volume as vol (A) =

∫
A dvol.

For x ∈ M , let ~v ∈ Qε0
x and set y = expQ

x (~v). The restriction of Q to the leaf Lx is a flat bundle,
as the Bott connection on Q has vanishing leafwise curvatures. Hence, there is a foliation F̂ of
Q|Lx whose leaves are transverse to the fibers Q|Lx → Lx and for which the bundle projection
map induces a covering map on the leaves of F̂ . Thus, for the given ~v, there is a local flat section
σx,~v:BF (x, δ) → Qε0 , σx,~v(x) = ~v, for 0 < δ sufficiently small. Compose this section with the
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normal exponential map to obtain a map

Σx,~v = p2 ◦ expQ ◦σx,~v:BF (x, δ)→M

whose image is transverse to Q. Thus, the differential DΣx,~v:TxF → TyM composed with the
orthogonal projection TyM → TyF yields a linear isomorphism DΣ⊥x,~v:TxF → TyF which varies
continuously with (x,~v). We apply this remark in two ways.

Consider the p-form ωx,~v = Σ∗x,~v(dvoly) on TFx. When ~v = 0, unraveling the definitions shows that
ωx,~0 = dvolx. By the continuity of DΣ⊥x,~v we can assume that for all x ∈M , ~v ∈ Qx with ‖~v‖ < ε0,

dvol/2 ≤ ωx,~v ≤ 2 dvol (2)

This condition implies that when we later define local covering maps between sufficiently close
adjacent leaves using the inverse of the normal geodesic map, then these covering maps preserve
the leafwise volume form, up to a scalar factor of at most 2.

The leafwise Riemannian metric on TF can be similarly compared on nearby leaves using the
normal geodesic projections. We can assume that for all x ∈M , ~v ∈ Qx with ‖~v‖ < ε0, and for all
~w ∈ TxF

‖DΣ⊥x,~v(~w)‖/2 ≤ ‖~w‖ ≤ 2 ‖DΣ⊥x,~v(~w)‖ (3)

This condition implies that if two leaves are “ε0-close” then the normal projection map is a quasi-
isometry with scale factor 2.

2.3 Regular Foliation Atlas

A regular foliation atlas for F is a finite collection {(Uα, φα) | α ∈ A} so that:

F1: U = {Uα | α ∈ A} is a covering of M by C1,∞–coordinate charts φα : Uα → (−1, 1)m where
each Uα is a convex subset of diameter at most ε0 with respect to the metric dM .

F2: Each coordinate chart φα : Uα → (−1, 1)m admits an extension to a C1,∞–coordinate chart
φ̃α : Ũα → (−2, 2)m where Ũα is a convex subset containing the 2ε0-neighborhood of Uα, so
BM (Uα, ε0) ⊂ Ũα. In particular, the closure Uα ⊂ Ũα.

F3: For each z ∈ (−2, 2)q, the preimage P̃α(z) = φ̃−1
α ((−2, 2)p × {z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0}×{z}) of the intersection of the leaf of F through φ−1

α ({0}×{z})
with the set Ũα.

F4: Pα(z) and P̃α(z) are convex subsets of diameter less than 1 with respect to dF .

The construction of regular coverings is described in chapter 1.2 of [2].

The inverse images
Pα(z) = φ−1

α ((−1, 1)p × {z}) ⊂ Uα

are smoothly embedded discs contained in the leaves of F , called the plaques associated to the
given foliation atlas. One thinks of the collection of all plaques as “tiling stones” which cover the
leaves in a regular fashion. The convexity hypotheses in (F4) implies that if Uα ∩ Uβ 6= ∅, then
each plaque Pα(z) intersects exactly one plaque of Uβ. The analogous statement holds for pairs
Ũα ∩ Ũβ 6= ∅. More generally, an intersection of plaques Pα1(z1) ∩ · · · ∩ Pαd

(zd) is either empty, or
a convex set.
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The closure of each plaque Pα(z) = φ̃−1
α ([−1, 1]p × {z}) ⊂ Ũα is a compact set with interior (for

the leaf topology) which depends continuously on the transverse parameter z, hence there exists
constants 0 < Cmin ≤ Cmax such that

Cmin ≤ vol (Pα(z)) ≤ Cmax, ∀α ∈ A, ∀z ∈ [−1, 1]q (4)

Recall that a Lebesgue number for the covering U is a constant ε > 0 so that for each x ∈ M
there exists U ∈ U with BM (x, ε) ⊂ U . Every covering of a compact manifold admits a Lebesgue
number. We assume that ε0 is chosen sufficiently small so that 2ε0 is a Lebesgue number for the
covering U of M by foliation charts. Then for any x ∈ M , the restriction of F to BM (x, ε0) is a
product foliation, and the leaves of F | BM (x, ε0) are convex discs for the metric dF .

For each α ∈ A, the extended chart φ̃α defines a C1–embedding

tα = φ−1
α ({0} × ·) : (−2, 2)q → Ũα ⊂M

whose image is denoted by T̃α. We can assume that the images T̃α are pairwise disjoint, and also
that each submanifold T̃α is everywhere perpendicular to the leaves of F by adjusting the given
Riemannian metric on M in an open tubular neighborhood of each T̃α. Furthermore, assume that
each T̃α has diameter at most 1.

Define Tα = φ−1
α ({0}×(−1, 1)q). The local coordinate on Tα is again denoted by tα : (−1, 1)q → Tα.

We use this coordinate to identify each transversal Tα with (−1, 1)q.

We assume that the coordinates tα are positively oriented, mapping the positive orientation for the
normal bundle to TF to the positive orientation on Rq.

The collection of all plaques for the foliation atlas is indexed by the complete transversal

T =
⋃

α∈A
Tα

For a point x ∈ T , let Pα(x) = Pα(t−1
α (x)) denote the plaque containing x.

The Riemannian metric on M induces a Riemannian metric and corresponding distance function
dT on each extended transversal T̃α. For α 6= β and x ∈ Tα, y ∈ Tβ we set dT (x, y) =∞.

Given x ∈ T̃α and R > 0, let BT (x,R) = {y ∈ T̃α | dT (x, y) < R}.
Given a subset Z ⊂ Uα let ZP denote the union of all plaques in Uα having non-empty intersection
with Z. We set ZT = ZP ∩ Tα. If Z is an open subset of Uα, then ZP is open in Uα and ZT is an
open subset of Tα.

Given any point w ∈ (−1, 1)p, we can define a transversal Tα(w) = φ−1
α ({w} × (−1, 1)). There is a

canonical map ψw: Tα(w)→ Tα(0) = Tα defined by, for ~v ∈ (−1, 1)q,

ψw(φ−1
α (w × ~v) = φ−1

α (0× ~v) (5)

The Riemannian metric on M induces also induces a Riemannian metric and distance function on
each transversal Tα(w). By mild abuse of notation we denote all such transverse metrics by dT .
Then by the uniform extension property of the foliation charts, there exists a constant CT ≥ 1 so
that for all α ∈ A, w ∈ (−1, 1)p and x, y ∈ Tα(w),

dT (x, y)/CT ≤ dT (ψw(x), ψw(y)) ≤ CT dT (x, y) (6)
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We use the maps (5) to translate points in the coordinate charts Uα to the “center” transversal.
The constant CT is a uniform estimate of the normal distortion introduced by any such translation.

In place of the transversals Tα(w) we can also consider the normal geodesic disk at y = φ−1
α (w×~0),

expQ
y :Qε

y → N (y, ε) which for 0 < ε ≤ ε0 is uniformly transverse to F . If the image N (y, ε) ⊂ Uα

then we can project it to the transversal Tα along the plaques in Uα. Denote this projection by
ΠF

α :N (y, ε) → Tα We will assume that the constant CT ≥ 1 is sufficiently large so that for all
y ∈M , for all 0 < ε ≤ ε0, for all α with N (y, ε) ⊂ Uα and for all z, z′ ∈ N (y, ε) we have

dN (z, z′)/CT ≤ dT (ΠF
α (z),ΠF

α (z′)) ≤ CT dN (z, z′) (7)

2.4 Transverse holonomy

We recall the definition and some properties of the holonomy pseudogroup of F . A pair of indices
(α, β) is said to be admissible if Uα ∩ Uβ 6= ∅. Let Tαβ ⊂ Tα denote the open set of plaques of Uα

which intersect some plaque of Uβ. The holonomy transformation hαβ : Tαβ → Tβα is defined by
y = hαβ(x) if and only if Pα(x) ∩ Pβ(y) 6= ∅. The finite collection

H1
F = {hαβ : Tαβ → Tβα | (α, β) admissible} (8)

generates the holonomy pseudogroup HF of local homeomorphisms of T .

Each generator hαβ : Tαβ → Tβα is a uniformly continuous homeomorphism, in the following strong
sense. The charts {(Uα, φα)) | α ∈ A} are a regular foliation atlas, hence hαβ is the restriction of
h̃αβ : T̃αβ → T̃βα defined by the intersection of the extended charts Ũα∩ Ũβ. The domain Tαβ ⊂ T̃αβ

is precompact with BeT (Tαβ , ε0) ⊂ T̃αβ , so given any 0 < ε < ε0, there is a module of continuity
µαβ(ε) > 0 such that for all x ∈ Tαβ then

BeT (x, µαβ(ε)) ⊂ T̃αβ and h̃αβ(BeT (x, µαβ(ε))) ⊂ BeT (hαβ(x), ε)

For the admissible pairs (α, α) we set µαα(ε) = ε. Given 0 < ε ≤ ε0, define

µ(ε) = min{µαβ(ε) | (α, β) admissible} (9)

so that 0 < µ(ε) ≤ ε. For an integer n > 0 and 0 < ε ≤ ε0 set

µ(n, ε) = min{ε, µ(ε), µ(µ(ε)), . . . , µ(n)(ε)} (10)

where µ(n) denotes the n-fold composition. Note that 0 < µ(ε) ≤ ε implies µ(n, ε) = µ(n)(ε) ≤ ε.
The point of the definition (9) is that for every admissible pair (α, β) and each x ∈ Tαβ the
holonomy map hαβ admits an extension to a local homeomorphism h̃αβ defined by the holonomy
of F , and whose domain includes the closure of the disk BeT (x, µ(ε)) about x in T̃αβ , and satisfies
h̃αβ(BeT (x, µ(ε))) ⊂ BeT (hαβ(x), ε).

A plaque chain of length n, denoted by P, is a collection of plaques

{Pα0(z0),Pα1(z1), . . . ,Pαn(zn)}

satisfying Pαi(zi) ∩ Pαi+1(zi+1) 6= ∅ for 0 ≤ i < n. Each pair of indices (αi, αi+1) is admissible, so
determines a holonomy map hαiαi+1 such that hαiαi+1(zi) = zi+1. Let hP denote the composition
of these maps, so that

hP = hαn−1αn ◦ · · · ◦ hα1α2 ◦ hα0α1
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The domain of hP is not empty, as hP(z0) = zn. In fact, from the definition (10) the domain of
hP(z0) contains the ball of radius µ(n, ε) about z0. This remark can be given a general formulation.
Define Hn

F to be the holonomy transformations defined by plaque chains of length at most n.

LEMMA 2.1 Given a plaque chain P of length n, and 0 < ε ≤ ε0 set δ = µ(n, ε). Then for any x
in the domain of hP , there is an extension to a local homeomorphism h̃P defined by the holonomy
of F whose domain includes the closure of the disk BeT (x, δ) about x in T̃ , and

h̃P(BeT (x, δ)) ⊂ BeT (hαβ(x), ε) (11)

That is, µ(n, ε) is a module of uniform continuity for all elements of Hn
F .

Proof: For each 0 ≤ i < n, µ(n, ε) ≤ µ(i, ε) hence there is an extension of

hi = hαi−1αi ◦ · · · ◦ hα0α1

to h̃i whose domain includes the disk BeT (x, δ) about x. The image hi(BeT (x, δ) has size at most
µ(n− 1, ε), so that we can continue the extension process to hi+1. �

2.5 Plaque length and metric geometry

We make two observations about the metric geometry of foliations [26].

