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Abstract

In this paper, we study the topological dynamics of C0 and C1 actions on the circle by
a countably generated group Γ, under the assumption that there is expansive orbit behavior.
Our first result is a simple proof that if a C0-action ϕ is expansive, then Γ must have a free
sub-semigroup on two generators, hence has exponential growth. For C1-actions, we introduce
the set of points E(ϕ) with positive asymptotic exponent. These are the points which are
infinitesimally expansive. We prove that the hyperbolic periodic points of elements ϕ(γ) are
dense in E(ϕ). We then show that if the infinitesimally expansive set E(ϕ) has an accumulation
point in itself, then the geometric entropy h(ϕ) must be positive. If K is a minimal set for a C1-
action ϕ, then either there is an invariant probability measure supported on K, or K ⊂ E(ϕ).
As a corollary of the proof, we give a new proof that a C1-action with h(ϕ) = 0 must have
an invariant probability measure. Finally, we use the results of the paper to reformulate a
conjecture of Ghys, and give a proof that for a real analytic action ϕ, there is either an invariant
measure, or there is a nonabelian free subgroup of Γ.
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1 Introduction

Let Γ be a finitely-generated group, and ϕ: Γ× S
1 → S

1 be an effective action of Γ on the circle by
orientation-preserving homeomorphisms. The topological dynamics of ϕ and the algebraic structure
of Γ are known to be related in many, often surprising ways (see Ghys [14].) There are also many
open questions about such actions. In this paper, we consider some results related to the theme of
“expansiveness” and the consequences for the topological dynamics of ϕ and the structure of Γ.

One motivation for this paper comes from the study of codimension one foliations. The dy-
namics of codimension one foliations can be modeled by a pseudogroup acting on S

1 [16, 33, 18, 1].
Conversely, every group action on S

1 can be realized as the holonomy pseudogroup of a codimension
one foliation. Thus, there is a close relationship between these two areas. However, the study of
dynamics of pseudogroup actions requires careful attention to the domains of definition of elements
of the pseudogroup, a highly technical issue that often obscures fundamental ideas.

Another advantage of the study of group actions is that the orbit of a point x is given by the
quotient space {ϕ(γ)(x) | γ ∈ Γ} ∼= Γ/Γx where Γx is the isotropy subgroup of x. Thus, the
geometry of the orbit of x is dominated by that of Γ, and we can formulate properties about the
geometry of all orbits using Γ. For foliations, there is no a priori relationship between the topology
of different leaves, even up to coarse geometric equivalence [24].

This paper can be considered as an introduction to the dynamical theory of codimension one
foliations, without the complications of pseudgroups. Many results of this paper have corresponding
versions for codimension one foliations [23, 25, 27, 29], but the statements are often easier to
formulate and more definitive for a group action on S

1, and the proofs are more elementary.

In the study of the dynamics of group actions and foliations, “expansive orbit behavior” is often
encountered, and it has strong consequences for the topological dynamics of the system. We will use
a broad interpretation of expansiveness in this paper, ranging from the classical definition below,
to a local form where the action is assumed expansive on some dynamically defined subset of S

1.
In this generality, expansiveness is one of the key properties in the topological dynamics of a group
action. The standard definition of an expansive action is as follows. As we are often considering the
restriction of ϕ to invariant subset of S

1, we give the definition for a general action ϕ: Γ × X → X

on a metric space (X, dX). For notational convenience, given γ ∈ Γ we let γx = ϕ(γ)(x).

DEFINITION 1.1 A continuous action ϕ: Γ × X → X on a metric space (X, dX) is expansive if
there exists ε > 0 so that for any pair x 6= y ∈ X, there exists γ ∈ Γ such that dX(γx, γy) > ε. If
we wish to emphasize the constant ε, then we say ϕ is ε-expansive.

Expansive actions of Z on compact Riemannian manifold M are a well-understood area of
dynamics [38, 30]. For example, it is simple to show that the topological entropy of an expansive
diffeomorphism must be positive. However, an action of Z on S

1 is never expansive, as an expansive
map on S

1 cannot be invertible. There are also many classes of expansive actions of groups Γ acting
on shift spaces, which are topologically just Cantor sets [10, 37]. Motivated by these examples,
Tom Ward asked might it be possible to find an expansive action of a nilpotent group Γ on S

1?
Answering this question provided another motivation for this work.
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We now discuss the results of this paper. We will assume S
1 has the Riemannian metric induced

from the standard embedding in the Euclidean plane as a circle of radius 1, and let d: S1×S
1 → [0, π]

denote the path length metric. Recall that a subset K ⊂ S
1 is minimal if K is closed and Γ-invariant,

and there is no closed, Γ-invariant proper subset of K.

Section 2 begins some basic definitions and results about the topological dynamics of group
actions on the circle. We include a discussion of the dynamics for actions restricted to minimal
sets. For example, we show that if ϕ is expansive when restricted to a minimal set K then K has
finite type. We also show that an expansive action on S

1 must have an open local minimal set.
Finally, we define the entropy of an action following [12], define the concept of a “ping-pong game”
and “resilient” orbit, and give the relation to entropy.

In section 3, we prove that for an expansive C0-action on S
1, Γ must have exponential growth.

An expansive action ϕ can be suspended to give an expansive topological foliation F in the sense
of Inaba and Tsuchiya, and one of the main results of [29] implies that F must have a resilient leaf,
and hence Γ has exponential growth. This provides a negative answer to Ward’s question above.
Independently, and much later, Connell, Furman, Hurder [7] and Spatzier [39] proved that if ϕ is an
expansive action, then Γ cannot have a nilpotent subgroup of finite index. Here, we give a simple
direct proof of the following optimal result (see Example 8.1 in section 8):

THEOREM 1.2 If ϕ: Γ×S1 → S1 is an expansive action, then the entropy of the action ϕ must
be positive (or infinite) and Γ contains a free sub-semigroup on two generators. In particular, Γ
must have exponential word growth, and cannot have a nilpotent subgroup of finite index.

The proof uses only elementary topological dynamics, and the techniques are reminiscent of
those in [33]. In particular, we show in detail how the expansive hypothesis implies the existence of
a “ping-pong game” for the dynamics of ϕ, which implies both of the conclusions of Theorem 1.2.
The proof for the group action case is analogous to that for foliations given in [29], but is simpler and
all details are included, which will hopefully make the ideas from group dynamics more transparent,
and convince the reader this is a “basic” result of group dynamics.

Sections 4 through 6 study C1-actions. In section 4, we introduce the Γ-invariant set E(F) ⊂ S
1,

where a point x ∈ S
1 is in E(F) if the asymptotic exponent of Γ at x is positive – the precise

definition is given in § 4. Such sets arise in the study of C1-group actions on S
1 which have positive

entropy [22, 23, 25]. One of the main results of this paper is that a C1-action satisfies a dichotomy,
that there is always either an invariant probability measure, or E(F) contains a minimal set for ϕ.

For a > 0, the subset Ea(ϕ) ⊂ E(ϕ) consists of those points for which the exponent is at least a,
and E(ϕ) is the union of all such subsets. The set of hyperbolic fixed-points for the diffeomorphisms
ϕ(γ) form a subset Ph(ϕ) ⊂ E(F), filtered by the subsets Ph

b (ϕ) of points such that ϕ(γ)′(x) > b‖γ‖
for some γ ∈ Γ with γx = x.

THEOREM 1.3 Let ϕ: Γ×S1 → S1 be a C1-action, and suppose that Ea(F) is not empty. Then
for all b < a the hyperbolic fixed-points Ph

b (ϕ) are dense in Ea(ϕ), and ϕ is expansive on Ph
b (ϕ).

The proof of Theorem 1.3 follows from Propositions 4.5 and 4.7. The proofs of these two propositions
introduce several fundamental techniques for the study of expansive C1-actions, which are used
repeatedly in later sections.
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At every point of E(F) there is an element of holonomy which is locally expanding by an
arbitrarily large factor, hence if the set E(F) is “large enough” one expects the action of ϕ to be
chaotic, and have positive entropy. We prove this in section 5:

THEOREM 1.4 Let ϕ: Γ × S1 → S1 be a C1-action, and suppose that Ea(F) has infinite cardi-
nality for some a > 0. Then there exists a perfect subset K ⊂ E(F) on which the restricted action
of ϕ is expansive. Moreover, the entropy h(ϕ) of the action must be positive, and Γ contains a free
sub-semigroup on two generators.

COROLLARY 1.5 If ϕ: Γ×S1 → S1 is a C1-action with E(F) an uncountable set, then h(ϕ) > 0.

Section 6 gives criteria for when the set E(ϕ) is non-empty:

THEOREM 1.6 Let ϕ: Γ×S1 → S1 be a C1-action with minimal set K. Then either every orbit
of ϕ on K has polynomial growth, or K ⊂ E(ϕ), and hence there is a hyperbolic ping-pong game
for ϕ, and the entropy h(ϕ) > 0.

This result is a generalization of the Sacksteder Theorem [33] applied to C2 actions. This implies
the following dichotomy for C1-actions, which follows from Lemma 6.1 and Theorem 1.6:

COROLLARY 1.7 A C1-action ϕ: Γ × S1 → S1 either has an invariant probability measure, or
there is a hyperbolic ping-pong game for ϕ, and the entropy h(ϕ) > 0.

In section 7, we discuss the application of the ideas of this paper to a conjecture of Ghys that
a C0-action either has an invariant probability measure, or there exists a nonabelian free subgroup
of Γ. We reformulate the conjecture in terms of the action of ϕ on minimal sets, and show the
conjecture is implied by the existence of certain maps with isolated fixed-points. As an application,
this proves:

THEOREM 1.8 Let ϕ: Γ × S
1 → S

1 be a Cω-action. Then either ϕ has an invariant probability
measure, or Γ has a non-abelian free subgroup on two generators.