Let γ: [0, 1]→ L be a leafwise C1-path. Its leafwise Riemannian length is denoted by ||γ||F .

The plaque length of γ, denoted by ||γ||P , is the least integer n such that the image of γ is covered
by a chain of convex plaques

{Pα0(z0),Pα1(z1), . . . ,Pαn(zn)}

where γ(0) ∈ Pα0(z0), γ(1) ∈ Pα1(z1), and successive plaques Pαi(zi) ∩ Pαi+1(zi+1) 6= ∅.

PROPOSITION 2.2 For any leafwise C1-path γ, ||γ||P ≤ d(||γ||F/ε0)e. Moreover, if γ is
leafwise geodesic, then ||γ||F ≤ ||γ||P + 1.

Proof: Let N = d(||γ||F/ε0)e be the least integer greater than ||γ||F/ε0 then there exists points
0 = t0 < t1 < · · · < tN = 1 such that the restriction of γ to each segment [ti, ti+1] has length
at most ε0. The diameter of the set γ([ti, ti+1]) is at most ε0, hence there is some Uαi ∈ U with
γ([ti, ti+1]) ⊂ Uαi hence γ([ti, ti+1]) ⊂ Pα(zi) for some zi. Thus, the image of γ is covered by a
chain of convex plaques of length at most N .

Conversely, suppose γ is a leafwise geodesic and {Pα0(z0),Pα1(z1), . . . ,Pαn(zn)} is a plaque chain
covering the image γ([0, 1]). Each plaque Pαi(zi) is a leafwise convex set of diameter at most 1, so
||γ||F ≤ (n+ 1) ≤ ||γ||P + 1. �

The extension property (F2) implies that for all α ∈ A and z ∈ (−1, 1)q, the closure Pα(z)
is compact, hence has finite leafwise volume which is uniformly continuous with respect to the
parameter z. Hence, there exists constants A,B > 0 such that

A ≤ vol (Pα(z)) ≤ B for all α ∈ A, − 1 ≤ z ≤ 1

We note a consequence of this uniformity which is critical to the proof of the main theorem.
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PROPOSITION 2.3 Let M be a compact manifold. Then there exists a monotone increasing
function v: [0,∞)→ [0,∞) such that if L is a compact leaf, then vol (L) ≤ v(diam (L)). Conversely,
there exists a monotone increasing function R: [0,∞) → [0,∞) such that if L is a compact leaf,
then diam (L) ≤ R(vol (L)).

Proof: The holonomy pseudogroup of F has a finite set of generators, hence given r > 0, there
exists a positive integer e(r) such that any subset of a leaf with leaf diameter at most r can be
covered by at most e(r) plaques. Thus, if L is a leaf with diameter at most r, then L has volume
at most v(r) = B · e(r).
If a leaf L has diameter at least r, then L contains a minimizing geodesic segment γ of length
r, and hence contains a leafwise tube N(γ, ε0) around γ of radius ε0. As M is compact, the
leafwise sectional curvatures of M are uniformly bounded, hence there is a constant λ > 0 so that
vol (N(γ, ε0)) ≥ λr. Then set R(s) = s/λ. �

2.6 Local structure theorem

The “Local Structure Theorem” for foliations due to G. Reeb [27, 1, 2, 16, 32] provides a description
of the geometry of F in an open neighborhood of an arbitrarily large compact subsetK of a leaf. The
version given below includes a uniform estimate on the diameter of the open foliated neighborhood,
which we show has several applications to obtaining effective estimates on leaf stability.

Given ε > 0, recall that N (K, ε) ⊂ V denotes the normal ε-neighborhood of K.

A subset K̃ ⊂ L̃ of a metric space is said to be C–uniformly simply connected if given any closed
loop γ: [0, 1]→ K̃ with γ(0) = γ(1) = x, then there is a homotopy Hs: [0, 1]→ L̃, 0 ≤ s ≤ 1, with

• H0(t) = γ(t), H1(t) = x,Hs(0) = Hs(1) = x,

• for all 0 ≤ s ≤ 1, the path t 7→ Hs(t) has length at most C · (‖γ‖+ 1).

For example, if K̃ is an embedded path in L̃, then K̃ is 1–uniformly simply connected. If K̃ ⊂ K̂
where K̂ is a geodesically star-like subset of L̃, then K̃ is C–uniformly simply connected, where C
depends upon the geometry of K̂. For example, if F is the Reeb foliation of S3 and K = S1 is the
push-off to a vanishing cycle of a latitude or longitude of the compact toral leaf, then each such
closed loop is contained in a star-like region, but C will depend upon the choice of the circle, and
may be arbitrarily large.

THEOREM 2.4 Let M be a compact manifold with C1,∞-foliation F . Let L be a leaf of F ,
and K̃ ⊂ L̃ a compact, path connected subset of the universal covering L̃. Then there exists an
immersion Ψ: K̃ × Dq →M satisfying:

1. for each ~v ∈ Dq, the restriction Ψ: K̃ × {~v} →M has image in a leaf

2. for each y ∈ K̃, the restriction Ψ: {y} × Dq →M is uniformly transverse to F

3. Ψ: K̃ × {~0} → L ⊂M coincides with the restriction to K̃ of the covering map π: L̃→ L

Moreover, if K̃ is C-uniformly simply connected in L̃, then there exists δ > 0 which depends only
on C and the diameter R = diam eL(K̃), so that the immersion Ψ: K̃ × Dq → V satisfies

4. for each y ∈ K̃, N (y, δ) ⊂ Ψ({y} × Dq)
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Proof: Fix R > 0. Let K̃ ⊂ L̃ be a compact subset of diameter at most R. We first construct the
map Ψ under the assumption that K̃ is C-uniformly simply connected, and then indicate how the
proof is modified to obtain the the general result.

Choose a basepoint x ∈ K̃. Every point y ∈ K̃ can be joined to x by a leafwise geodesic path γx,y

of length at most R. In the following, both C and R are fixed and we set

δ1 = µ(dC(2R+ 1)/ε0e+ 2, ε0/CT ) (12)
ε1 = δ1/CT

where CT ≥ 1 was introduced in (6) and (7). Recall that µ(n, ε0) ≤ ε0 for all n > 0, so ε1 < δ1 < ε0.

The construction of Ψ: K̃ × Dq → M begins with the definition of Ψ: {x} × Dq → M . Choose an
orthonormal framing {~e1, . . . , ~eq} of Qx which we use to identify Rq ∼= Qx. Then for ~v ∈ Dq, set

Ψ(x,~v) = expQ
x (ε1 · ~v) (13)

Let α ∈ A be an index such that BM (x, ε0) ⊂ Uα so that Ψ({x} × Dq) ⊂ BM (x, ε1) ⊂ Uα. Define
Ψ̂α(x, ·) = ΠF

α ◦ Ψ(x, ·): Dq → Tα. That is, for ~v ∈ Dq, z = Ψ̂α(x,~v) ∈ Tα is the point such that
Ψ(x × ~v) ∈ Pα(z). As ‖~v‖ < 1, Ψ({x} × ~v) can be joined to x by a geodesic of length at most ε1,
the estimate (7) implies that

dT (Ψ̂α(x,~0), Ψ̂α(x,~v)) ≤ CT dN (Ψ({x} ×~0),Ψ({x} × ~v)) ≤ CT ε1 = δ1 (14)

and hence
Ψ̂α({x} × Dq) ⊂ BT (Ψ̂α(x×~0), δ1) (15)

To define Ψ: K̃×Dq →M in general, let y ∈ K̃, and choose a leafwise geodesic path γx,y: [0, 1]→ L̃
of length at most R with γx,y(0) = x and γx,y(1) = y.

Proposition 2.2 implies that the path γx,y determines a plaque chain Px,y of length at most dR/ε0e.
(Recall that dxe denotes the least integer n with n ≥ x.)

We adopt the notation x̂α = Ψ̂α(x,~0), and similarly let ŷβ denote a point on the transversal Tβ
whose corresponding plaque contains the point y. Thus, γx,y determines a plaque chain from x̂α to
ŷβ of length dR/ε0e+ 2. The holonomy of this plaque chain will be denoted by hbx,by.

Note that dR/ε0e + 2 ≤ d2C(R + 1)/ε0e + 2, hence by Lemma 2.1 and estimate (14) the set
Ψ̂α({x} × Dq) is contained in the domain of the holonomy transformation hbx,by.

The notation hbx,by is justified as the map does not depend upon the choice of the path. To see this,
let γ′x,y be another leafwise geodesic path from x to y of length at most R with induced holonomy
map h′bx,by. The composition γ = γ−1

x,y◦γ′x,y is a closed loop of length at most 2R, so by the hypothesis

that K̃ is C-uniformly simply connected, there is homotopy Hs(t) of γ to a constant such that each
path t 7→ Hs(t) has length at most C(2R+ 1). Proposition 2.2 implies that a path in L̃ of leafwise
length C(2R+ 1) can be covered by a plaque chain of length at most d(C(2R+ 1)/ε0)e. Thus, each
path t 7→ Hs(t) can be covered by a plaque chain of length at most d(C(2R+1)/ε0)e. By the choice
of ε1, the set Ψ̂α({x} × Dq) is contained in the domain of the holonomy transformation associated
to each path t 7→ Hs(t). Thus

h−1bx,by ◦ h′bx,by = hH0 = hH1 = Id

so the holonomy maps hbx,by and h′bx,by are equal on the domain Ψ̂α({x} × Dq).

Let L~v denote the leaf of F containing the point Ψ({x}×~v). As the set Ψ̂α({x}×Dq) is contained
in the domain of the holonomy transformation hbx,by, this implies the holonomy along the path
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γx,y: [0, 1]→ L̃ is well-defined for all points in Ψ̂α({x}×Dq). Thus, the path γx,y: [0, 1]→ L̃ lifts to
a path γ~v: [0, 1]→ L~v such that γ~v(t) ∈ L~v ∩N (γ(t), ε1). Set Ψ(y,~v) = γ~v(1).

The point Ψ(y,~v) does not depend upon the choice of the γx,y, as given two paths γx,y and γ′x,y

as above, the fact that Ψ({x} × Dq) is contained in the domain of the holonomy transformation
associated to each path t 7→ Hs(t) also implies that the homotopy from γx,y to γ′x,y lifts to the leaf
through Ψ({x} × ~v) hence the lifted paths have the same endpoints.

The conditions (2.4.1– 2.4.3) follow immediately from the definition of Ψ: K̃ × Dq →M .

To obtain the constant δ in condition (2.4.4) we first note that given any z ∈ K̃ ∩ T there is a
leafwise geodesic path σ: [0, 1] → K̃ from z to x of length at most R. Recall from Lemma 2.1 the
definition of the module of continuity function µ(n)(ε). Set n = dR/ε0e and then let δ = µ(n, δ1)/2.
Then a point in the transversal w ∈ N (x, δ) determines a point ŵ ∈ T which is within 2δ = µ(n, δ1)
of z. Then the holonomy hσ defined by the path σ contains ŵ in its domain, and moreover

hσ(BeT (z, 2δ)) ⊂ BeT (x, δ1) ⊂ Ψ̂({x} × Dq)

Thus, N (z, δ) ⊂ Ψ({z} × Dq) for z ∈ K̃ ∩ T .

To prove the general case, note that the compact set K̃ ⊂ L̃ can be covered by a finite collection of
foliation plaques, say {Pα1(z1),Pα1(z1), . . . ,Pαn(zn)}. As above, each point zi ∈ T can be joined
to the basepoint x̂ by a chain of plaques of length at most dR/ε0e+ 2. As the manifold L̃ is simply
connected, each plaque chain determines a well-defined transverse holonomy map

hi: BT (x̂, δi)→ BT (zi, ε0)

where the diameter of the domain δi > 0. Set δ = min{δ1, . . . , δn} > 0, then proceed as above. �

Chapter V of Tamura [32] gives the proof of the Local Structure Theorem in much greater detail
for the interested reader. In this paper, we need the effective estimate above in the case of paths,
so the above proof is complete for our purposes.

The proof of Theorem 2.4 introduced the quantity µ(dC(2R+1)/ε0e+2, ε/CT )/CT which represents
a fundamental property of the geometry of F , as it is a “uniform modulus of continuity” for the
transverse holonomy along paths. We introduce a more compact terminology for a special case of
this quantity, applicable for the case of leafwise paths:

DEFINITION 2.5 For 0 < ε ≤ ε0 and R > 0,

∆(R, ε) ≡ µ(dR/ε0e+ 2, ε/CT )/CT (16)

COROLLARY 2.6 Given ε > 0 and any leafwise path γ: [0, 1] → L of length at most R, the
transverse holonomy along γ defines a smooth embedding

hγ :N (γ(0),∆(R, ε))→ N (γ(1), ε) , hγ(γ(0)) = γ(1)

Proof: Let L̃ be the universal covering of L, and γ̃: [0, 1]→ L̃ a lift of γ. Then γ̃ has length at most
R, so is homotopic relative endpoints to a length minimizing geodesic path γ̂ from γ̃(0) to γ̃(1).
The length of γ̂ is bounded above by R, and its image is 1-uniformly simply connected, so from
the proof of Theorem 2.4, there is a well-defined holonomy map along γ̂ with domain including the
disk N (γ(0),∆(R, ε)) and image in the disk N (γ(1), ε). �
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2.7 Normal tubular neighborhoods

A compact leaf L0 represents a finite orbit for the transverse holonomy pseudogroup, and the Local
Structure Theorem 2.4 has many applications to the study of the structure of F near L0. We will
first establish a notation used throughout this paper, then give an essential application.

For ε > 0, recall that expQ:Q(L0, ε) → M is the normal geodesic map along L0 restricted to the
ε-disk subbundle of Q|L0 → L0. As L0 is compact, there is an ε > 0 such that this map is a
diffeomorphism into an open neighborhood N (L0, ε) of L0. Then expQ:Q(L0, ε) → N (L0, ε) is a
diffeomorphism onto, so the bundle projection Π:Q(L0, ε) → L0 induces a projection map on the
image, also denoted by Π:N (L0, ε)→ L0. Thus, L0 is a strong deformation retract of N (L0, ε).

If ε∗ is such that ε = 2ε∗ has the above properties, then the induced projection Π:N (L0, ε∗)→ L0

has the additional property that the map extends to the closure, Π:N (L0, ε∗) → L0 and thus is
also uniformly continuous.

DEFINITION 2.7 We say that ε is L0–normal if 0 < ε ≤ ε0 and

expQ:Q(L0, 2ε)→ N (L0, 2ε)

is a diffeomorphism onto. The induced map Π:N (L0, ε)→ L0 is called the normal projection.

PROPOSITION 2.8 Let L0 be a compact leaf of F , and suppose that ε is L0–normal. If L1

is a leaf with L1 ⊂ N (L0, ε), then the normal projection Π:N (L0, ε) → L0 restricts to a 2–quasi-
isometric covering map Π:L1 → L0.

Proof: Let y ∈ L1 and x = Π(y) ∈ L0. By the definition of Π, there exists ~v ∈ Qε
x so that expQ

x (~v) =
y. Then the transversal hypothesis of section 2.2 implies that the differential DΣx,~v:TxF → TyM of
the map Σx,~v = p2◦expQ ◦σx,~v:BF (x, δ)→M is injective. Let BF (y, δ) ⊂ L1 be a sufficiently small
disk, then the restriction Π:BF (y, δ)→ L0 is a diffeomorphism into. Moreover, by the hypothesis
(3) the map Π:L1 → L0 is a local quasi-isometry for the metric dF on L1 and L0. Thus, Π:L1 → L0

has the path lifting property, so is a covering map. �

When the leaf L0 in Proposition 2.8 is assumed to be compact, a stronger statement can be proved.
The following says that a compact leaf with an a priori bound on its volume that is sufficiently
close to another compact leaf, is “captured” by the holonomy of the nearby leaf.

PROPOSITION 2.9 Let L0 be a compact leaf of F and let ε be L0-normal. Given Λ > 0, there
exists δ > 0 so that if L1 is a compact leaf with volume vol(L1) < Λ and L1 ∩ N (L0, δ) 6= ∅, then
L1 ⊂ N (L0, ε) and the normal projection restricts to a 2–quasi-isometric covering map Π:L1 → L0.

Proof: Let R = R(Λ) be the constant introduced in the proof of Proposition 2.3. Then vol(L1) < Λ
implies that diam (L1) ≤ R. Set δ = ∆(4 R, ε/2).

Assume there exists x ∈ L0 and y ∈ L1 ∩N (x, δ), then it suffices to show that L1 ⊂ N (L0, ε).

Suppose not, and that there exists z ∈ L1 but z 6∈ N (L0, ε). As diam (L1) ≤ R, there exists a
smooth path σ: [0, 1]→ L1 with σ(0) = y, σ(1) = z and ‖σ‖ ≤ R. Let t∗ = inf{t | σ(t) 6∈ N (L0, ε)}.
As σ(0) = y ∈ N (L0, δ) ⊂ N (L0, ε), there is λ > 0 with σ[0, λ) ⊂ N (L0, ε), and hence 0 < t∗ ≤ 1.

For any 0 < s < t∗, the image σ[0, s] ⊂ N (L0, ε), so by (3) the path γ = Π ◦ σ[0, s] → L0 has
length at most 2 times the length of the restricted path σ: [0, s]→ L1, or length at most 2 R. Thus,
the holonomy along γ defines a map hγ :N (x, δ) → N (γ(s), ε/2), hγ(y) = σ(s). This implies that
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σ(t) ∈ N (L0, ε/2) for all 0 ≤ t < t∗. By continuity, σ(t∗) ∈ N (L0, ε/2) ⊂ N (L0, ε) so there is s∗ > t∗
such that σ[0, s∗) ⊂ N (L0, ε). This contradicts the minimality of t∗. It follows that a minimal t∗
does not exist, hence {t | σ(t) 6∈ N (L0, ε)} must be the empty set, hence z = σ(1) ∈ N (L0, ε) as
was to be shown. �

COROLLARY 2.10 Let L0 be a compact leaf of F . Given Λ > 0, there exists δ > 0 so that if
L1 is a compact leaf with volume vol(L1) < Λ and L1 ∩ N (L0, δ) 6= ∅, then vol (L1) ≤ 2 d∗ vol (L0)
where d∗ is the homological degree of the covering map Π:L1 → L0.

Proof: Let ε be L0–normal, and choose δ = ∆(4 R, ε/2). as before. Then by Proposition 2.9, if
L1 ∩N (L0, δ) 6= ∅ then L1 ⊂ N (L0, ε) and Π:L1 → L0 is a covering map.

The homological degree of a covering map equals its covering degree, so the volume of the covering
in the lifted metric, satisfies vol ′(L1) = d∗ vol (L0). Then by (2) the volume of L1 in the leaf metric
dF satisfies

vol (L1) ≤ 2 vol ′(L1) = 2 d∗ vol (L0) �

We mention also the well-known “Reeb Stability Theorem” [27] which follows as a corollary of the
Local Structure Theorem 2.4.

PROPOSITION 2.11 Let L be a compact leaf with transverse germinal holonomy group Hx at
x ∈ L is finite. Then Hx can be represented by a finite group of homeomorphisms acting on an
open neighborhood Ux ⊂ T of x. Thus, L admits a open saturated neighborhood V → L such that
the leaves of F in V are all finite coverings of L.

Proof: Pick a basepoint x ∈ L and let Hx denote the transverse germinal holonomy group at x.
Note that “germinal” means that the germ of each element h ∈ Hx is well-defined.

By assumption, Hx is a finite group, with order denoted by N . The holonomy construction defines
a map h:π1(L, x)→ Hx whose kernel Kx ⊂ π1(L, x) is a finite index subgroup.

Let πh: L̃h → L be the holonomy covering of L; that is, the covering associated to Kx.

LetR = diam (L). Then any pair of preimages y, z ∈ π−1
h (x) can be joined by a path σ̃y,z: [0, 1]→ L̃h

of length ||σ̃y,z||F ≤ 2NR so each element g ∈ Hx is represented by the holonomy hg along a path
σy,z = πh ◦ σy,z: [0, 1] → L also of length at most 2NR with σy,z(0) = σy,z(1) = x. The domain of
hg contains BT (x,∆(2NR, ε)) and has image in BT (z, ε).

Let ε be L–normal. Then the open set

Ux =
⋂

g∈Hx

hg (BT (x,∆(2NR, ε)))

is invariant under each hg for g ∈ Hx. �
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3 Properties of compact foliations

In this section, F is assumed to be a compact foliation of a manifold M without boundary. The
geometry of compact foliations has been extensively analyzed by Epstein [11, 12], Millett [22], Vogt
[33, 34, 35] and Edwards, Millet and Sullivan [10]. We recall some of their results.

3.1 The good and the bad sets

Let vol (L) denote the volume of a leaf L with respect to the Riemannian metric induced from M .
Define the volume function on M by setting v(x) = vol (Lx). Clearly, x 7→ v(x) is constant along
leaves of F . However, v(x) need not be continuous on M .

The bad set X1 of F consists of the points y ∈ M where x 7→ v(x) is not bounded in any open
neighborhood of y. By its definition, the bad set X1 is saturated. Note also that

X1 =
∞⋃

n=1

X1 ∩ vol−1(0, n]

The leaves in the intersection X1 ∩ vol−1(0, n] have volume at most n, while v(x) is not locally
bounded in any open neighborhood of y ∈ X1, therefore each set X1 ∩ vol−1(0, n] has no interior.
By the Baire category theorem, X1 has no interior.

The complement G = M −X1 is called the good set. The holonomy of every leaf L ⊂ G is finite,
thus by the Reeb Stability Theorem, L has an open saturated neighborhood consisting of leaves
with finite holonomy. Hence, G is an open set, X1 is closed, and the leaf space G/F is Hausdorff.

Inside the good set is the open dense saturated subsetGe ⊂ G consisting of leaves without holonomy.
Its complement Gh = G−Ge consists of leaves with finite holonomy.

3.2 The Epstein filtration

The restriction of the volume function v(x) to X1 again need not be locally bounded, and the
construction of the bad set can be iterated to obtain the Epstein filtration:

M = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xα ⊃ · · ·

The definition of the sets Xα proceeds inductively: Let α > 1 be a countable ordinal, and assume
that Xβ has been defined for β < α. If α is a successor ordinal, let α = γ + 1 and define Xα

to be the closed saturated set of y ∈ Xγ where x 7→ v(x) is not bounded in any relatively open
neighborhood in Xγ of y ∈ Xγ .

If α is a limit ordinal, then define Xα =
⋂
β<α

Xβ.

For β < α, the set Xα is nowhere dense in Xβ. Note that since each set M − Xα is open, the
filtration is at most countable. The filtration length of F is the ordinal α such that Xα 6= ∅ and
Xα+1 = ∅.
Vogt [35] showed that for any finite ordinal α, there is a compact foliation of a compact manifold
with filtration length α. He also remarked that given any countable ordinal α, the construction
can be modified to produce a foliation with filtration length α.
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Such examples show that the bad set X1 and the substrata Xα need not be a finite unions or inter-
sections of submanifolds; they may have much more pathological topological structure, especially
when the filtration length is an infinite ordinal.

3.3 Regular points

A point x ∈ X1 is called a regular point if the restricted holonomy of F|X1 is trivial at x.
Equivalently, the regular points are the points of continuity for the restricted volume function
v|X1:X1 → R. If X1 6= ∅, then the regular points are an open and dense subset of X1 −X2. We
recall a key result of Edwards, Millet, and Sullivan (see § 5 of [10].)