Shortly (a few days) after this paper was first circulated, G. Margulis gave a proof of the Ghys
Conjecture for C0-actions [31].

Finally, in section 8 we discuss three examples which are very helpful in understanding the
results of the previous sections, as they illustrate dynamical properties which must be considered
(implicitly, at least) in the proofs. The first example is of an expansive, real analytic action of a
solvable group on the circle, which shows that the conclusions Theorems 1.2 and 1.4 cannot be
strengthened to conclude that Γ contains a free non-abelian subgroup on two generators. The
second example is an extension of the first, and gives an expansive C1-action with an exceptional
minimal set K such that the action is not hyperbolic on K. The third example is simple, but
illustrates a group action with a countable family of hyperbolic fixed-points but tame dynamics.

The author would like to thank the organizers of the conference “Foliations: Geometry and
Dynamics”, Warsaw, May 29-June 9, 2000, and the organizers of the meeting “Ergodic Theory,
Riemannian Geometry and Number Theory” at the Newton Institute, Cambridge, UK, July 3-7,
2000 for making possible these meetings where parts of this work were presented. The hospitality
was excellent, as were the mathematical discussions.

The author is especially indebted to C. Connell, A. Furman, E. Ghys, T. Inaba, and G. Margulis
for a variety of discussions related to this paper.
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2 Topological dynamics of group actions

We give definitions and basic results concerning the topological dynamics of continuous group
actions. Some of these results are just straightforward generalizations of ideas from the dynamics
of a single invertible transformation, while other properties are more similar to results from the
structure theory of C0-foliations [34, 35, 36, 15, 19]. We start with two definitions from topological
dynamics of group actions.

DEFINITION 2.1 A continuous action ϕ: Γ×X → X on a metric space (X, dX) is equicontinuous
if for all ε > 0 there exists δ(ε) > 0 so that so that for all x, yX, if dX(x, y) ≥ ε then dX(γx, γy) ≥
δ(ε) for all γ ∈ Γ. That is, the family of maps {ϕ(γ) | γ ∈ Γ} is equicontinuous.

If X = S
1 and ϕ is an equicontinuous action, then there exists a Γ-invariant metric dΓ on S

1.
Moreover, dΓ defines a Γ-invariant Borel measure µΓ on S

1 by defining µΓ([x, y]) = dΓ(x, y) where
[x, y] ⊂ S

1 is a closed interval.

DEFINITION 2.2 A continuous action ϕ: Γ × X → X on a metric space (X, dX ) is distal if, for
every pair x 6= y ∈ X, there exists δ(x, y) > 0 such that dX(γx, γy) ≥ δ(x, y) for all γ ∈ Γ.

Clearly, an equicontinuous action is distal, while an expansive action is at the other extreme.
There is a dichotomy in the following special case:

LEMMA 2.3 A minimal action ϕ: Γ × S
1 → S

1 is either equicontinuous or expansive.

Proof: Let {σ1, . . . , σk} be a symmetric generating set for Γ. Then there exists a modulus of
continuity function δ(ε) so that if [a, y] ⊂ S

1 is a closed interval of length δ(ε) < π then σ`([x, y])
has length at most ε. Set δ0 = δ(π/2).

Suppose that ϕ is not equicontinuous. Then for some 0 < ε < π there exists a sequence of pairs
{(xn, yn) | n = 1, 2, . . .} with d(xn, yn) > ε and γn ∈ Γ such that d(γnxn, γnyn) < 1/n. Choose
a limit point z∗ for the set {γnxn | n = 1, 2, . . .}. Passing to a subsequence, we can assume that
d(γnxn, z∗) < 1/n and dX(γnxn, γnyn) < 1/n for all n.

Note that d(x, y) < ε implies there is a unique shortest interval x, y with endpoints x and y.
Let x 6= y ∈ S

1 with d(x, y) < ε, then there exists γ0 ∈ Γ such that γ0z∗ lies in the interior of x, y.
Choose n � 0 such that γ0(γnxn, γnyn) is contained in the interior of x, y.

Write γn = σi1 · · · σik as a product of generators, and define h` = σ−1
i`

· · · · σ−1
i1

· γ−1
0 . Note that

hk(x, y) contains γnxn, γnyn in its interior, so is an interval with length at least ε. If the length
is greater than π then there exists ` < k such that h`(x, y) has length between δ0 and π. We set
ε0 = min{ε, δ0} and it follows that ϕ is ε0-expansive. 2

2.1 Minimal sets

Suppose that K ⊂ S
1 is a minimal set for ϕ. Then either K is a finite set, or K = S

1, or K is a
perfect, nowhere dense subset.

If K is finite, the Γ acts via permutations of the set of points, so there is a normal subgroup of
finite index ΓK ⊂ G consisting of transformations which fix all the points of K.

If K = S
1 then we saw that ϕ is either equicontinuous or expansive. In the former case, it

is well-known that there is a Γ-invariant probability measure m on S
1 whose support must be S

1
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(cf. [33]). Renormalize m to have total mass 2π, choose a basepoint x0 ∈ S
1, then the measure

m defines a homeomorphism hm: S1 → S
1 by setting hm(x) = m([x0, x]) modulo 2π, so that

h∗
m

dθ = m where dθ denotes the standard length measure. Thus, hm conjugates ϕ to an action ϕm

on S
1 by rotations. As Γ acts effectively by orientation-preserving homeomorphisms, this implies

Γ is free abelian. The case where ϕ is expansive will be discussed in later sections.

A nowhere dense minimal set K is called exceptional. The dynamical properties of exceptional
minimal sets have been studied by many authors [18, 34, 19, 3, 4, 5, 6, 28, 29] and we recall here just
a few properties used in this paper. The complement S

1 −K = I where I = ∪∞
n=1In is a countable

union of open connected intervals In = (an, bn), and clearly I is Γ-invariant. The intervals In are
called the gaps of K, and the closure In = [an, bn] is called a closed gap. An endpoint of K is a
point in the intersection K ∩ In for some n.

DEFINITION 2.4 For x ∈ S
1 we say the orbit Γx is semi-proper if there exists ε > 0 so that

for either I = (x − ε, x] or I = [x, x + ε), the half-open interval I has disjoint Γ-orbit. That is, if
γ 6= τ then γI ∩ τI = ∅.

For example, for an exceptional minimal set K the orbits Γan and Γbn are semi-proper. We say
that K has finite type if there are only a finite number of semi-proper orbits determined by the
endpoints of K. There are C2-actions with an exceptional minimal sets that is not of finite type
[3, 4, 28].

LEMMA 2.5 Let K be an exceptional minimal set of ϕ. Then ϕ is expansive on K if and only if
K has finite type.

Proof: Let ε > 0 be an expansive constant for the action restricted to K. That is, for every
x 6= y ∈ K there exists γ such that d(γx, γy) > ε. Let Ii1, . . . , Iin be the gaps such whose length
is greater than ε. Then for any gap I` there must exist γ with γ(I`) of length greater than ε. As
γ(I`) is again a gap of K, γa` must be be an endpoint for one of Ii1, . . . , Iin . Hence, the orbits of
the endpoints {ai1 , . . . , ain , bi1 , . . . , bin} contain all endpoints of K.

Conversely, suppose that K has finite type. Let {In | n = 1, 2, . . .} be the gaps of K and
suppose that I1, . . . , Ik are such that the orbits of the endpoints {a1, b1, . . . , ak, bk} contain all the
orbits of the endpoints of K. Choose 0 < ε < max{|I1|, |I2|, . . . |Ik|, π/2}. Given x, y ∈ K with
0 < d(x, y) < ε, K is nowhere dense so there exists a gap In with In ⊂ [x, y]. Then there exists
γ ∈ Γ such that γIn = Ii for some 1 ≤ i ≤ k, and so d(γx, γy) ≥ |Ii| > ε. 2

Note that if K is not of finite type, then the proof shows that action fails to be expansive only
for pairs (x, y) which are endpoints of some gap In. Let K̂ = K − ∪∞

n=1{an, bn} be K with all
endpoints deleted.

LEMMA 2.6 Let K be an exceptional minimal set of ϕ. Then ϕ is expansive on K̂.

Proof: Let x 6= y ∈ K̂, then x or y are not endpoints, then for any gap, say I1, there is some γ ∈ Γ
for which γa1 ∈ (x, y). Thus, γI1 ⊂ (x, y) and hence d(γ−1x, γ−1y) > |I1|. 2

Proposition 7.2 below gives another version of this result, proving expansiveness for the action
on the “interior” of an exceptional minimal set.

The orbit of every point x ∈ K is dense, so for any gap Ii there are infinitely many disjoint
images {γIi | γ ∈ Γ} hence there must be a sequence γnIi whose lengths tend to 0. That is,
limn→∞ d(γnai, γnbi) = 0. Hence, if ϕ has an exceptional minimal set then it cannot be distal.
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2.2 Local minimal sets and expansiveness

DEFINITION 2.7 A Γ-invariant set K is a local minimal set if for all x ∈ K the closure of its
orbit, Γ x, equals the closure K. If K is an open set, then we call K an open local minimal set.

A minimal set K is a local minimal set. An orbit Γx such that each point γx is isolated in Γ x is
a local minimal set, but is not a minimal set unless the orbit is finite.

LEMMA 2.8 Let x ∈ S
1 and let K = Int Γ x. Let V ⊂ K be a non-empty open subset. If for

every y ∈ V , the orbit closure Γ y has non-trivial interior, then the saturation of V is an open local
minimal set.

Proof: Suppose that for every y ∈ V , the interior Uy = Int Γ y is not empty. As y ∈ Γ x we have
Γ y ⊂ Γ x and hence Uy ⊂ K = Int Γ x. Thus, there exist γ so that γx ∈ Uy. The closure of Γ y
contains Uy hence has γx as a limit point. But this implies Γ y = Γγ−1y has γ−1γx = x as a limit
point, and thus Γ y ⊃ Γ x so Γ y = Γ x = K. That is, for all y ∈ V we have Γ y = K.