PROPOSITION 3.1 (Moving Leaf) Let F be a compact foliation of an oriented manifold M
with orientable normal bundle. Suppose that X1 is compact and non-empty. Let x ∈ X1 be a regular
point. Then there exists a generic leaf L ⊂ Ge, and a smooth isotopy h:L× [0, 1)→ Ge such that

• For all 0 ≤ t < 1, ht:L→ Lt ⊂M is a diffeomorphism onto its image Lt

• Lx is in the closure of the leaves
⋃

t>1−δ

Lt for any δ > 0

• lim sup
t→1

vol (Lt) =∞

While the “moving leaf” Lt limits onX1, the moving leaf cannot accumulate on a single compact leaf
of X1. This follows because a compact leaf L admits a relative homology dual cycle, which for ε > 0
sufficiently small and x ∈ L, is represented by the transverse disk BT (x, ε). This disk intersects
L precisely in the point x, hence the relative homology class [BT (x, ε), ∂BT (x, ε)] is Poincaré dual
to the fundamental class [L]. Assuming that {Lt} limits on L, for t < 1 sufficiently close to 1,
each Lt ⊂ N (L, ε) and so the intersection number [Lt ∩BT (x, ε)] = [Lt] ∩ [BT (x, ε), ∂BT (x, ε)] is
constant. Thus the leaves {Lt} have bounded volume as t→ 1, which is a contradiction.

It is precisely this “non-localized limit behavior” for leaves approaching the bad set with volumes
unbounded, which makes the study of compact foliations with non-empty bad sets so interesting,
and difficult. There are no results describing how these paths of leaves must behave in the limit.

3.4 Structure of the good set

Epstein [12] and Millett [22] showed that for a compact foliation F of a manifold V , then

v(x) is locally bounded⇔ V/F is Hausdorff ⇔ the holonomy of every leaf is finite

By definition, the leaf volume function is locally bounded on the good set G, hence the restriction of
F to G is compact Hausdorff, and all leaves of F|G have finite holonomy group. Epstein and Millet
showed there is a much more precise structure theorem for the foliation F in an open neighborhood
of a leaf of the good set:
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PROPOSITION 3.2 Let V denote an open connected component of the good set G, and Ve =
V ∩ Ge the set of leaves with no holonomy. There exists a “generic leaf” L0 ⊂ Ve, such that for
each x ∈ V with leaf Lx containing x,

1. there is a finite subgroup Hx of the orthogonal group O(q) and a free action αx of Hx on L0

2. there exists a diffeomorphism of the twisted product

φx:L0 ×Hx Dq → Vx (17)

onto an open saturated neighborhood Vx of Lx (where Dq denotes the unit disk in Rq)

3. the diffeomorphism φx is leaf preserving, where L0×Hx Dq is foliated by the images of L0×{w}
for w ∈ Dq under the quotient map Q:L0 × Dq → L0 ×Hx Dq

4. φx maps L0/Hx
∼= L0 ×Hx {0} diffeomorphically to Lx

In particular, if x ∈ Ve then Hx is trivial, and φx is a product structure for a neighborhood of Lx.

The open set Vx is called a standard neighborhood of Lx, and the 4–tuple (Vx, φx,Hx, αx) is called
a standard local model for F . Note that, by definition, Vx ⊂ G hence Vx ∩ X1 = ∅. Hence, as
G 3 x→ X1 the diameter of the transversal image disc φx({x} ×Hx Dq) tends to zero, so these are
geometric models, but not necessarily metric models.

The Hausdorff space G/F is a Satake manifold; that is, for each point b ∈ G/F and π(x) = b
the leaf Lx has an open foliated neighborhood Vx as above, and φx:L0 ×Hx Dq → Vx induces a
coordinate map ϕb: Dq/Hx → Wb, where Wb = π(Vx). The open sets Wb ⊂ G/F are called basic
open sets for G/F . Note also that π is a closed map [12, 22].

Let Ge denote the open set of leaves in the good set G with trivial holonomy. The restricted
quotient map π:Ge → Ge/F is a fibration with fibers diffeomorphic to L0. Thus, the singularities
of the quotient map π:G→ G/F are concentrated on the set of leaves with holonomy, Gh. Millett
[22] called the map π a twisted twisted fibration, where the fibration π:Ge → Ge/F has additional
“twisting” introduced along the singular set Gh/F .

The existence of a standard neighborhood about every leaf of a compact Hausdorff foliation has
further consequences for its global geometry. For example, the holonomy of Lx is given by the
composition

π1(Lx, x)→ Hx ⊂ O(q) ⊂ Diffeo(Dq, 0). (18)

COROLLARY 3.3 Given y ∈ Vx let (z, w) ∈ L0 × Dq have image φ−1
x (y). Let Hxy ⊂ Hx be the

isotropy group at w ∈ Dq of the linear action of Hx on Dq. Then the holonomy of Ly is given by

π1(Ly, y)→ Hxy ⊂ O(q)

Hence, there are at most finite number of isomorphism classes of holonomy groups of leaves Ly ⊂ Vx.

We can also use the local models (17) for F to give a better description of Gh.

COROLLARY 3.4 Gh is a stratified space. That is, for x ∈ Gh let W 1
x , . . . ,W

k(x)
x ⊂ Rq be

the collection of linear subspace such that W i
x is the fixed set for some gi ∈ Hx. Then the set

Wx = W 1
x ∩ . . . ∩W k(x)

x ∩ Dq is invariant under Hx, and Gh ∩ Vx = φx(L0 ×Hx Wx). Hence, Gh

is relatively closed and nowhere dense in G. Moreover, if F has orientable normal bundle, then
each subspace W i

x has codimension at least 2, and hence the set Ge is open, dense, and locally path
connected.
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4 Stability properties of compact leaves

In this section, we prove some technical results about stability under homotopy of compact leaves
in a foliated manifold. The results of this section do not assume that F is a compact foliation.

The main goal of this section is to prove Proposition 4.7, which yields an upper bound on both the
volumes of the compact leaves, and the topological degrees of the covering maps, which arise in a
homotopy of a compact leaf. This plays an essential role in our proof of Proposition 6.1.

PROPOSITION 4.1 Let F be a C1 foliation of a compact manifold M . Let H:L× [0, 1] → M
be a leafwise homotopy. If L is a compact leaf, then Ht(L) is a compact leaf for all 0 ≤ t ≤ 1.

Proof: Let Lt = Ht(L) and L∗t be the leaf of F containing Lt. The image Lt is compact, so it will
suffice to show that the map Ht:L→ L∗t is onto for all 0 ≤ t ≤ 1.

Let H∗(·) denote cohomology with real coefficients, so that Hp(L) = R as L is a compact oriented
manifold of dimension p. Also, for each 0 ≤ t ≤ 1, L∗t is a connected manifold of dimension p,
hence for any y ∈ L∗t , we have Hp(L∗t − {y}) = 0. It follows by combining these two remarks that
if Lt 6= L∗t then the induced map H∗

t :Hp(L∗t )→ Hp(L) is zero.

Let I = {t | H∗
t 6= 0} ⊂ [0, 1]. It will suffice to show that I = [0, 1] to prove Proposition 4.1.

For t = 0, H0 is the identity, hence 0 ∈ I.

We claim that I is both a relatively open and closed subset of [0, 1]. To see that it is relatively
open, fix t ∈ I. Then by assumption, H∗

t 6= 0 hence Lt = L∗t .

For each 0 ≤ t ≤ 1, let ε′t be L∗t –normal. Set Vt = N (L∗t , ε
′
t). The open subset H−1(Vt) ⊂ L× [0, 1]

contains the compact set L× {t}, hence there exists κ > 0 such that L× (t− κ, t+ κ) ⊂ Vt.

Let s satisfy t− κ < s < t+ κ. Then the image Ls ⊂ Vt, and hence the composition

ι ◦Π ◦Hs:L→ L∗t ⊂ Vt

is homotopy equivalent to Ht. Thus, the composition (Π ◦Hs)∗:Hp(L∗t )→ Hp(L) is non-zero.

We claim that L∗s ⊂ Vt. Otherwise, L∗s ∩ Vt is a proper open submanifold of L∗s, and hence
Hp(L∗s ∩ Vt) = 0. This implies that L → Ls ⊂ L∗s ∩ Vt ⊂ Vt → Lt induces the zero map on
p-cohomology, contradicting the previous observations.

For t− κ < s < t+ κ, apply the cohomology functor Hp(·) to the composition

L→ Ls ⊂ L∗s ⊂ V1 → Lt

The composition (Π ◦Hs)∗:Hp(L∗t )→ Hp(L) is non-zero, hence H∗
s :Hp(L∗s)→ Hp(L) is non-zero,

and we obtain that s ∈ I.

Next we show that I is closed. Let I denote its closure in [0, 1], then for t ∈ I and δ > 0 the closed
set L × (I ∩ [δ − t, t + δ]) is compact in L × [0, 1], hence its image H(L × (I ∩ [δ − t, t + δ])) is
compact. It thus equals the closure in M of the image H(L× (I ∩ [δ − t, t+ δ])).

The set H(L× (I ∩ [δ − t, t+ δ])) is saturated by assumption, hence its closure

H(L× (I ∩ [δ − t, t+ δ])) = H(L× (I ∩ [δ − t, t+ δ]))

is also saturated. The intersection of saturated sets is saturated, so taking the intersection over all
δ > 0 we obtain that H(L×{t}) is a saturated set. That is, Lt = L∗t , hence the leaf L∗t is compact.
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Finally, we must show that for t ∈ I the map H∗
t :Hp(L) → Hp(L∗t ) is non-zero. As t ∈ I, there

exists a sequence sn ∈ I with sn → t, so the sequence of compact leaves L×{sn} limits to L×{t},
and hence L∗sn

limits to L∗t .

Let 0 < ε′t < ε0 be sufficiently small so that the normal neighborhood Vt = N (L∗t , ε
′
t) is an open

neighborhood retract of L∗t , with Π : Vt → L∗t the retraction. The open subset H−1(Vt) ⊂ L× [0, 1]
contains the compact set L× {t}, hence there exists κ > 0 such that L× (t− κ, t+ κ) ⊂ Vt.

Let n be sufficiently large so that sn ∈ (t− κ, t+ κ), and then we have Lsn ⊂ Vt. The composition
ι ◦ Π ◦Hsn :L→ L∗t ⊂ Vt is homotopy equivalent to Ht. It is given that H∗

sn
:Hp(L∗sn

)→ Hp(L) is
non-zero, hence H∗

t = (Π ◦Hs)∗:Hp(L∗t )→ Hp(L) is non-zero. �

Implicit in the above proof is the geometric result that a “small” homotopy of a compact leaf
is again a compact leaf, and its image is a covering of the initial leaf. We introduce a formal
generalization of this phenomenon, and show in Lemma 4.3 that a homotopy of compact leaves
yields an example.

DEFINITION 4.2 Given 0 < ε ≤ ε0, we say that two compact leaves L,L′ ⊂M are ε-commensurable
if there is a sequence of compact leaves L0,L0, L1, . . . , Lk−1,Lk−1, Lk and constants ε′′0, ε

′′
1, . . . , ε

′′
k

such that L = L0, L′ = Lk, and for each 0 ≤ ` ≤ k,

1. ε′′` ≤ ε, and ε′′` is L`–normal

2. L` ⊂ N (L`, ε
′′
` ) ∩N (L`+1, ε

′′
`+1).

The collection of leaves L = {L0,L0, L1, . . . , Lk−1,Lk−1, Lk} is called an ε-chain from L to L′.

Proposition 2.8 implies that the normal projection Π restricted to to the leaf L` yields covering
maps π: L` → L` and π: L` → L`+1 of finite degree; the leaf L` is a “geometric correspondence”
from L` to L`+1. (It may happen in examples that either L` = L` or L` = L`+1, in which case the
geometric correspondence is just a map.) The sequence of covering maps yields a diagram

L = L0 ←− L0 −→ L1 ←− · · · −→ Lk−1 ←− Lk−1 −→ Lk = L′ (19)

and the induced maps on the fundamental groups (with respect to appropriate basepoints) yields

π1(L, y0)←− π1(L0, y
∗
0) −→ π1(L1, y1) · · · · · ·π1(Lk−1, y

∗
k−1) −→ π1(L′, yk) (20)

which we denote by π1(L). All of the maps in (20) have images of finite index, and it is in this
sense that the leaves L and L′ are commensurable, even though their fundamental groups π1(L, y0)
and π1(L′, yk) need not be subgroups of finite index in a common group.

LEMMA 4.3 Let F be a C1 foliation of a compact manifold M . Let H:L × [0, 1] → M be a
leafwise homotopy. If L is a compact leaf, and so L′ = H1(L) is also a compact leaf, then for all
0 < ε ≤ ε0, L and L′ are ε-commensurable.

Proof: For each 0 ≤ t ≤ 1, Proposition 4.1 implies that the image Lt = Ht(L) is a compact leaf,
so we can choose ε′t which is Lt–normal. As L is compact, we can also choose ξt > 0 so that the
image

H(L× [t− ξt, t+ ξt]) ⊂ N (Lt, ε
′
t)
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The collection of open intervals {It = (t− ξt, t+ ξt) | 0 ≤ t ≤ 1} is a cover for [0, 1], hence there is
a finite set {t0 = 0 < t1 < · · · < tk = 1} so that {It0 , It1 , . . . , Itk} is a cover for [0, 1]. We assume
that the cover has minimal cardinality, which implies that t`+1 − ξt`+1

< t` + ξt` .

For 0 ≤ ` ≤ k, set L` = Lt` and ε′′` = ε′t` . For each 0 ≤ ` < k, choose t`+1 − ξt`+1
< s` < t` + ξt`

and set L` = Ls`
. It is immediate that L` ⊂ N (L`, ε

′′
` ) ∩N (L`+1, ε

′′
`+1). �

We note the following result, whose elementary proof is a precursor to the proof of Proposition 4.7.

PROPOSITION 4.4 Let F be a C1 foliation of a compact manifold M , and H:L× [0, 1]→ M
be a leafwise homotopy such that for all 0 ≤ t ≤ 1, Ht is a differentiable map whose derivatives
depend continuously on t. If L is a compact leaf, then t→ vol (L∗t ) is a bounded function on [0, 1].

Proof: Let dvol denote the leafwise volume p-form on M . This form is not closed, unless restricted
to a leaf of F , but is continuous on M . As Ht is a C1 map whose derivatives depend continuously
on t, the pull-back of the volume p-form, ωt = H∗

t (dvol) on L, depends continuously on t. Let
Nt denote the degree of the map Ht:L → Lt, which is well defined as both L and Lt are oriented
closed manifolds. That is, (Ht)∗([L]) = Nt · [Lt]. Then

vol (L∗t ) =
∫

L∗
t

dvol =
1
Nt
·
∫

(Ht)∗([L])
dvol =

1
Nt
·
∫

L
H∗

t (dvol) ≤
∫

L
ωt

which depends continuously t, so there exists a uniform upper bound. �

We need two preliminary results before giving Proposition 4.7.

PROPOSITION 4.5 Let F be a C1 foliation of a compact manifold M , and suppose that L,L′

are compact leaves which are ε0-commensurable by an ε0-chain L of length k. Then there exist a
constant C(π1(L)), depending only on the algebraic data π1(L), such that

2(1−2k)C(π1(L)) · vol (L) ≤ vol (L′) ≤ 2(2k−1)C(π1(L)) · vol (L) (21)

Proof: We are given an ε0-chain L0,L0, L1, . . . , Lk−1,Lk−1, Lk and constants ε′′0, ε
′′
1, . . . , ε

′′
k such

that L = L0, L′ = Lk, and for each 0 ≤ ` ≤ k, ε′′k is L`–normal. Let a` denote the degree of the
covering map Π: L` → L`, which equals the homological degree deg(Π). The Riemannian metric
on the leaf L` lifts via the covering map Π to a Riemannian metric on L` with associated volume
form dvol′. Then the total volume for this covering metric satisfies vol ′(L`) = a` · vol (L`).

As ε′′` < ε0 we can apply the estimate (2) to conclude that the two volume forms on the leaf L` are
related by the inequality 1/2 · dvol ≤ dvol′ ≤ 2 · dvol and hence we have

a`/2 · vol (L`) ≤ vol (L`) ≤ 2 a` · vol (L`) (22)

Similarly, for each 0 ≤ ` < k, the normal projection Π:N (L`+1, ε
′′
`+1)→ L`+1 restricts to a covering

map Π: L` → L`+1. Let b` denote the degree of this covering. Then we obtain in an analogous
manner that

b`/2 · vol (L`+1) ≤ vol (L`) ≤ 2 b` · vol (L`+1) (23)

Combining these sequences of upper and lower estimates, we obtain

2(1−2k) a0 a1 . . . ak−1

b0 b1 . . . bk−1
· vol (L0) ≤ vol (Lk) ≤ 2(2k−1) a0 a1 . . . ak−1

b0 b1 . . . bk−1
· vol (L0) (24)
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Set C(π1(L)) =
a0 a1 . . . ak−1

b0 b1 . . . bk−1
. �

This estimate is intuitively clear, as can be seen in the case when all of the covering maps have
degree a` = b` = 1 and each L` = L` or L` = L`+1. Then, each successive compact leaf L`+1 is
diffeomorphic to the previous leaf L`, and is obtained by perturbing L` by a distance of less than
ε0. The volume change for each of these small deformations by at most a factor of 2, based on the
volume form estimate in the inequality (2). The choice of the scale factor 2 in the estimate (2)
was made for simplicity, and could be replaced by an optimal constant, which would yield a more
precise form version of (21).

Lemma 4.3 and Proposition 4.5 yield an estimate comparing the volume of the compact leaf at the
end of a homotopy with the volume of the compact leaf at the beginning. The following technical
lemma allows us to give a uniform estimate for all leaves in the homotopy in Proposition 4.7.

LEMMA 4.6 Let F be a C1 foliation of a compact manifold M . Let L,L′, L0 be compact leaves,
and suppose ε is L0–normal. Suppose that

1. L′ ⊂ N (L0, ε) with d0 = deg(Π:L′ → L0) > 0

2. G:L× [s′, s′′]→ N (L0, ε) is a continuous foliated map such that Gs′(L) = L′

3. the map G:L→ L′ has degree d1 > 0.

Then for all s′ ≤ t ≤ s′′, the leaf Lt = Gt(L) has volume bounded by

vol (L0)/2 ≤ vol (Lt) ≤ 2 d0d1vol (L0) (25)

Moreover, the degrees dt of the covering maps Π:Lt → L0 are uniformly bounded, 1 ≤ dt ≤ d0d1

and likewise d0d1 is an upper bound on the degree of the maps Gt:L→ Lt.

Proof: For all s′ ≤ t ≤ s′′, the leaf Lt is compact by the proof of Proposition 4.1. As Lt ⊂ N (L0, ε),
the restriction of the normal projection Π:N (L0, ε)→ L0 induces a covering map Π:Lt → L0.

The composition Π◦Gs′ :L→ L0 has degree d0d1 by assumption. As Π◦Gt:L→ L′′ is continuously
defined for all s′ ≤ t ≤ s′′, the degree dt of Π ◦Gt must equal d0d1 also. It follows that the degrees
of both factor maps Π and Gt must divide d0d1. Thus, dt = deg(Π:Lt → L0) divides d0d1 and
hence 1 ≤ dt ≤ d0d1. Similarly, 1 ≤ deg(Gt) ≤ d0d1.

For all s′ ≤ t ≤ s′′ we have that vol ′(Lt) = dt vol (L′′), where vol ′(Lt) denotes the volume of Lt

for the covering metric. As in the proof of Proposition 4.5, the estimate (2) on the leafwise volume
forms implies the inequalities (25). �

We can now state and prove the main result of this section.

PROPOSITION 4.7 Let F be a C1 foliation of a compact manifold M . If H:L× [0, 1]→M is
a leafwise homotopy with L a compact leaf, then for all 0 ≤ t ≤ 1,

vol (Lt) ≤ 4k · vol (L) (26)

where k is the length of an ε0-chain obtained from H. Moreover, there is an integer d∗ > 0 such
that

1 ≤ deg(Ht:L0 → Lt) ≤ d∗ (27)

21



Proof: By Lemma 4.3 and its proof, there is an ε0-chain L0,L0, L1, . . . , Lk−1,Lk−1, Lk, constants
0 < ε′′0, ε

′′
1, . . . , ε

′′
k ≤ ε0 and times 0 = t0 < s0 < t1 < s1 < t2 < · · · < tk−1 < sk−1 < tk = 1 so that

for each 0 ≤ ` ≤ k

• L` = Ht`(L), L` = Hs`
(L)

• ε′′` is L`–normal

• L` ⊂ N (L`, ε
′′
` ) ∩N (L`+1, ε

′′
`+1)

• Ht(L) ⊂ N (L`, ε
′′
` ) for all s`−1 ≤ t ≤ s`

where we set s−1 = 0 and sk = 1 for notational convenience.

Recall that Π:N (L`, ε
′′
` )→ L` is the normal projection. The composition

Π ◦Ht:L→ N (L`, ε
′′
` )→ L` , t` ≤ t ≤ s`

is a homotopy from Π ◦ Ht` = Ht` to Π ◦ Hs`
. Thus, the maps Π ◦ Hs`

and Ht` have the same
homological degree. Recall that a` is the covering degree of Π: L` → L`, or equivalently the
homological degree of Π, so it follows that a` · deg(Hs`

) = deg(Ht`).

Similarly, using the homotopy

Π ◦Ht:L→ N (L`+1, ε
′′
`+1)→ L`+1 , s` ≤ t ≤ t`+1

we have that b` · deg(Hs`
) = deg(Ht`+1

).

Thus, we obtain
b`
a`

=
deg(Ht`+1

)
deg(Ht`)

(28)

Given 0 ≤ s ≤ 1, let ν be the least index such that s ≤ sν , so that s ∈ Iν = (tν − ξtν , tν + ξtν ).
Then either tν ≤ s ≤ sν or sν−1 ≤ s < tν .

Set dν =
b0 b1 . . . bν−1

a0 a1 . . . aν−1
. Let d∗ = max{d1, . . . , dk+1}.

The map H0 is the identity, so by applying (28) recursively, we have that dν = deg(Htν ). In
particular, dν is a positive integer, so 1/dν ≤ 1. By the proof of Proposition 4.5, there is an
estimate

1
2(2ν−1) dν

· vol (L) ≤ vol (Lν) ≤ 2(2ν−1)

dν
· vol (L) (29)

Consider the case tν ≤ s ≤ sν . We then have H:L×[tν , sν ]→ N (Lν , ε
′′
` ) so we can apply Lemma 4.6

with s′ = tν , s′′ = sν , and L = L, L0 = L′ = Lν . The degree of the map Htν is dν , while L′ → L0

is the identity so has degree 1. Combine (25) and (29) to obtain the upper bound estimate

vol (Ls) ≤ 2 dν · vol (Lν) ≤ 2 dν ·
2(2ν−1)

dν
· vol (L) = 22ν · vol (L) ≤ 4k · vol (L) (30)

Note also that by Lemma 4.6 the degree ds = deg(Hs:L→ Ls) divides dν , hence 1 ≤ ds ≤ dν ≤ d∗.
In the alternate case sν−1 ≤ s < tν we proceed in exactly the same way. �
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5 Tame points in the bad set

The bad set X1 consists of the points y ∈M where the leaf volume function v(x) is not bounded in
any open neighborhood of y. This set is closed, saturated and has no interior, but could otherwise
be an arbitrarily pathological continua. A point x1 ∈ X1 is regular if the restriction of the leaf
volume function v:X1 → R+ is is continuous at x1. Equivalently, x1 ∈ X1 is a regular point if the
holonomy of the restriction of F to X1 is trivial in some relatively open neighborhood of x1 ∈ X1.

In this section we introduce the concept of a “tame point” in the bad set, where the local properties
of the bad set have some additional regularity. We then prove the existence of tame points. Tame
points are used in section 6 for studying the deformations of the bad set under foliated homotopy.

DEFINITION 5.1 A regular point x1 ∈ X1 is tame if for any ε > 0, there is a transverse C1-path

γ: [0, 1]→ (N (x1, ε) ∩Ge) ∪ {x1} (31)

with γ(t) ∈ Ge for 0 ≤ t < 1, γ(1) = x1 and v(γ(t))) tends uniformly to infinity as t→ 1.

Since the restricted path γ: [0, 1) → Ge lies in the set of leaves without holonomy, it follows that
there is a foliated isotopy Γ:Lγ(0) × [0, 1)→ Ge such that Γt(γ(0)) = γ(t). Thus, a tame point x is
directly approachable by a family of moving leaves whose volumes tend uniformly to infinity.