Now consider the saturation W =
⋃

γ∈Γ

γV . For each z ∈ W , there is γ ∈ Γ with z = γy so the

orbit closures satisfy
Γ z = Γ γy = Γ y = K = W 2

This elementary lemma has a strong consequence.

PROPOSITION 2.9 An expansive action ϕ has a non-empty open local minimal set.

Proof: Suppose that ϕ has no local open minimal set. Choose x1 ∈ S
1. If the orbit closure

Γ x1 has no interior, set X1 = Γ x1. Otherwise, the interior U1 = Int Γ x1 is non-empty, so that
V1 = U1 ∩ {z ∈ S

1 | d(z, x1) < 1/100 is a non-empty open set. By Lemma 2.8 there must exists
y1 ∈ V1 such that X1 = Γ y1 has no interior. Set K1 = Z1.

The complement S
1 − Z1 is an open Γ-invariant set, so consists of a countable union of open

intervals. Let I2 denote one of the complementary intervals with greatest length. Let x2 ∈ I2 be
the midpoint, and define X2 = Γ x2 if this set has no interior. Otherwise, as before, there exists
y2 ∈ I2 with d(y2, x2) < |I2|/100 such that X2 = Γ y2 has no interior. Set Z2 = X1 ∪ X2.

Given any ε > 0, we can repeat the above process a finite number of times to obtain a closed
invariant subset Zn with no interior such that the complement S

1−Zn consists of a countable union
of intervals each of length less than ε.

Assume that ϕ is ε-expansive. Choose Zn as above, and let I ⊂ S1 − Zn be a complementary
interval. For all γ ∈ Γ the image γI is again a complementary interval, so |γI| < ε. But is x, y ∈ I
then this implies d(γx, γy) < ε for all γ contradicting the assumption. It follows that is ϕ is
ε-expansive for some ε > 0 then ϕ must have a non-empty open local minimal set. 2

COROLLARY 2.10 Suppose that ϕ has no non-empty open local minimal set. Then there exists
a collection of sets {Kn | n = 1, 2, . . .} such that

1. each Kn is closed and saturated with no interior

2. the action of ϕ on Kn is transitive; that is, there exists xn ∈ Kn whose orbit is dense

3. the union
⋃∞

n=1 Kn is dense in S
1
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The proof of the corollary follows from the same method of proof as above. Note this result
is an elementary form of the theory of levels for a topological group action. There is no claim
about the dynamics and limiting behavior of the sets Kn, which a good theory of levels proves
[8, 34, 35, 36, 15, 19]. In fact, the sets Kn could all be exceptional minimal sets! But the simplicity
of the proof above is also notable, and is sufficient for our application to the proof of Theorem 1.2.

2.3 Geometric entropy

We recall the definition of the entropy of a group action, following Ghys, Langevin and Walczak [12].
While this definition is usually considered only for C1-actions, it still makes sense for topological
actions, though the value may be infinite.

Choose a symmetric generating set S = {σ1, . . . , σk} for Γ. (We also assume one of the σi is
the identity.) An element γ ∈ Γ has length ‖γ‖ ≤ N if there exists indices i1, . . . , iN such that
γ = σi1 · · · σiN .

Given ε > 0 and an integer N > 0, we say that x, y ∈ S
1 are (N, ε)–separated if there exists

γ ∈ Γ with ‖γ‖ ≤ N and d(γx, γy) > ε. A finite subset {x1, . . . , xν} ⊂ S
1 is (N, ε)–separated if for

every k 6= ` the pair of points xk, x` is (N, ε)–separated.

Let S(ϕ, ε,N) denote the maximum cardinality of an (N, ε)-separated subset of S
1. This is a

finite number, as there are at most a finite number of maps in {ϕ(γ) | ‖γ‖ ≤ N}, hence this is an
equicontinuous family. Now define

h(ϕ, ε) = lim sup
N→∞

log S(ϕ, ε,N)

N
(1)

The geometric entropy of ϕ is the limit

h(ϕ) = lim
ε→0

h(ϕ, ε)

This limit is finite if ϕ is a C1-action , but may be infinite for topological actions when Γ has
rank greater than one. In general, h(ϕ) depends upon the choice of the generating set S. The key
point is that the dichotomy h(ϕ) 6= 0 or h(ϕ) = 0 is independent of the choices, and depends only
on the topological conjugacy class of the action ϕ.

The number h(ϕ) is called geometric entropy of ϕ as in the limit (1) the denominator is N which
represents the word length. In contrast, to define the “usual” topological entropy from topological
dynamics of group actions, the denominator would be the number of elements in the ball of radius
N in Γ for the word metric on Γ. The usual topological entropy is always finite, but vanishes if ϕ
is a C1-action and Γ is not rank one abelian.

Given a Γ-subset K ⊂ S
1 we can also define the relative geometric entropy h(ϕ,K) where we

define S(ϕ,K, ε,N) using subsets {x1, . . . , xν} ⊂ K, and the remainder of the definitions follow the
same pattern.

8



2.4 Ping-pong games and resilient orbits

We next recall a dynamical notion which was been colloquially called a “ping-pong game” by
de la Harpe [9], though the concept dates from the work of Klein, and it has many uses in the
study of dynamical systems.

DEFINITION 2.11 The a pair of maps {γ1: I0 → I1, γ2: I0 → I2} is called a ping-pong game for
ϕ if I0 ⊂ S

1 is a closed interval, I1, I2 ⊂ I0 are closed disjoint subintervals, and γ1, γ2 ∈ Γ satisfy
γ1I0 = I1 and γ2I0 = I2. If ϕ is a C1-action, and 0 < γ′

k(x) < 1 for k = 1, 2 and all x ∈ I0, then
we call this a hyperbolic ping-pong game.

Note that the definition of a ping-pong game does not require that either map γi: I0 → Ii

have a unique fixed-point. However, for a C1 action, if both maps ϕ(γ1) and ϕ(γ2) are hyperbolic
contractions on I0 then they clearly have unique fixed-points.

Here is one of the standard properties of a ping-pong game.

LEMMA 2.12 If {γ1: I0 → I1, γ2: I0 → I2} is a ping-pong game for ϕ, then {γ1, γ2} generates a
free sub-semigroup of Γ.

Proof: A word γ in the free sub-semigroup generated by {γ,γ2} has the form γ = γi1 · γi2 · · · γi`

for indices ij = 1, 2. It suffices to show that γ is not the identity, but γI0 ⊂ γi1I0 ⊂ Ii1 6= I0. 2

An action ϕ with a ping-pong game has non-zero entropy.

LEMMA 2.13 If {γ1: I0 → I1, γ2: I0 → I2} is a ping-pong game for ϕ, then h(ϕ) > 0.

Proof: Choose a symmetric generating set S = {σ1, . . . , σk} for Γ which contains {γ1, γ
−1
1 , γ2, γ

−1
2 }.

Let ε > 0 be the distance between I1 and I2. Choose any x ∈ I0 and set

Sn = {γi1 · γi2 · · · γinx | ij = 1, 2}

The set Sn has 2n elements, and given any pair of distinct points y = γi1 · γi2 · · · γinx and z =
γj1 · γj2 · · · γjnx there is a least 1 ≤ ` ≤ n so that i` 6= j` hence

γy,z = γi1 · · · γi`−1
= γj1 · · · γj`−1

Then γ−1
y,zy = γi` · · · γinx ∈ Ii` and γ−1

y,zz = γj`
· · · γjnx ∈ Ij`

hence d(γ−1
y,zy, γ−1

y,zz) > ε.

It follows that S(ϕ, ε,N) ≥ 2nN and h(ϕ) ≥ log(2). 2

We recall a definition from the topological dynamics of foliations:

DEFINITION 2.14 We say x ∈ S
1 is a resilient point for ϕ if there exists γ ∈ Γ and an open

interval J = (x− δ, x + δ) such that J ∩Γx 6= {x} and γ:J → J is a contraction with fixed-point x.
If ϕ is a C1-action and ϕ(γ)′(x) < 1, then we say x is a hyperbolic resilient point. An orbit Γy is
resilient if there is some x ∈ Γy which is resilient.

LEMMA 2.15 If there exists a resilient point x for ϕ then there is a ping-pong game for ϕ.

Proof: Let x be a resilient point with γ:J → J a contraction with x as unique fixed-point, and
τ ∈ Γ be such x 6= τx ∈ J . Choose n � 0 such that γnJ ∩ τγnJ = ∅. Then set γ1 = γn, γ2 = τγn,
I0 = J , I1 = γ1J , I2 = γ2J . 2

Conversely, if there is a hyperbolic ping-pong game for a C1-action ϕ then it is an exercise to
show there is a hyperbolic resilient point also.
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3 Expansive actions on local minimal sets

PROPOSITION 3.1 Suppose that ϕ: Γ × S1 → S1 is an expansive action with an open local
minimal set U . Then there exists a ping-pong game {γ1:K0 → K1, γ2:K0 → K2} for ϕ.

Proof: Let 0 < ε be the expansive constant for ϕ. Set δ = ε/10.

Given points x, y ∈ S1 with d(x, y) < π we let xy ⊂ S1 denote the interval (the shortest path
in S1) they determine, and |xy| the length of this interval.

The open set U is the disjoint union of open intervals, and since U is invariant and ϕ is expansive,
the diameter of at least one interval must be at least ε. Choose x1 ∈ U to be the midpoint of a
longest connected interval in M . (In the case where U = S1 select any point.) Let y1, z1 ∈ U be the
points with d(x1, y1) = d(x1, z1) = δ/4 and x1 ∈ y1z1 ⊂ U . Choose γ1 ∈ Γ with d(γ1y1, γ1z1) > ε.
Let J1 denote the interval y1, z1, and I1 = γ1J1 so |I1| > ε.

Now proceed inductively. Assume 6–tuples {xi, yi, zi, γi, Ji, Ii} have been chosen for 1 ≤ i < n
and we select a new 6–tuple {xn, yn, zn, γn, Jn, In}. Let xn be the midpoint of In−1 and choose
yn, zn ∈ In−1 be distinct points with d(xn, yn) = d(xn, zn) = δ/2n+1. Choose γn ∈ Γ with
d(γnyn, γnzn) > ε. Then set Jn = yn, zn ⊂ In−1 and let In = γnJn which is a subset of U .
Note that |Jn| = δ/2n and |In| > ε for all n ≥ 1.

Let x∗ be an accumulation point for the set of “midpoints” {x1, x2, . . .}. Note that since all
intervals In have length at least ε the point x∗ lies in the interior of U , and is at least ε/2 distance
from the boundary of U . By the transitivity of ϕ there exists γ∗ ∈ Γ such that 3δ < d(x∗, γ∗x∗) < 4δ.

Choose 0 < δ1 < δ/2 such that for the closed interval W = {w ∈ S1 | d(x∗, w) ≤ δ1}, we have
γ∗W ⊂ {w ∈ S1 | d(γ∗x∗, w) < δ1}. Then both W and its image γ∗W have diameter less than δ.
By the assumption 3δ < d(x∗, γ∗x∗) < 4δ it follows that W ∩ γ∗W = ∅.

Choose p > 0 so that δ/2p < δ1/2 and d(x∗, xp) < δ1/2. Then Jp ⊂ W .

Choose q > p so that d(x∗, xq) < δ1/2, so again Jq ⊂ W . It follows that γ∗Jp ∩ Jq = ∅.

Define
γ1 = (γq ◦ · · · ◦ γp)

−1 & γ2 = γ∗ · (γq ◦ · · · ◦ γp)
−1

Then set K0 = Iq and K1 = γ1Iq. Note that K1 ⊂ Jp by our choices. We set K2 = γ∗K1 and
so K1 ∩ K2 = ∅. That is, γ1:K0 → K1 and γ2:K0 → K2 forms a ping-pong table for ϕ. 2

Observe that the proof of Theorem 1.2 now follows from Propositions 2.9 and 3.1, and then
applying Lemmas 2.12 and 2.13.

Note also that Example 8.1 gives a real analytic expansive action of a solvable group on the
circle. Thus, the conclusion that there is a free sub-semigroup of Γ on two generators is best
possible. In Example 8.1 there is a unique minimal set which is a fixed-point for the action of Γ.
Thus, the ping-pong game constructed in the proof need not be contained in a minimal set for ϕ.
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4 Infinitesimal expansion and hyperbolic fixed-points

In this section we assume that ϕ is a C1-action. We introduce the set of infinitesimally expansive
points E(ϕ) and the set of hyperbolic fixed-points Ph(ϕ), then show that each point x ∈ E(ϕ) is
the limit of hyperbolic periodic points.

Choose a symmetric generating set S = {σ1, . . . , σk} for Γ, where one of the σi is the identity.
An element γ ∈ Γ has length ‖γ‖ ≤ N if there exists indices i1, . . . , iN such that γ = σiN · · · σiN ,
and ‖γ‖ = N if this is the least integer such that ‖γ‖ ≤ N .

DEFINITION 4.1 A point x ∈ S
1 is infinitesimally expansive for ϕ if

λ(x) = lim sup
‖γ‖→∞

log{γ′(x)}

‖γ‖
> 0 (2)

Define Ea(ϕ) = {x ∈ S
1 | λ(x) > a} and let E(ϕ) =

⋃

a>0

Ea(ϕ).

LEMMA 4.2 Ea(ϕ) is Γ-invariant.

Proof: Let λ(x) > 0 and σ ∈ Γ. Then

λ(σx) = lim sup
‖γ‖→∞

log{γ′(σx)}

‖γ‖

= lim sup
‖γ‖→∞

log{(γσ)′(x)} − log{(σ−1)′(σx)}

‖γσ‖
·
‖γσ‖

‖γ‖

= lim sup
‖γσ‖→∞

log{(γσ)′(x)}

‖γσ‖

= λ(x) 2

DEFINITION 4.3 A point x ∈ S
1 is a hyperbolic fixed-point for ϕ if there exists γ ∈ Γ with

γx = x and 0 < ϕ(γ)′(x) < 1. Let Ph(ϕ) denote the set of all hyperbolic fixed-points for ϕ.

For a ≥ 0, we say a point x ∈ Ph(ϕ) has exponent greater than a if there exists γ with γx = x
and ϕ(γ)′(x) > exp{a · ‖γ‖)}. Let Ph

a (ϕ) denote the set of all hyperbolic fixed-points with exponent
greater than a.

Clearly, Ph(ϕ) ⊂ E(F) and Ph
a (ϕ) ⊂ Ea(ϕ) for all a > 0. We also have:

LEMMA 4.4 Ph
a (ϕ) is Γ-invariant.

Proof: Let x ∈ Ph
a (ϕ) and γ ∈ Γ with γx = x and log{ϕ(γ)′(x)}/‖γ‖ > a. Given σ ∈ Γ, choose

n � 0 such that log{ϕ(γ)′(x)}/(‖γ‖+2‖σ‖/n) > a. Then note that ‖σ ·γn ·σ−1‖ ≤ n‖γ‖+2‖σ‖,
and

log{ϕ(σ · γn · σ−1)′(σx)} = n log{ϕ(γ)′(x)}

hence log{ϕ(σ · γn · σ−1)′(σx)} > a‖σ · γn · σ−1‖. 2

The hyperbolic periodic points for each ϕ(γ) are isolated, hence at most countable. As Γ is also
countable, the set Ph(ϕ) is at most countable. Our next result shows that Ph(ϕ) is not empty if
E(ϕ) is not empty. The idea of the proof is based on a modification of the method of proof for
Proposition 3.1.
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PROPOSITION 4.5 For a > 0, Ph
a (ϕ) is dense in Ea(ϕ).

Proof: Let x ∈ Ea(ϕ), set λ = λ(x), and choose 0 < ε < λ − a, and set ε0 = ε/10. Define

‖ϕ‖ = max
1≤i≤h

max
x∈S1

∣

∣log{ϕ(σi)
′(x)}

∣

∣

Choose δ = δ(ε) > 0 so that if d(y, z) < δ then

| log{ϕ(σi)
′(y)} − log{ϕ(σi)

′(z)}| < ε0 for all 1 ≤ i ≤ k (3)

Note that the modulus of continuity δ strongly depends on the choice of ε, and δ(ε) → 0 as ε → 0
except in trivial examples.

Choose a sequence γn ∈ Γ such that ‖γn‖ → ∞ and log{ϕ(γn)′(x)}/‖γn‖ > λ − ε0 for n > 0.

We next introduce a technical condition on each map ϕ(γn). For each n > 0, set `n = ‖γn‖. Then
we can choose indices {i1, . . . , i`n

} so that γ−1
n = σi`n

· · · σi1. For 1 ≤ j ≤ `n set γ−1
n,j = σij · · · σi1

with γ−1
n,0 = Id.

Set zn = γnx and label the orbit of zn by zn,j = ϕ(γ−1
n,j)(zn). For each 1 ≤ j ≤ `n set

µn,j = log{ϕ(σij )
′(zn,j−1)}. Then log{ϕ(γ−1

n )′(zn)} = µn,1 + · · · + µn,`n
.

An index 1 ≤ j ≤ `n is said to be ε0-regular if all of the partial sum estimates hold:

µn,j + ε0 < 0

µn,j + µn,j+1 + 2ε0 < 0

...

µn,j + · · · + µn,`n
+ (`n − j + 1)ε0 < 0

Regular points always exists, and in fact occur with a density estimated in terms of λ and ‖ϕ‖.
Here, we need just the least regular value, which has a simple description. An index j ≤ `n is
ε0-irregular if µn,1 + · · · + µn,j + jε0 > 0. There is a greatest irregular value, as

(µn,1 + · · · + µn,`n
)/`n ≤ ε0 − λ ≤ −a + −9ε0/10 < −ε0

If j0 is the greatest ε0-irregular index, then j0+1 is an ε0-regular index. If µn,j0 > −ε0 then j1 = j0+1
is the least ε0-regular index. Otherwise, j0 is again an ε0-regular index, and if µn,j0−1 > −ε0 then
j0 is the least. Continue in this way until µn,i > −ε0 then j1 = i + 1 is the least ε0-regular index.
Note that i is also an ε0-irregular index.

For each n let bn be the least ε0-regular index for γ−1
n , and define τn = σi`n

· · · σibn
. Set yn = τnx.

The idea of the ε0-regular value is that it guarantees that each of the maps ϕ(σii · · · σibn
) for i ≥ ibn

is a sufficiently strong linear contraction at yn to guarantee that the map is a uniform contraction
on the interval (yn−δ, yn +δ) because of the choice of δ. We make this precise in Lemma 4.6 below,
but first need some estimates. Note that ‖τn‖ = `n − bn + 1 ≤ ‖γn‖, and

log{ϕ(τn)′(yn)}/‖τn‖ ≤ log{ϕ(τn)′(yn)}/‖γn‖

≤ log{ϕ(γn)′(zn)}/‖γn‖ + ε0

≤ 2ε0 − λ (4)

There is also a uniform lower bound −‖ϕ‖ ≤ log{ϕ(τn)′(yn)}/‖τn‖.