In the examples constructed by Sullivan [30], it is easy to see that every regular point is a tame
point. In general, though, Edwards, Millet, and Sullivan specifically point out their proof of the
Moving Leaf Proposition 3.1 in [10] does not claim that a regular point is a tame point. The problem
is due to the possibility that the complement of the bad set need not be locally connected in a
neighborhood of a point in the bad set. In their proof, the moving leaf is defined by a curved that
follows “an end of the good set” out to infinity, passing through points where the volume is tending
to infinity along the way. This end of the good set is contained in arbitrarily small ε-neighborhoods
of the bad set, but they do not control the behavior of the end. Thus, the existence of a tame
point is asserting the existence of a “tame end” of the good set on which the volume function is
unbounded, and which is defined by open neighborhoods of some point in the bad set.

Let Xt ⊂ X1 denote the subset of tame points.

PROPOSITION 5.2 Let F be a compact, C1 foliation of a manifold M . Then the set of tame
points Xt is dense in X1.

Proof: Let x1 ∈ X1 be a regular point, and L1 the leaf through x1. We will build up a detailed
geometric description of the foliation in a sufficiently small neighborhood of L1 and use this to
prove there is a tame point arbitrarily close to x1.

Choose a finite generating set {[τ1], . . . , [τk]} for π1(L1, x1), where [τi] is represented by a closed
path τi: [0, 1]→ L1 with basepoint x1. Let ‖τi‖ denote the Riemannian length of τi. Then set

P = 2 max {diam (L1), ‖τ1‖, . . . , ‖τk‖} (32)

Let 0 < ε1 ≤ ε0 be such that the normal projection Π:N (L1, ε1) → L1 is well-defined. Then set
ε2 = ∆(P, ε1) where ∆(P, ε1) is defined in Definition 2.5.

By Corollary 2.6, the holonomy map hi along the closed path τi is defined on the transverse disk
N (x1, ε2). That is, the transverse holonomy along τi is represented by a local homeomorphism into

hi:N (x1, ε2)→ N (x1, ε1) (33)
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Moreover, for any path σ: [0, 1]→ L1 with σ(0) = x1 and ‖σ‖ ≤ P the transverse holonomy maps
are defined for all 0 ≤ t ≤ 1,

hσ:N (x1, ε2)→ N (σ(t), ε1) (34)

Choose 0 < δ ≤ ε2 sufficiently small so that the induced holonomy on X1 ∩ N (x1, 2δ) is trivial.
The induced holonomy of F is trivial on the closure

Z1 = X1 ∩N (x1, δ) = X1 ∩N (x1, δ) ⊂ X1 ∩N (x1, 2δ)

so the saturation ZF of Z1 is a fibration over the closed set Z1. We assume that δ is sufficiently
small so that ZF ⊂ N (L1, ε1).

The leaf volume function v(y) is uniformly continuous and hence bounded on the compact set Z1

as the induced holonomy is trivial. Hence, every point in Z1 is a regular point of the bad set.

For each z ∈ Z1, the normal projection Π:N (L1, ε1)→ L1 restricts to the leaf Lz ⊂ ZF to yield a
covering projection πz:Lz → L1, which must be a diffeomorphism as F|Z1 has no holonomy.

By estimate (3) the map πz is also a quasi-isometry with expansion bound 2. Note that as N (x1, 2δ)
is the normal neighborhood of x1, by definition we have that πz(z) = x1 for z ∈ Z1.

For z ∈ Z1, the closed loop τi lifts via πz to a closed loop τ z
i : [0, 1]→ Lz. The homotopy classes of

the lifts, {[τ z
1 ], . . . , [τ z

k ]}, give a generating set for π1(Lz, z), which by (3) and (32) have a uniform
bound on their path lengths, ‖τ z

i ‖ ≤ P.

In fact, since Lz ⊂ N (L1, ε1), for any path σ: [0, 1]→ L1 with σ(0) = x1 there is a lift σz: [0, 1]→ Lz

with σz(0) = z and πz ◦ σz(t) = σ(t) for all 0 ≤ t ≤ 1.

For an arbitrary point y0 ∈ N (x1, δ) and path σ: [0, 1] → L1 with σ(0) = x1 and ‖σ‖ ≤ P, the
existence of the transverse holonomy map in (34) means that there is a lift σy: [0, 1]→ Ly∩N (L1, ε1)
with σy(0) = y0 and πy ◦ σy(t) = σ(t) for all 0 ≤ t ≤ 1.

The lifting property need not hold for paths longer than P, as there may be leaves of F which
intercect the normal neighborhood N (L1, δ) but are not contained in N (L1, ε1). However, when
Ly ⊂ N (L1, δ) and there is given a path σ: [0, 1] → L1 with σ(0) = x1, then Corollary 2.6 implies
that the lift σy′ : [0, 1]→ Ly′ can be defined for y′ sufficiently close to y. From a geometric approach,
Ly ⊂ N (L1, ε1) is a compact subset of an open set, hence for ε3 > 0 sufficiently small, the open
normal neighborhood N (Ly, ε3) ⊂ N (L1, ε1), and the leaves of the foliation restricted to N (Ly, ε3)
satisfy an arbitrarily long path lifting property with respect to paths in Ly as they approach L1.

For y ∈ N (x1, δ), let BT (y, δ) ⊂ N (x1, δ) denote the open ball of radius δ about y for the induced
Riemannian metric on N (x1, δ). Note that, unless N (x1, δ) is a totally geodesic submanifold of M ,
BT (y, δ) and N (y, δ) are distinct submanifolds of M , though both are transverse to F .

By the proof of the Moving Leaf Proposition, which is based on ideas of Montgomery [24] and
Newman [25], there is an open connected component U of N (x1, δ) − Z1 on which the volume
function v(y) is unbounded on the open neighborhood U ∩N (x1, δ/2) of x1. (See the details of the
proof on page 23 of [10], especially Figure 3.)

Choose a point y0 ∈ U ∩N (x1, δ/2) and let x∗ ∈ Z1 be a closest point to y0 for the induced metric
on N (x1, δ). That is, consider a sequence of balls BT (y0, δ) ⊂ N (x1, δ)− Z1 expanding until there
is a first contact with the frontier of U , then x∗ is this first point of contact. Let δ0 denote the
distance from y0 to x∗ in this induced metric. Then BT (y0, δ0) ⊂ U and BT (y0, δ0) ∩ Z1 6= ∅. Let
L∗ = Lx∗ be the leaf containing x∗. This is illustrated in Figure 1 below.
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We claim that x∗ is a tame point. As δ > 0 was chosen to be arbitrarily small, and the regular
points are dense in the bad set, the proof of Proposition 5.2 will then follow from this claim.

Figure 1: tame point in the bad set

As noted before, BT (y0, δ0) ⊂ U , and there is a geodesic path γ: [0, 1] → N (x1, δ) with length δ0
such that γ(0) = y0, γ(1) = x∗ and γ[0, 1) ⊂ BT (y0, δ0). The complement of X1 is the good set, so
the image γ[0, 1) ⊂ G. The set of leaves with holonomy Gh in G is a union of codimension two (or
higher) submanifolds by Proposition 3.2, so by a small C1-perturbation of the path γ in U , we can
assume that its image is disjoint from the set Gh. That is, γ(t) ∈ Lt ⊂ Ge and γ(1) ∈ L∗.
We claim that the volumes of the leaves Lt tend uniformly to infinity. Our proof is by contradiction
– we assume this is false, that is, there exists a constant M > 0 and a sequence 0 < t1 < · · · <
tn · · · → 1 such that xn = γ(tn)→ x∗ and the volumes of the leaves Ln = Lxn are bounded above
by M. The contradiction is then provided by the following “rigidity” result, which has an intuitive
description as saying that for each M > 0 there is an ε > 0 so that when y ∈ U gets ε–close to the
regular point x∗ ∈ X1, and if the volume of the leaf Ly is less than M, then Ly acts as a “seed”
upon which all the leaves in the saturation of the open set U “crystalize”, forcing all the leaves in
U to have volumes bounded above by 4M.

LEMMA 5.3 For each M > 0 there is an ε∗ > 0 so that if there exists y ∈ U ∩ Ge such that
d(y, x∗) < ε∗ and vol (Ly) ≤ M, then for all y′ ∈ U , the leaf L′ = Ly′ has the volume bound
vol (Ly′) ≤ 4 M.

Proof: By Proposition 2.3 there is R such that if L ⊂M satisfies vol (L) ≤M then diam (L) ≤ R.

Recall that L∗ = Lx∗ and set π∗ = πx∗ :L∗ → L1. For each closed path τi let τ∗i : [0, 1]→ L∗ be the
lift with basepoint x∗. Their homotopy classes {[τ∗1 ], . . . , [τ∗k ]} form a generating set for π1(L∗, x∗).
Note that the path length ‖τ∗i ‖ ≤ P. The holonomy along τ∗i will be denoted by h∗i .

Let 0 < ε3 ≤ ε2 be such that N (L∗, ε3) ⊂ N (L1, ε2). Set ε∗ = ∆(P, ε3). Then the holonomy h∗i
along τ∗i is represented by a local homeomorphism into

h∗i :N (x∗, ε∗)→ N (x∗, ε3) ⊂ N (x1, ε2) (35)

and each map in (35) extends to map

h∗i :N (x∗, ε2)→ N (x∗, ε1) (36)
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Then for y ∈ U ∩BM (x∗, ε∗) with vol (Ly) ≤M, by Corollary 2.6 we have that Ly ⊂ N (L∗, ε3).

In particular, as N (x∗, ε3) ⊂ N (x∗, ε2), this implies that

Fy = Ly ∩N (x∗, ε2) = Ly ∩N (x∗, ε3) (37)

and their holonomy maps satisfy

h∗i (Fy) ⊂ Ly ∩N (x∗, ε2) = Fy

Thus, the finite set of points Fy is permuted by the action of a set of generators for π1(L∗, x∗). It
follows that the holonomy of all compositions of the generators are defined when restricted to the
set Fy. That is, for any w ∈ π1(L∗, x∗) the holonomy h∗w along w contains the finite set Fy in its
domain. Let H∗ ⊂ π1(L∗, x∗) denote the normal subgroup of finite index consisting of all words
whose holonomy fixes every point in Fy. Let {w1, . . . , wN} be a set of generators for H∗.
Let z ∈ Fy. For each w ∈ H∗, the holonomy h∗w map is defined at z and so must be defined on some
open neighborhood z ∈ V w

z ⊂ U of z, which may depend on w. As y ∈ U ∩Ge the leaf Ly ⊂ Ge is
without holonomy, so the restriction of h∗w to the open set V w

z must fix an open neighborhood of
z ∈ Uw

z ⊂ V W
z . Thus, the fix-point set of h∗w contains an open neighborhood of Fy and in particular,

contains an open neighborhood y ⊂ Uw
y ⊂ U ∩BT (x∗, ε∗).

Each holonomy map hi:N (x1, ε2) → N (x1, ε1) fixes the set Z1 and its restriction to the open set
BT (x∗, ε3) equals the restriction of h∗i to N (x∗, ε3). Thus, hw is defined on and fixes the open set
Uw

y ⊂ BT (x∗, ε∗). We will show that U ⊂ Fix(hw), hence for y′ ∈ U the leaf Ly′ is a finite covering
of L1 and isotopic to Ly, hence vol (Ly′) ≤ 4 M.

Let m` denote the word length of w` with respect to the generating set {[τ1], . . . , [τk]}, and set
m∗ = max{m1, . . . ,mN}. Then for all z ∈ N (x1, ε1) and for each 1 ≤ ` ≤ N the closed path
representing w in L1 can be lifted to a path τ z

w in the leaf Lz with length at most 2m∗P.

Fix a choice of w = w` ∈ H∗. Choose 0 < δ∗ ≤ ∆(2m∗P, ε∗) ≤ ε∗ such that BT (y, δ∗) ⊂ Uw
y .