By passing to a subsequence if necessary, we can assume that yn → y∗ and that d(y∗, yn) < δ/4
for all n > 0. Set In = [yn − δ/2, yn + δ/2], and hn = ϕ(τn). Define I∗ = [y∗ − δ/4, y∗ + δ4] then for
all n > 0 we have yn ∈ I∗ ⊂ In.
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LEMMA 4.6 For each n > 0,

δ exp{−‖ϕ‖‖τn‖} ≤ |hn(In)| ≤ δ exp{(3ε0 − λ)‖τn‖} (5)

Proof: Fix n and τn = σi`n
· · · σibn

. Then by (3) for y ∈ In

∣

∣

∣log{ϕ(σibn
)′(y)} − log{ϕ(σibn

)′(yn)}
∣

∣

∣ ≤ ε0

Thus, by the definition of µn,bn
we have for all y ∈ In

exp{−ε0 + µn,bn
} ≤ ϕ(σ−1

ibn
)′(y) ≤ exp{ε0 + µn,bn

}

hence
δ exp{−ε0 + µn,bn

} ≤ |ϕ(σibn
)(In)| ≤ δ exp{ε0 + µn,bn

}

As bn is ε0-regular, δ exp{ε0 + µn,bn
} < δ so we can repeat this argument for ϕ(σibn+1

) on the
interval ϕ(σibn

)(In) to get an estimate

δ exp{−2ε0 + µn,bn
+ µn,bn+1} ≤ |ϕ(σibn+1

· σibn
)(In)| ≤ δ exp{2ε0 + µn,bn

+ µn,bn+1}

We repeat the above argument `n − bn + 1 times and use (4) to arrive at the upper bound

|ϕ(τn)(In)| ≤ δ exp{(`n − bn + 1)ε0 + µn,`n
+ · · · + µn,bn

}

≤ δ exp{ε0‖τn‖ − (λ − 2ε0)‖τn‖}

< δ exp{(3ε0 − λ)‖τn‖}

The uniform estimate exp{−‖ϕ‖‖τn‖} ≤ ϕ(τn)′(y) for all y ∈ S
1 yields the lower bound

δ exp{−‖ϕ‖‖τn‖} ≤ |hn(In)|. 2

We now complete the proof of Proposition 4.5. The point y1 ∈ I∗ is in the interior, and
x = h1(y1), so there exists δ1 > 0 such that [x − 2δ1, x + 2δ1] ⊂ h1(I∗).

Choose n > 0 so that δ exp{(3ε0 − λ)‖τn‖} < δ1 and ‖τn‖ ≥ ‖ϕ‖‖τ1‖/ε0 which implies

(3ε0 − λ)‖τn‖ + ‖ϕ‖‖τ1‖ ≤ (4ε0 − λ)‖τn‖ (6)

Then y1, yn ∈ In implies d(hn(y1),hn(yn)) < δ exp{(3ε0−λ)‖τn‖} < δ1 hence hn(I∗) ⊂ hn(In) ⊂
h1(I∗). Set gn = h−1

1 ◦ hn, J1 = I∗ and Jn = gn(In). Thus, gn:J1 → Jn ⊂ J1 so gn has a fixed
point xn ∈ Jn satisfying d(x,h1(xn)) < δ exp{(3ε0 − λ)‖τn‖} and so

d(τ−1
1 x, xn) < δ exp{(3ε0 − λ)‖τn‖ + ‖ϕ‖‖τ1‖}

which tends to 0 as n → ∞. Set τ∗
n = τ−1

1 · τn, then gn = ϕ(τ∗
n) and it remains to estimate

g′
n(xn) = ϕ(τ−1

1 )′(τnxn) · ϕ(τn)′(xn)

≤ exp{‖ϕ‖‖τ1‖} · exp{(3ε0 − λ)‖τn‖}

≤ exp{(4ε0 − λ)‖τn‖}

< exp{−a‖τn‖} 2
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Note that while the proof of Proposition 4.5 shows that each point x ∈ E(ϕ) is the limit of
hyperbolic contractions gn with fixed-points xn → x, it may happen that for all of these fixed-
points, we have xn = x for all n. There is nothing in the proof which implies the fixed-points xn

are distinct from the original point x. In this case, Ph
a (ϕ) = Ea(ϕ). Example 8.3 illustrates exactly

this case.

Also note that all of the hyperbolic contractions gn:J1 → Jn ⊂ J1 have domain J1 which is an
interval of constant width δ/2. However, the choice of δ depends on the choice of x ∈ Ea(ϕ), as
ε0 = ε/10 where ε as chosen to satisfy 0 < ε < λ− a to optimize the estimate on g′

n(xn). The next
result uses a simple observation that if a > 0 then we can bound the choice of δ for each x ∈ Ph

a (ϕ),
and this implies the action is δ-expansive on Ph

a (ϕ).

PROPOSITION 4.7 For a > 0, ϕ is expansive on Ph
a (ϕ).

Proof: Choose 0 < ε < a, and set ε0 = ε/10. Then choose δ > 0 so that if d(y, z) < δ then

| log{ϕ(σi)
′(y)} − log{ϕ(σi)

′(z)}| < ε0 for all 1 ≤ i ≤ k (7)

Given x ∈ Ph
a (ϕ) let γ ∈ Γ be such that γx = x and ϕ(γ)′(x) < exp{−a‖γ‖}. Set ` = ‖γ‖ and

write γ = σi` · · · σi1. For 1 ≤ j ≤ ` set γj = σij · · · σi1 with γn,0 = Id, and xj = γj−1x.

For each 1 ≤ j ≤ ` set µj = log{ϕ(σij )
′(xj)}. Then log{ϕ(γ)′(x)} = µ1 + · · · + µ`.

Extend the finite sequence {µ1, . . . , µ`} to an infinite periodic sequence

{µ1, . . . , µ`, µ1, . . . , µ`, . . .}

and let Sm(n) denote the sum of the terms from m to n, where 1 ≤ m ≤ ` and m ≤ n < ∞. We
say m is ε0-good if and only if Sm(n) < −(n − m + 1)ε0 for all n ≥ m.

It is given that S1(`)/` → −a < −ε0, so there is a greatest n0 with S1(n0) ≥ −n0ε0. Set m0 =
n0+1 We claim that m0 is ε0-good. If not, then there exists n ≥ m0 with Sm0

(n) ≥ −(n−m0+1)ε0.
That is, the sum µn0+1 + · · · + µn ≥ −(n − n0)ε0. By the choice of n0, we then have

S1(n) = S1(n0) + Sn0
(n) ≥ −n0ε0 −−(n − n0)ε0 = −nε0

contradicting the choice of n0.

Because the sequence of µi is periodic with period `, the sum Sm(n) = Sm−`(n − `) hence if
m0 > `, then m0 − ` is also an ε0-good value. Thus, we can assume 1 ≤ m0 ≤ `.

Extend the definition of γj for 1 ≤ j ≤ ` to all j ≥ 1 by defining γj+` = γ · γj .

Set x0 = ϕ(γn0
)(x) and I0 = [x0 − δ/2, x0 + δ/2].

Let τ = σi` · · · σim0
and g = ϕ(τ). Then g(x0) = x as γx = x.

We can now use the same proof as for Lemma 4.6 to obtain

LEMMA 4.8 For each n > 0,

δ exp{−‖ϕ‖‖γn‖} ≤ |ϕ(γn)(I0)| ≤ δ exp{(3ε0 − λ)‖γn‖} 2 (8)

In particular, note that δ exp{(3ε0 − λ)‖γn‖} ≤ δ exp{−a/2‖γn‖} so the lengths of the interval
In = ϕ(γn)(I0) tends to zero as n → ∞. For each integer k ≥ 0 the interval Jk = ϕ(γk) ◦ g(I0)
contains x in its interior, and |Jk| → 0 as k → ∞.
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Given another point y ∈ Ph
a (ϕ) with y 6= x there exists k ≥ 0 such that y 6∈ Jk. Hence,

ϕ(τ−1γ−k)(y) 6∈ ϕ(τ−1γ−k)(Jk) = I0

which implies that x and y can be δ/2-separated. As the choice of δ depended only on a and not
on the choice of x 6= y this implies ϕ is δ/2-expansive on Ph

a (ϕ). 2

We point out one corollary of the above proof that will be used in the next section.

COROLLARY 4.9 Let a > 0 and choose δ > 0 as in the proof of Proposition 4.7. Then for each
x ∈ Ph

a (ϕ) there exists τx, γx ∈ Γ such that for x0 = τxx and Ix = [x0 − δ/2, x0 + δ/2], we have
γxx0 = x0 and ϕ(γx): Ix → Ix is a hyperbolic contraction.

Proof: With notation as above, set τx = τ−1 = (σi` · · · σim0
)−1 and γx = τ−1γτ . 2
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5 Infinitesimal expansion and entropy

We assume that ϕ is a C1-action and that E(ϕ) is not empty. Proposition 4.5 then implies that
Ph

a (ϕ) is not empty for some a > 0, and by Proposition 4.7 the action of ϕ on Ph
a (ϕ) is expansive.

By Corollary 4.9 each orbit of Γ in Ph
a (ϕ) contains a hyperbolic fixed-point point with a uniform

length domain, whose length depends only on a. In this section, we give conditions on the set E(ϕ)
which are sufficient to imply h(ϕ) > 0 as a consequence of the expansiveness on Ph

a (ϕ).

First, we say that Ph
a (ϕ) has finite orbit type if there exists {x1, . . . , xk} ⊂ Ph

a (ϕ) so that for
every x ∈ Ph

a (ϕ) there exists γ ∈ Γ and 1 ≤ i ≤ k so that γxi = x. That is, the quotient Γ\Ph
a (ϕ)

is finite. Otherwise, we say that Ph
a (ϕ) has infinite orbit type.

PROPOSITION 5.1 If Ph
a (ϕ) has infinite orbit type for some a > 0, then there exists a ping-pong

game {τ1: I0 → I1, τ2: I0 → I2} for ϕ, and hence h(ϕ) > 0.