Given any point y′ ∈ U there is a continuous path σ: [0, 1] → U ∩ Ge such that σ(0) = y and
σ(1) = y′. Choose a sequence of points 0 = t0 < t1 < · · · < tλ = 1 such that for yi = σ(ti) we have
σ([ti, ti+1]) ⊂ BT (yi, δ∗). See Figure 2 below.

Figure 2: path chain in the good set

We prove by induction on the index i that σ([0, 1]) ⊂ Fix(hw). For i = 0, y0 = y and by assumption,
the disk BT (y, δ∗) ⊂ Uw

y ⊂ Fix(hw) so σ([0, t1]) ⊂ Fix(hw).
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Now assume σ([0, tn]) ⊂ Fix(hw). We show that σ([tn, tn+1]) ⊂ Fix(hw).

Note that yn = σ(tn) ∈ Fix(hw).

The leaf Lxn through yn is a covering of L1 such that the word w is represented by a closed loop
of length at most 2m∗P. The holonomy map for w at yn fixes yn so is defined by a map

hyn
w :N (yn, δ∗)→ N (yn, ε∗)

As the points of U ∩ Ge determine leaves without holonomy, the set of fixed-points for hyn
w is an

open subset of N (yn, δ∗)∩U ∩Ge. The set of fixed-points is also always a (relatively) closed subset,
hence Fix(hyn

w ) contains the connected component of N (yn, δ∗) ∩ U ∩Ge which contains the point
yn. By assumption we have that σ([tn, tn+1]) ⊂ N (yn, δ∗) ∩ U ∩Ge, hence

σ([tn, tn+1]) ⊂ Fix(hyn
w ) ⊂ Fix(hw) (38)

This concludes the proof of Lemma 5.3, and thus the proof of Proposition 5.2. �.

6 Proof of Main Theorem

PROPOSITION 6.1 Let F be a compact C1-foliation of a compact manifold M . If V ⊂M is a
saturated open set which contains a tame point, then V cannot be transversely categorical.

Proof of Proposition 6.1: We assume that V is a categorical saturated open neighborhood of a
tame point x1 ∈ X1 and show that this yields a contradiction.

Let H:V × [0, 1]→M be a leafwise homotopy with H0 = Id, and H1(V ) ⊂ L∗ for some leaf L∗.

As x1 is a tame point, there is a continuous path γ: [0, 1] → V such that γ(1) = x1, γ(t) ∈ Ge for
0 ≤ t < 1, and the volume v(γ(t)) of the leaf Lt containing the point γ(t) satisfies lim

t→1
v(γ(t)) =∞.

Define a map φ: [0, 1] × [0, 1] → M by setting φs(t) = φ(s, t) = Hs(γ(t)). The key to obtaining a
contradiction is to analyze the behavior of the leaf volume function v(φ(s, t)).

Set xt = γ(t). Then xt ∈ Ge for 0 < t ≤ 1, while x1 ∈ X1 is the tame point.

Set xs,t = φ(s, t), so that xt = x0,t. Let Ls,t be the compact leaf through the point xs,t.

We note that:

• For all 0 ≤ t ≤ 1, Lt = L0,t and L1,t = L∗.

• Ls,t is the image of the leaf Lt by the map Hs.

• Ls,1 is the image of the leaf L1 by the map Hs.

• For t = 0, the path s 7→ xs,0 is the trace of the initial point x0 under the homotopy Hs.

• For t = 1, the path s 7→ xs,1 is the trace of the tame point x1 under the homotopy Hs.

• For s = 0, the volume function v(x0,t) = v(xt) is unbounded as t→ 1.

• For s = 1, t 7→ x1,t is a continuous path in the leaf L∗, hence v(x1,t) is constant for 0 ≤ t ≤ 1.
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As remarked after Proposition 6.1, the restricted path γ: [0, 1)→ Ge lies in the set of leaves without
holonomy, hence there is a foliated isotopy Γ:L0 × [0, 1) → Ge such that Γt(x0) = xt. Note that
each map Γt:L0 → Lt is a homeomorphism, hence has homological degree 1.

For t = 0 and each 0 ≤ s ≤ 1, the map Hs:L0 = L0,0 → Ls,0 is surjective by Proposition 4.7. Let ds,0

denote its homological degree. The path of leaves s 7→ Ls,0 starting at L0 has an upper bound P0 on
their volumes by Proposition 4.7, and moreover, there is an upper bound d0 = sup{ds,0 | 0 ≤ s ≤ 1}.
For t = 1 and each 0 ≤ s ≤ 1, the map Hs:L1 = L0,1 → Ls,1 is surjective by Proposition 4.7. Let ds,1

denote its homological degree. The path of leaves s 7→ Ls,1 starting at L1 has an upper bound P1 on
their volumes by Proposition 4.7, and moreover, there is an upper bound d1 = sup{ds,1 | 0 ≤ s ≤ 1}.
Set P = max{P0,P1}.
For the values 0 ≤ t < 1, we use the isotopy Γt extend the map φ(s, t) to a continuous 2–parameter
family of maps Φ: [0, 1]× [0, 1)× L0 →M by setting Φs,t(y) = Hs(Γt(y)) for y ∈ L0.

Observe that Φ1,t:L0 → L∗, 0 ≤ t < 1, is a homotopic family of maps, hence its homological degree
is constant. Thus, for all 0 ≤ t < 1 we have

deg(H1:L0 → L∗) = deg(Φ1,0:L0 → L1,0)
= deg(Φ1,t:L0 → L1,t)
= deg(Γt:L0 → Lt) · deg(H1:Lt → L1,t)
= deg(H1:Lt → L1,t)

It follows that
deg(H1:Lt → L1,t) ≤ d0 , ∀ 0 ≤ t < 1 (39)

Let K = R(2 d0 d1 P) be the maximum diameter of a leaf with volume at most 2 d0 d1 P.

For each 0 ≤ s ≤ 1, let 0 < ε′s ≤ ε0 be such that the normal projection Π:N (Ls,1, ε
′
s) → Ls,1 is

well-defined. Set δ′s = ∆(K, ε′s).

By the choice of K and δ′s, if L is a compact leaf such that vol (L) ≤ 2 d0 d1 P and L∩N (Ls,1, δ
′
s) 6= ∅,

then Proposition 2.9 implies that L ⊂ N (Ls,1, ε
′
s), the restriction Π:L → Ls,1 is a covering map,

and moreover by estimate (2) we have the estimate

vol (L) ≤ 2 deg(Π:L→ Ls,1) · vol (Ls,1) ≤ 2 deg(Π:L→ Ls,1) ·P (40)

For each s, N (Ls,1, δ
′
s) is an open neighborhood of Ls,1, so there exists λs > 0 such that

φ([s− λs, s+ λs]× [1− λs, 1]) ⊂ N (Ls,1, δ
′
s) (41)

Choose a sequence 0 = s0 < s1 < · · · < sN−1 < sN = 1 of points such that for λn = λsn the
collection of open intervals {In = (sn − λn, sn + λn) | n = 0, 1, . . . , N} is an open covering of [0, 1].
Moreover, we can assume that the covering is minimal; that is, for each n we can choose a point

ξn ∈ (sn−1, sn−1 + λn−1) ∩ (sn − λn, sn) , n = 1, 2, . . . , N

The closed intervals {[0, ξ1], [ξ1, ξ2], . . . , [ξN−1, ξN ], [ξN , 1]} form a closed cover [0, 1].

Set δ′′n = δ′sn
and ε′′n = ε′sn

for 0 ≤ n ≤ N .

Set λ∗ = min{λn | n = 0, 1, . . . , N} > 0. We claim that

0 ≤ s ≤ 1 & 1− λ∗ ≤ t < 1 =⇒ vol (Ls,t) ≤ 2 d0 d1 P (42)
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For s = 0 this contradicts the assumption that vol (L0,t) = v(φ0(t))→∞.

The idea of the proof of (42) is that we are given two paths of compact leaves: The first, for t = 1,
is the trace of the homotopy Hs applied to L1, which yields the path s 7→ Ls,1 = Hs(L1) whose
volumes are uniformly bounded by P1 ≤ P. The second, for t = µ with 1 − λ∗ ≤ µ < 1, is the
trace of the homotopy Hs applied to Lµ, which yields the path s 7→ Ls,µ whose volumes we want
to show are uniformly bounded. What we show (essentially) is that each leaf Ls,µ is a covering of
the corresponding leaf Ls,1 and that the degrees of these coverings are uniformly bounded by d0 d1.
The proof of this is by downward induction on the index 0 ≤ n ≤ N , and we formulate the covering
property for the discrete set of leaves corresponding to the values {sn | n = 0, 1, . . . , N}. The proof
uses the techniques for studying a homotopy of compact leaves introduced in section 4.

It is important to recall the usual caution with the study of compact foliations: a path leaves t 7→ Lt

with unbounded volumes cannot limit on any normal neighborhood of a compact leaf in the bad
set. Thus, the paths s 7→ Ls,µ must become more chaotic as µ → 1. The key point of the proof
below is that the behavior of the path of leaves µ 7→ L1,µ is controlled at s = 1, and we then use
an inductive process to control the the limiting behavior as µ→ 1, for all s < 1.

Let µ denote a fixed number such that 1− λ∗ ≤ µ < 1. For n = N , by (41) we have that

φ([1− ξN , 1]× [µ, 1]) ⊂ φ([1− λN , 1]× [1− λN , 1]) ⊂ N (L1,1, δ
′′
N )

and thus for each 1− ξN ≤ s ≤ 1 the point φ(s, µ) ∈ N (L1,1, δ
′′
N ).

Note that L1,µ = L1,1 = L∗, thus for s < 1 sufficiently close to 1 we have Hs(Lµ) ⊂ N (L1,1, ε
′′
N ).

Let rN < 1 be the infimum of r such that r ≤ s ≤ 1 implies Ls,µ ⊂ N (L1,1, ε
′′
N ). The above remark

implies rN < 1. We claim that rN < ξN .

Assume, to the contrary, that rN ≥ ξN . Let rN < r < 1. Then for r ≤ s ≤ 1, Ls,µ ⊂ N (L1,1, ε
′′
N )

and so the normal projection Π:Ls,µ → L1,1 is well-defined and a covering map. The restriction

H:Lµ × [r, 1]→ N (L1,1, ε
′′
N )

yields a homotopy between Hr:Lµ → Lr,µ and H1:Lµ → L1,µ = L1,1. Thus,

deg(Π ◦Hr:Lµ → Lr,µ → L1,1) = deg(Π ◦H1:Lµ → L1,µ → L1,1) = deg(H1:Lµ → L1,1)

as Π:L1,µ → L1,1 is the identity. The upper bound (39) implies deg(H1:Lµ → L1,1) ≤ d0 hence
the covering degree of Π:Lr,µ → L1,1 is bounded above by d0, as it is an integer which divides
deg(H1:Lµ → L1,1). By (2) it follows that

vol (Lr,µ) ≤ 2 d0 · vol (L1,1) ≤ 2 d0 ·P (43)

The leaf volume function is lower semi-continuous, hence we also have that

vol (LrN ,µ) ≤ lim
r→rN+

vol (Lr,µ) ≤ 2 d0 ·P

Thus, the estimate (43) holds for all rN ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.

As we assumed that rN ≥ ξN ≥ λN we have that φ(rN , µ) ∈ N (L1,1, δ
′′
N ) hence LrN ,µ ⊂ N (L1,1, ε

′′
N ).

By the continuity of Hs at s = rN there is r < rN such that r < s ≤ rN implies Ls,µ ⊂ N (L1,1, ε
′′
N ).

This contradicts the choice of rN as the infimum of such r, hence we must have that rN < ξN . This
proves the first statement of the inductive hypothesis for n = N , which is that the estimate (43)
holds for all ξN ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.
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The second statement statement of the inductive hypothesis involves the “internal geometry” of the
foliation near the path of leaves {s 7→ Ls,1}. We prove the equality between the ratios of covering
degrees for a pair of leaves in adjacent normal neighborhoods of a covering of the path {Ls,1}.
For ξN ≤ s ≤ 1, we have φ(s, 1) ∈ N (L1,1, δ

′′
N ) and vol (Ls,1) ≤ P hence Ls,1 ⊂ N (L1,1, ε

′′
N−1) and

the normal projection restricts to a covering map Π:Ls,1 → L1,1. Therefore, both LξN ,µ and LξN ,1

are coverings of L1,1, and their homological degrees are denoted by

αµ
N = deg(Π:LξN ,µ → L1,1)
aN = deg(Π:LξN ,1 → L1,1)

The leaves LξN ,µ and LξN ,1 are also coverings of LsN−1,1, so have covering degrees with respect to
LsN−1,1. We next show that the degrees of the maps t 7→ ΦξN ,t have a well-defined limit, which will
be used to prove the equality of the ratios of the covering degrees with respect to L1,1 and LsN−1,1.
We formulate this in a generality that allows us to quote it again for the general inductive step.

For 0 ≤ s ≤ 1, the path t 7→ φ(s, t) has limit xs,1 = Hs(x1). Assume that we have proven the
volume bound (43) holds for a given s and all 1− λ∗ ≤ t < 1. We then have that

Hs(Lt) = Ls,t ⊂ N (Ls,1, ε
′
s) (44)

and thus there is a well-defined limit

deg (Φs,1:L0 → Ls,1) ≡ lim
t→1

{
deg

(
Π ◦ Φs,t:L0 → N (Ls,1, ε

′
s)→ Ls,1

)}
The terminology deg (Φs,1:L0 → Ls,1) is a small abuse of notation, as given y ∈ L0 there is no
assurance that t 7→ Φs,t(y) has a limit at t = 1; it is only given that the image is trapped in the
open neighborhood N (Ls,1, ε

′
s). For 1− λs ≤ t < 1, define

Ξ(s, t) =
deg (Φs,1:L0 → Ls,1)
deg (Φs,t:L0 → Ls,t)

(45)

We now apply this discussion in the case s = ξN where we have the volume bound (43). It follows
from our choices that, for 1− λ∗ ≤ t < 1 and noting that sN = 1,

HξN
(Lt) = LξN ,t ⊂ N (LsN ,1, ε

′′
N ) ∩N (LsN−1,1, ε

′′
N−1) (46)

Thus, for 1 − λ∗ ≤ µ ≤ t < 1 the maps Π ◦ ΦξN ,µ ∼ Π ◦ ΦξN ,t:L0 → N (L1,1, ε
′′
N ) are homotopic,

hence
deg(Π ◦ ΦξN ,µ) = deg(Π ◦ ΦξN ,t) (47)

For t sufficiently close to 1 the map Π ◦ ΦξN ,t on the left-hand-side of (47) factors

Π ◦ ι ◦Π ◦ ΦξN ,t:L0 → N (LξN ,1, ε
′
ξN−1

)→ LξN ,1 ⊂ N (L1,1, ε
′′
N )→ L1,1

while the map Π ◦ ΦξN ,µ on left-hand-side of (47) factors

Π ◦ ΦξN ,µ:L0 → LξN ,µ → L1,1

Identifying the degrees of these maps in our terminology, we obtain from (47) that

deg(ΦξN ,µ:L0 → LξN ,µ) · αµ
N = deg(Π ◦ ΦξN ,µ) = deg(Π ◦ ΦξN ,t) = deg(ΦξN ,1:L0 → LξN ,1) · aN
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and so
αµ

N = Ξ(ξN , µ) · aN (48)

This completes the proof of the first stage of the induction.

The general inductive hypotheses involves two statements. Given 0 ≤ n ≤ N , we first assume that:

for all ξn ≤ s ≤ 1 & 1− λ∗ ≤ t ≤ 1, vol (Ls,t) ≤ 2 d0 d1 ·P (49)

Given (49) is valid for n, then for n ≤ ` ≤ N and 1− λ∗ ≤ µ ≤ 1 define the integers a`, b`, α
µ
` , β

µ
` .

Lξ`,1 ⊂ N (Ls`,1, ε
′′
` ) , a` = deg (Π:Lξ`,1 → Ls`,1)

Lξ`,1 ⊂ N (Ls`−1,1, ε
′′
`−1) , b` = deg

(
Π:Lξ`,1 → Ls`−1,1

)
Lξ`,µ ⊂ N (Ls`,1, ε

′′
` ) , αµ

` = deg (Π:Lξ`,µ → Ls`,1)
Lξ`,µ ⊂ N (Ls`−1,1, ε

′′
`−1) , βµ

` = deg
(
Π:Lξ`,µ → Ls`−1,1

)
For notational convenience, set bN+1 = βµ

N+1 = 1 and a0 = αµ
0 = 1.

The second statement of the inductive hypotheses is that for all n ≤ ` ≤ N and 1− λ∗ ≤ µ ≤ 1,

αµ
`

a`
= Ξ(ξ`, µ) =

βµ
`

b`
(50)

We proceed by downward induction on n, and must show that (49) and (50) are true for n− 1.

The choice of λs > 0 so that (41) holds implies that

φ([sn−1 − λn−1, sn−1 + λn−1]× [1− λ∗, 1]) ⊂ N (Lsn−1,1, δ
′′
n−1)

and hence φ(s, t) ∈ N (Lsn−1,1, δ
′′
n−1) for all ξn−1 ≤ s ≤ ξn and 1− λ∗ ≤ t < 1.

For s = ξn the hypothesis (49) implies that for all 1− λ∗ ≤ t < 1,

vol (Lξn,t) ≤ 2 d0 d1 ·P and hence Lξn,t ⊂ N (Lsn−1,1, ε
′′
n−1) (51)

Thus, the restriction Π:Lξn,t → Lsn−1,1 is a covering map. The key to the proof of the inductive
step is to obtain a uniform estimate for the homological degree of this covering map.

LEMMA 6.2 For all 1− λ∗ ≤ t < 1, βt
n · deg (Hξn :L0,t → Lξn,t) ≤ d0 d1.

Proof: Consider the diagram

L0,t -
Hξn

Lξn,t Lξn+1,t · · · LξN ,t

L0,1 -
Hsn−1

Lsn−1,1 �
bn

Lξn,1 -
an

Lsn,1 �
bn+1

Lξn+1,1 · · · LξN ,1 -
aN

L1,1

�
�

�
�	

......
?

@
@

@
@R

�
�

�
�	

......
?

@
@

@
@R

......
?

βt
n

Ξ(n, t)
αt

n βt
n+1

Ξ(n+ 1, t) Ξ(N, t)
αt

N

where the integer next to a covering map indicates its homological degree.

The mapsHξn :L0,1 → Lξn,1 andHsn−1 :L0,1 → Lsn−1,1 are homotopic through maps intoN (Lsn−1,1, ε
′′
n−1),

hence
deg

(
Hsn−1 :L0,1 → Lsn−1,1

)
= bn · deg (Hξn :L0,1 → Lξn,1) (52)

31



As deg
(
Hsn−1 :L0,1 → Lsn−1,1

)
= ds,1 ≤ d1 and the degrees of the maps are positive integers, it

follows that 1 ≤ bn ≤ d1.

For n ≤ ` < N and 1 − λ∗ ≤ t < 1, the maps Hξ`
:L0,t → Lξ`,t and Hξ`+1

:L0,t → Lξ`+1,t are
homotopic through maps into N (Ls`,1, ε

′′
` ), hence

αt
` · deg (Hξ`

:L0,t → Lξ`,t) = βt
`+1 · deg

(
Hξ`+1

:L0,t → Lξ`+1,t

)
(53)

Likewise, for n ≤ ` < N , the maps Hξ`
:L0,1 → Lξ`,1 and Hξ`+1

:L0,1 → Lξ`+1,1 are homotopic
through maps into N (Ls`,1, ε

′′
` ), hence

a` · deg (Hξ`
:L0,1 → Lξ`,1) = b`+1 · deg

(
Hξ`+1

:L0,1 → Lξ`+1,1

)
(54)

It follows from equation (53) that

deg (H1:L0,t → L1,t) =
αt

N

βt
N+1

· deg (HξN
:L0,t → LξN ,t)

=
αt

N−1α
t
N

βt
Nβ

t
N+1

· deg
(
HξN−1

:L0,t → LξN−1,t

)
...

=
αt

n · · ·αt
N−1α

t
N

βt
n+1 · · ·βt

Nβ
t
N+1

· deg (Hξn :L0,t → Lξn,t)

=
αt

n · · ·αt
N

βt
n · · ·βt

N

· βt
n · deg (Hξn :L0,t → Lξn,t)

so that by the inductive hypothesis (50) we have

βt
n · deg (Hξn :L0,t → Lξn,t) =

βt
n · · ·βt

N

αt
n · · ·αt

N

· deg (H1:L0,t → L1,t) (55)

=
bn · · · bN
an · · · aN

· deg (H1:L0,t → L1,t) (56)

Using (54) we obtain

deg (H1:L0,1 → L1,1) =
an · · · aN

bn · · · bN
· deg

(
Hsn−1 :L0,1 → Lsn−1,1

)
(57)

so that

bn · · · bN
an · · · aN

=
deg

(
Hsn−1 :L0,1 → Lsn−1,1

)
deg (H1:L0,1 → L1,1)

≤ d1 (58)

and hence combining (39), (56) and (58) we obtain

βt
n · deg (Hξn :L0,t → Lξn,t) ≤ d1 · deg (H1:L0,t → L1,t) ≤ d0 d1 (59)

This completes the proof of Lemma 6.2. �

Fix 1 − λ∗ ≤ µ < 1. Let rn−1 ≤ ξn be the infimum of r satisfying r ≤ ξn such that r ≤ s ≤ ξn
implies that Ls,µ ⊂ N (Lsn−1,1, ε

′′
n−1). As Lξn,µ ⊂ N (Lsn−1,1, ε

′′
n−1), the continuity of Hs at s = ξn

implies that rn−1 < ξn. We claim that rn−1 < ξn−1.
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Assume, to the contrary, that rn−1 ≥ ξn−1. Let rn−1 < r < ξn, then for r ≤ s ≤ ξn, Ls,µ ⊂
N (Lsn−1,1, ε

′′
n−1) and so the normal projection Π:Ls,µ → Lsn−1,1 is well-defined and a covering

map. The restriction
H:Lµ × [r, ξn]→ N (Lsn−1,1, ε

′′
n−1)

yields a homotopy between Hr:Lµ → Lr,µ and Hξn :Lµ → Lξn,µ. Thus,

deg(Π ◦Hr:Lµ → Lr,µ → Lsn−1,1) = deg(Π ◦Hξn :Lµ → Lξn,µ → Lξn−1,1)

It follows from the estimate (59) that

deg(Π:Lr,µ → Lsn−1,1) ≤ deg(Π ◦Hr:Lµ → Lr,µ → Lsn−1,1) ≤ d0 d1 (60)

hence
vol (Lr,µ) ≤ 2 d0 d1 · vol (Lsn−1,1) ≤ 2 d0 d1 ·P (61)

The leaf volume function is lower semi-continuous, hence we also have that

vol (Lrn−1,µ) ≤ lim
r→rn−1+

vol (Lr,µ) ≤ 2 d0 d1 ·P (62)

Thus, the estimate (61) holds for all rn−1 ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.

As we assumed that rn−1 ≥ ξn−1 ≥ sn−1 − λn−1 we have that φ(rn−1, µ) ∈ N (Lsn−1,1, δ
′′
n−1) hence

Lrn−1,µ ⊂ N (Lsn−1,1, ε
′′
n−1). By the continuity of Hs at s = rn−1 there is r < rn−1 such that

r < s ≤ rn−1 implies Ls,µ ⊂ N (Lsn−1,1, ε
′′
n−1). This contradicts the choice of rn−1 as the infimum

of such r, hence we must have that rn−1 < ξn−1. This proves the first statement of the inductive
hypothesis for n− 1.

The second inductive statement (50) follows exactly as before.

Thus, we conclude by downward induction that (42) holds for all 1− λ∗ ≤ t < 1 and all 0 ≤ s ≤ 1.

This yields a contradiction, and completes the proof of Proposition 6.1. �
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[3] H. Colman, Categoŕıa LS en foliaciones, Publicaciones del Departamento de Topoloǵıa y Ge-
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