Proof: By hypothesis, there exists a > 0 and an infinite set {x1, x2, . . .} ⊂ Ph
a (ϕ) such that

Γxi ∩ Γxk 6= ∅ implies i = k. By Corollary 4.9, there exists δ > 0 so that for each orbit Γxk

there exists yk ∈ Γxk and a hyperbolic contraction hk = ϕ(γk): Ik → Ik with fixed-point yk where
Ik = [yk − δ/2, yk + δ/2]. Moreover, i 6= k implies yi 6= yk.

Let y∗ be a limit point for the set {y1, y2, . . .} and choose i, k � 0 so that d(y∗, yi) < δ/10 and
d(y∗, yk) < δ/10. Then I0 = [y∗ − δ/5, y∗ + δ/5] ⊂ Ii ∩ Ik. Choose n � 0 so that hn

i (I0) ⊂ I∗,
hn

k(I0) ⊂ I0 and hn
i (I0) ⊂ I∗ ∩hn

k(I0) ⊂ I0 = ∅. Set I1 = hn
i (I0), I2 = hn

k(I0) and τ1 = γk
i , τ2 = γn

k ,
then {τ1: I0 → I1, τ2: I0 → I2} is a ping-pong game, and by Lemma 2.13, h(ϕ) > 0. 2

We next give a condition on E(ϕ) which implies h(ϕ) > 0. We say x ∈ Ea(ϕ) is an accumulation
point for Ea(ϕ) if for all ε > 0 the set {y ∈ Ea(ϕ) | d(x, y) < ε} is infinite. Since E(ϕ) is Γ-invariant,
if x is an accumulation point then each point γx for γ ∈ Γ is also an accumulation point.

An orbit Γx is proper if each point γx is isolated in the set Γx.

LEMMA 5.2 If Ea(ϕ) has no accumulation points, then Ea(ϕ) is a countable union of proper
orbits.

Proof: Suppose that each point x ∈ Ea(ϕ) has an open neighborhood Ux such that Ux ∩ Ea(ϕ) is
finite. Let U be the countable collection open intervals (a − b, a + b) where the centers {an} form
a countable dense subset of S

1 and b is a rational number. Then for each point y ∈ Ux ∩Ea(ϕ) we
can find an open set Ix,y ∈ U with Ix,y ∈ U and Ix,y ∩Ea(ϕ) = {y}. Thus, Ea(ϕ) is a countable set.

For x ∈ Ea(ϕ), if Γx is not proper then x is an accumulation point for E(ϕ) as Γx ⊂ Ea(ϕ).
Hence, if Ea(ϕ) has no accumulation points, it must be countable, and every orbit is proper. 2

PROPOSITION 5.3 If Ea(ϕ) has an accumulation point for some a > 0, or E(ϕ) is uncountable,
then there exists a ping-pong game {τ1: I0 → I1, τ2: I0 → I2} for ϕ, and hence h(ϕ) > 0.

Proof: Suppose that E(ϕ) is uncountable. Since E(ϕ) =
∞
⋃

n=1

E1/n(ϕ) there must exist a = 1/n for

which Ea(ϕ) is uncountable. By Lemma 5.2 the set Ea(ϕ) has an accumulation point, so it suffices
to consider this case.
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The idea of the proof is to use the method of proof for Proposition 4.5 to construct an infinite
sequence of hyperbolic fixed-points with domains of uniform length δ. These domains have to
overlap since S

1 is compact, and this will produce the ingredients for the ping-pong game as we
have seen before.

The reader is referred to the proof of Proposition 4.5 for details of the steps below which coincide
and are omitted here. We start by choosing 0 < ε < a, and set ε0 = ε/10. Choose a symmetric
generating set S = {σ1, . . . , σk} for Γ, where one of the σi is the identity. As before, choose δ > 0
so that if d(y, z) < δ then

| log{ϕ(σi)
′(y)} − log{ϕ(σi)

′(z)}| < ε0 for all 1 ≤ i ≤ k

Let x be an accumulation point for Ea(ϕ) where a > 0.

Choose a sequence γn ∈ Γ such that ‖γn‖ → ∞ and log{ϕ(γn)′(x)}/‖γn‖ > a − ε0 for n > 0.
Set `n = ‖γn‖. Choose indices {i1, . . . , i`n

} so that γ−1
n = σi`n

· · · σi1 . For each n let bn be the least
ε0-regular index for γ−1

n , and define τn = σi`n
· · · σibn

. Then

−‖ϕ‖ ≤ log{ϕ(τn)′(x)}/‖τn‖ ≤ 2ε0 − a (9)

For each n set xn = τ−1
n x. By passing to a subsequence if necessary, we can assume that

xn → x∗ and that d(x∗, xn) < δ/100 for all n > 0. Set In = [xn − δ/2, xn + δ/2], and hn = ϕ(τn).
Define I∗ = [x∗ − δ/4, x∗ + δ/4] then for all indices n we have xn ∈ I∗ ⊂ In. We can now use the
same proof as for Lemma 4.6 to obtain for each n > 0,

δ exp{−‖ϕ‖‖τn‖} ≤ |hn(In)| ≤ δ exp{(3ε0 − a)‖τn‖}

Hence, |hn(In)| ≤ δ exp{−a/2‖γn‖} and so for n � 0,

hn(I∗) ⊂ hn(In) ⊂ h1(I∗) ⊂ h1(I1) (10)

Thus, (10) implies h−1
1 ◦ hn: I1 → In ⊂ I1 so h−1

1 ◦ hn has a fixed point yn ∈ In satisfying
d(xn, yn) < δ exp{(−a/2)‖τn‖}. Set τ∗

n = τ−1
1 · τn, then ϕ(τ∗

n) = h−1
1 ◦ hn has hyperbolic fixed-

point yn which can be chosen arbitrarily close to xn = τ−1
n x ∈ Γx. In particular, we can assume

d(yn, xn) < δ/4 so the distance from yn to the endpoints of In is bounded below by δ/4.

For simplicity of notation, let g1 = ϕ(τ∗
n), z1 = yn, w1 = τ−1

n yn, J1 = I1 and K1 = In, then
g1:J1 → K1 ⊂ J1 has hyperbolic fixed-point z1 which satisfies d(x,w1) < δ exp{(−a/2)‖τn‖}. If
Γz1 ∩J1 contains a point other than z1 then Γz1 is a resilient orbit, so we are done by Lemma 2.15.

Otherwise, introduce the open set W1 = Int h1(I1) with x ∈ W1 and and W1∩Γz1 = {w1}. Since
x is an accumulation point for Ea(ϕ) there exists x2 ∈ W1 ∩ Ea(ϕ) so that d(x, x2) < d(x,w1)/3.
We then repeat the above construction of a hyperbolic fixed-point using the orbit Γx2, to obtain
an interval J2 of length δ and map g2:J2 → K2 ⊂ J2 which has a hyperbolic fixed-point z2. As
before, introduce the point w2 = h1(z1) and by choosing n sufficiently large in the construction of
z2 we can assume d(x2, w2) < d(x,w1)/3, hence d(w1, w2) > d(x,w1)/3 so Γw2 is disjoint from Γw1.
Again, if Γz2 ∩ J2 contains a point other than z2 then Γz2 is a resilient orbit, and we are done.

Iterating this procedure, we either arrive at a resilient leaf, or we obtain a series of hyperbolic
contractions gi:Ji → Ki ⊂ Ji where |Ji| = δ and gi has a fixed-point zi ∈ Ji which is bounded away
from the endpoints of Ji by at least δ/4. Then there exists i < k so that {zi, zk} ⊂ I0 = Ji ∩ Jk

and n � 0 so that for I1 = gn
i (Ji), I2 = gn

k (Jk), h1 = gn
i and h2 = gn

k , {h1: I0 → I1,h2: I0 → I2}
is a ping-pong game. 2
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6 Infinitesimal expansion and minimal sets

It is generally difficult to decide when the set E(ϕ) is non-empty. The two known cases are when
Ph(ϕ) is non-empty, and when the Godbillon-Vey class of C2-action is non-zero [27]. In this section,
we establish a dichotomy for a minimal set K, that either there is a ϕ-invariant probability measure
supported on K, or K ⊂ E(ϕ). If K is finite, this is trivial. If K is exceptional and some x ∈ K
has exponential orbit growth, then K ⊂ Ea(ϕ) for a > 0 the growth rate of an endpoint. If K = S

1

and K 6⊂ E(ϕ), then we use a new ε-cocycle tempering procedure (cf. [21, 26]) to show there is an
invariant probability measure on S

1.

Choose a symmetric generating set S = {σ1, . . . , σk} for Γ, where one of the σi is the identity,
and define the corresponding word metric on Γ. Define a set ΓN = {γ | ‖γ‖ ≤ N}, which is the
ball of radius N about the identity for the word metric on Γ. Let #ΓN denote the cardinality of
the set ΓN . The growth rate of Γ is the number

gr(Γ,S) = lim sup
N→∞

log #ΓN

N

Given x ∈ S
1 we define the growth rate of the action ϕ at x to be

gr(Γ,S, ϕ, x) = lim sup
N→∞

log #{ΓNx}

N

Clearly, gr(Γ,S, ϕ, x) ≤ gr(Γ,S). If gr(Γ,S, ϕ, x) > 0 we sat that the orbit Γx has exponential
growth, and subexponential growth otherwise. We recall a well-known fact.

LEMMA 6.1 Let ϕ be a C0-action with a minimal set K. Suppose that some x ∈ K has
gr(Γ,S, ϕ, x) = 0. Then there is a ϕ-invariant probability measure m on S

1 with support on K.
Hence, there exists a constant C > 0 and integer r ≥ 1 so that for every y ∈ K, #{ΓN ·y} ≤ C ·N r.
In other words, either every orbit of Γ on K has exponential growth, or all orbits have polynomial
growth.

Proof: The measure m is a weak-* limit of the probability measures {mN | N = 1, 2, . . .} defined
by, for a continuous function g: S1 → R,

mN (g) =
1

#{ΓN · x}

∑

y∈ΓN ·x

g(y)

The measure m defines a continuous map πm: S1 → S
1 by πm(y) = 2πm([y, 0]) mod 2πZ, where

[y, 0] is the counter-clockwise interval from 0 to y. The map πm is monotone increasing on K, as K
minimal implies that every relatively open set in K has positive m-measure. If K is exceptional,
πm is constant on the gaps of K, thus, is at most 2-to-1 on K as it identifies the endpoints of a
common gap. Thus, πm is injective on the orbits Γy for any y ∈ K.

Since K is invariant, πm defines a semi-conjugacy of ϕ to an action of ρm: Γ × S
1 → S

1 which
is a group of rotations of the circle. If r is the rank of this abelian group of rotations, then there
exists a constant C > 0 so that for every θ ∈ S

1 the orbit growth #{ρm(ΓN )(θ)} ≤ C · N r. Then
for any y ∈ K we have

#{ϕ(ΓN )(y)} = #{ρm(ΓN )(πm(y))} ≤ C · N r
2

There is also a dichotomy for E(ϕ) and minimal sets:
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LEMMA 6.2 Let K be a minimal set for ϕ, and suppose that x ∈ K satisifies λ(x) = a > 0.
Then for all 0 < b < a, K ⊂ Eb(ϕ) and Ph

b (ϕ) ∩ K is dense in K. Hence, either K and E(ϕ) are
disjoint, or K ⊂ E(ϕ).

Proof: Apply Proposition 4.5 to the point x ∈ Ea(ϕ)∩K, then following the notation of the proof,
there exists a hyperbolic contraction gn = ϕ(τ∗

n):J1 → Jn ⊂ J1 with fixed point xn ∈ J1 so that
τ−1
1 x ∈ J1, and xn ∈ Ph

b (ϕ). This implies that

d(xn,gi
n(τ−1

1 x)) = d(gi
n(xn),gi

n(τ−1
1 x)) → 0 as i → ∞

As x ∈ K and K is Γ-invariant, gi
n(τ−1

1 x) ∈ K for all i, so the fixed-point xn is in the closure of K.
But K is closed, so xn ∈ K. We have constructed one hyperbolic fixed-point in K, but the orbit of
xn under Γ is dense in K, so Ph

b (ϕ) ∩ K is dense in K.

Let y ∈ K. Then as K is minimal, there exists σ ∈ Γ such that σy ∈ J1. The sequence of
diffeomorphisms ϕ(τ∗

n)−iϕ(σ) has asymptotic exponent at y the same as for g−i
n at xn, so λ(y) > b.

This shows K ⊂ Eb(ϕ). 2

Now assume that K is an exceptional minimal set with gaps {Ii = (ai, bi) | i = 1, 2, . . .}. The
orbit of every point x ∈ K is dense, so for any gap Ii there are infinitely many disjoint images
{γIi | γ ∈ Γ} for which the sum of the lengths of is at most 2π. If Γ has exponential growth, this
observation suffices to show K ⊂ E(ϕ).

PROPOSITION 6.3 Let ϕ be a C1-action with exceptional minimal set K. If gr(Γ,S, ϕ, x) =
a > 0 for some endpoint x ∈ K, then for all b < a, K ⊂ Eb(ϕ). Conversely, if λ(x) > 0 for some
point x ∈ K, then every orbit of K has exponential growth.

Proof: Suppose K is an exceptional minimal set, and x ∈ K is an endpoint with gr(Γ,S, ϕ, x) =
a > 0. We will exhibit a point a∗ ∈ K ∩ Eb(ϕb) for all b < a. Then by Lemma 6.2 we have
K ⊂ Eb(ϕ) for all b < a.

Let Ix = (ax, bx) be the gap for K with endpoint x, and assume x = ax. (The case where x = bx

proceeds identically.) Set O(N,x) = #{ΓN · x}. Choose 0 < ε < a and set ε0 = ε/10. Then there
exists C > 0 and a sequence Nk → ∞ such that O(Nk, x) ≥ C exp{Nk(a − ε0)} for all k ≥ 1.

Choose δ = δ(ε) > 0 so that if d(y, z) < δ then

| log{ϕ(σi)
′(y)} − log{ϕ(σi)

′(z)}| < ε0 for all 1 ≤ i ≤ k (11)

For γ1, γ2 ∈ Γ either γ1Ix ∩ γ2Ix = ∅ or γ1Ix = γ2Ix. Thus, there are O(Nk, x) disjoint intervals
in the collection {γIx | ‖γ‖ ≤ Nk}. As the sum of the lengths of these intervals is less than
2π, for each k there exists γk ∈ ΓN with |γkIx| ≤ 2π/O(Nk, x) ≤ C2 exp{(ε0 − a)Nk}. Denote
γkIx = (ak, bk). Let a∗ ∈ K be an accumulation point of the set of endpoints {ak}. Passing to a
subsequence, we can assume that d(a∗, ak) < δ/4k.

Let N0 be such that ‖γ‖ ≥ N0 implies |γIx| < δ/4. For each k set `k = ‖γk‖ and write
γk = σi`n

· · · σi1. Let j0 < N0 be the least index so that j > j0 implies |σij · · · σi1Ix| < δ/4. Set
σk = σij0

· · · σi1 and

τk = γk · σ−1
k = σi`k

· · · σij0+1

so that ‖γk‖−N0 < ‖τk‖ ≤ ‖γk‖. Set Jk = σkIx. Then |Ix| exp{−‖ϕ‖N0} ≤ |Jk| ≤ |Ix| exp{‖ϕ‖N0}.
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We can now apply the mean value theorem to the map ϕ(τ−1
k ): Ik → Jk to obtain a point yk ∈ Ik

such that

ϕ(τ−1
k )′(yk) ≥

|Jk|

|Ik|
≥

|Ix| exp{−‖ϕ‖N0}

C2 exp{(ε0 − a)Nk}
≥ C3 exp{(a − ε0)Nk − ‖ϕ‖N0}

For all k ≥ 1 we have

d(a∗, yk) ≤ d(a∗, ak) + d(ak, yk) ≤ δ/4k + δ/4 < δ/2

so that yk ∈ (a∗ − δ/2, a∗ + δ/2). By the choice of j0, the same argument implies that for j ≥ j0

d(σij · · · σij0+1
a∗, σij · · · σij0+1

yk) ≤ δ/2

so that we can apply the estimate (11) along the orbit of a∗ and yk determined by the generators
of τk to conclude

ϕ(τ−1
k )′(a∗) ≥ C3 exp{(a − 2ε0)Nk − ‖ϕ‖N0}

As Nk → ∞ this implies a∗ ∈ Eb(ϕ) for b < a−2ε0. The choice of the limit point a∗ was independent
of the choice of ε and δ, and as ε > 0 can be made as small as desired, this implies a∗ ∈ Eb(ϕ) for
all b < a.

To prove the converse, we note that by Lemma 6.1 it suffices to show that there exists one
orbit in K with exponential growth. Suppose x ∈ K with λ(x) > 0, then by Lemma 6.2 there
exists a hyperbolic contraction gn = ϕ(τ∗

n):J1 → Jn ⊂ J1 with fixed point xn ∈ J1 ∩ K. As K
is minimal, there exists σ ∈ Γ such that σx ∈ J1 but x 6= σx. Thus, x is a resilient point, so by
Lemma 2.15 there is a ping-pong game for ϕ with x as one of the fixed-points, hence the orbit of
x has exponential growth. 2

When K = S
1, we require a separate method of proof to show if K ∩ E(ϕ) = ∅ then there

exists an invariant measure on K. This sort of problem requires a “tempering” procedure, as the
hypothesis is that the Lebesgue volume growth along orbits is subexponential, and we need to show
there is an equivalent measure which has uniformly slow growth. There are two types of tempering
procedures in the literature, one which works when Γ has subexponential growth [21, 26], and the
other applies when the volume growth along orbits is bounded [41]. The proof of the following
result introduces a new tempering procedure, which combines the techniques of both methods.

PROPOSITION 6.4 Let ϕ be a minimal C1-action. Then either E(ϕ) = S
1, or ϕ has an

invariant probability measure supported on S
1 and E(ϕ) = ∅.

Proof: Suppose that S
1 6⊂ E(ϕ), then by Lemma 6.2 we can assume λ(x) = 0 for all x ∈ S

1. We
will construct a sequence of probability measures {mn | n = 1, 2, . . .} so that for any continuous
φ: S1 → R we have |mn(φ)−mn(φ ◦σi)| ≤ ‖φ‖/n for all 1 ≤ i ≤ k. The weak-* limit m∗ of the set
of measures {mn} is invariant under Γ, and as ϕ is minimal, the support |m∗| = S

1.

For each N > 0 define

µ(ϕ,N, x) = max{ϕ(γ)′(x) | ‖γ‖ ≤ N} (12)

Note that µ(ϕ, 0, x) = 1, and µ(ϕ,N, x) ≥ 1 for all N . As λ(x) = 0, for all ε > 0,

lim
N→∞

exp{−Nε}µ(ϕ,N, x) = 0
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For each ε > 0, define a Borel function fε on K by fε(x) =
∞
∑

N=0

exp{−Nε} · µ(ϕ,N, x) and

introduce the measure mε = fε dθ where dθ denote the standard Lebesgue measure on S
1.

LEMMA 6.5 Let φ: S1 → R be continuous. Then |ϕ(σi)
∗mε(φ) −mε(φ)| ≤ exp(−ε)‖φ‖.

Proof: We calculate

ϕ(σi)
∗mε|x = fε(σix) (ϕ(σi)

∗dθ)|x

=

{

∞
∑

N=0

exp{−Nε} · µ(ϕ,N, σix)

}

ϕ(σi)
′(x) dθ

=

{

∞
∑

N=0

exp{−Nε} · µ(ϕ,N, σix)ϕ(σi)
′(x)

}

dθ

Observe that µ(ϕ,N, σix)ϕ(σi)
′(x) ≤ µ(ϕ,N + 1, x) as ‖γσi‖ ≤ N + 1, hence

ϕ(σi)
∗mε|x ≤

∞
∑

N=0

exp{−Nε} · µ(ϕ,N + 1, x)

≤ exp{ε} ·
∞
∑

N=1

exp{−Nε} · µ(ϕ,N, x)

< exp{ε} ·mε|x (13)

Note that if ‖γ‖ ≤ N − 1 then ‖γσ−1
i ‖ ≤ N , so µ(ϕ,N, σix)ϕ(σi)

′(x) ≥ µ(ϕ,N − 1, x), hence

ϕ(σi)
∗mε|x ≥

∞
∑

N=1

exp{−Nε} · µ(ϕ,N − 1, x)

≥ exp{−ε} ·
∞
∑

N=0

exp{−Nε} · µ(ϕ,N, x)

> exp{−ε} · mε|x (14)

The estimates (13) and (14) imply |ϕ(σi)
∗mε(φ) − mε(φ)| ≤ exp(ε)‖φ‖. 2

For each integer n > 0, choose ε with exp(ε) ≤ 1 + 1/n and set mn = mε/mε(1). The sequence
of probability measures {mn | n = 1, 2, . . .} have uniformly slow growth, so this complete the proof
of Proposition 6.4. 2

Theorem 1.6 and Corollary 1.7 of the introduction now follow from Lemma 6.1, Propositions 6.3
and 6.4, and Proposition 5.3.

Note that in the proof of Proposition 6.4, we used the hypothesis that the action is minimal
only to conclude that the invariant measure m∗ had support on all of S

1. Moreover, λ(x) = 0 was
required only for a set of full measure. Thus, if we combine the above proof with Proposition 5.3,
we obtain a new proof of Theorem 5.1, [12] in the case of groups acting on the circle:

COROLLARY 6.6 A C1-action ϕ with h(ϕ) = 0 must have an invariant probability measure.
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7 The free subgroup conjecture

In a lecture at the Dynamical Systems Symposium at the University of Paris, VI in June 1998,
Etienne Ghys made the following conjecture:

CONJECTURE 7.1 (Ghys) Let ϕ: Γ×S
1 → S

1 be a C0-action. Then either ϕ has an invariant
probability measure, or Γ has a non-abelian free subgroup on two generators.

In this section, we make some observations about this conjecture and the results of this paper.
As an application, we give a proof of the conjecture for real analytic actions.

Recall that a topological action ϕ: Γ×S1 → S1 admits a minimal set, which is either a periodic
orbit, the entire circle S

1, in which case the action is minimal, or an exceptional minimal set. A
periodic orbit supports an invariant probability measure, so it suffices to consider the other two
cases.

If the action is minimal, then by Lemma 6.1 either there exists an invariant measure with full
support, or every orbit of ϕ has exponential growth. In the latter case, by Lemma 2.3 the action
on S

1 must be expansive. Proposition 3.1 implies that the action admits a ping-pong game.

If the action preserves an exceptional minimal set K, then again there is the dichotomy that
either there is an an invariant measure with full support on K, or the orbit of every point in K has
exponential growth. The latter case, where the orbits have exponential growth, can be reduced to
the minimal action case:

PROPOSITION 7.2 Suppose that ϕ: Γ × S1 → S1 has an exceptional minimal set K, and there
is no invariant probability measure with support K. Then there exists a ping-pong game {γ1: I0 →
I1, γ2: I0 → I2} for ϕ restricted to K.

Proof: Define a continuous map ρ: S1 → S
1 which is constant on the gaps of K, and monotone on

K. The action ϕ descends to a quotient action ϕ: Γ × S
1 → S

1 which is semi-conjugate to ϕ via ρ.
The action ϕ is then minimal, with no invariant measure. By Lemma 2.3 the action ϕ on S

1 must be
expansive. Proposition 3.1 implies that ϕ admits a ping-pong game {ϕ(γ1): I0 → I1, ϕ(γ2): I0 → I2}.
We set I0 = ρ−1(I0), I1 = ρ−1(I1), I2 = ρ−1(I2), and obtain a ping-pong game for ϕ. 2

There is no statement that the maps ϕ(γ1) and ϕ(γ2) have unique fixed-points. Even if one of
the maps ϕ(γi) has a unique fixed point, it could be the image of a gap under ρ, hence its preimage
consist of the endpoints of a gap of K.

These remarks show that Conjecture 7.1 is implied by the more concrete problem:

CONJECTURE 7.3 Let ϕ: Γ×S1 → S1 be a C0-action with a minimal set K, and suppose that
there is a ping-pong game for ϕ on K. Then Γ has a non-abelian free subgroup on two generators.

For C1-actions, the existence of hyperbolic fixed-points for the action of ϕ on minimal sets
lets us strengthen the above remarks. Assume that ϕ is a C1-action with no invariant probability
measure. Then there exists a minimal set K which is either S

1 or exceptional. By Corollary 1.7
there is a hyperbolic ping-pong game for ϕ on K. That is, there exists elements γ1, γ2 ∈ Γ and
a domain I0 with I0 ∩ K 6= ∅ so that the pair of restricted maps {f : I0 → I1, g: I0 → I2} is a
ping-pong game. Moreover, f and g are hyperbolic contractions with fixed points f(x) = x ∈ K
and g(y) = y ∈ K for x 6= y.
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Thus, for C1-actions, we can add to the hypotheses of Conjecture 7.3 the statement that the
maps defining the ping-pong game are hyperbolic contractions on the domain I0 with unique fixed-
points there. This is the setting for applying some version of the “Tits alternative” [40, 9]. One
possible approach is the formulation of the Tits alternative in section 3 of Farb-Shalen [11]. We
give the statement in the present context:

THEOREM 7.4 Let ϕ: Γ × S1 → S1 be a C0-action with a minimal set K and no invariant
probability measure on K. Suppose there exists γ1, γ2 ∈ Γ so that, for f = ϕ(γ1), g = ϕ(γ2),
Fix(f) = {x ∈ S

1 | f(x) = x}, and Fix(g) = {x ∈ S
1 | g(x) = x}, we have

1. f |K and g|K have infinite order

2. Fix(f) ∩ K 6= ∅ and Fix(g) ∩ K 6= ∅

3. Fix(f) ∩ Fix(g) ∩ K = ∅

Then for some n > 0, the group generated by fn and gn is a nonabelian free group.

Proof: If K = S
1 this is exactly what is proved in [11]. If K is exceptional, define a minimal action

ϕ on S
1 via the semi-conjugacy of the proof of Proposition 7.2, then proceed as before. 2

We use this result to prove the following:

THEOREM 7.5 Let ϕ: Γ×S1 → S1 be a C0-action with a minimal set K, and suppose that there
is a ping-pong game {γ1: I0 → I1, γ2: I0 → I2} for ϕ on K such that for f = ϕ(γ1), g = ϕ(γ2), the
sets Fix(f) ∩ K and Fix(g) ∩ K are discrete. Then Γ has a non-abelian free subgroup.

Proof: Let Fix(f)∩K = {x1, . . . , xn} and Fix(g) ∩K = {y1, . . . , ym}. If Fix(f)∩ Fix(g) = ∅ then
we are done by Theorem 7.4. Otherwise, it suffices to choose an element τ ∈ Γ such that

{x1, . . . , xn} ∩ {τy1, . . . , τyn} ∩ K = ∅ (15)

for we then replace g with h ◦ g ◦ h−1 where h = ϕ(τ), and condition (7.4.3) is satisfied since
K is invariant. Following an observation of Farb and Shalen in section 3 of [11], we note that if
no such τ ∈ Γ exists, then for every τ there exists xi and yk with τyk = xi, or τ ∈ T i, k where
Ti,k = {σ ∈ Γ | σyk = xi}. Let Γyk

⊂ Γ denote the stabilizer of yk, then Ti,k = τΓyk
for any

element τ ∈ Ti,k. Thus, Γ is a finite union of cosets of stabilizers of points in Fix(g). By the “Coset
Lemma” 3.1 of [11], one of the stabilizers Γyk

must have finite index in Γ. But this implies that
the orbit Γyk is finite, which contradicts the fact that the orbit of every point in K is dense. Thus,
there must exist some τ satisfying (15). 2

For a C1-action ϕ with minimal set K and no invariant probability measure supported on K,
there is always a ping-pong game on K as remarked previously. Thus, Conjecture 7.1 would follow
if the maps f and g can be chosen with isolated fixed-points in K. The fixed-points of a real
analytic action are always isolated, so Theorem 1.8 follows from the remarks of this section and
Theorem 7.5.

NB. In the manuscript [31], G. Margulis has given a proof of Conjecture 7.1 for C0-actions.
The methods are similar to those discussed in this paper, but Margulis considers the action of Γ
on ε-nets, not just on individual points, and so avoids the need for assuming isolated fixed-points.
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8 Examples

We give three examples which illustrate the ideas developed in this paper. The first example is a
real analytic expansive action of a solvable group. The second second example embeds the first
example into the gaps of a Denjoy example to produce an expansive C1-action of a solvable group
with a Cantor type minimal set. The third example is a C∞-action with a countable collection of
hyperbolic fixed-points, but is not expansive. None of these examples is new, but understanding
each of them provides a foundation for understanding the ideas of this paper. They also provide
“counter-examples” to extending the conclusions of the theorems of the paper, as discussed in
comments after each example.

EXAMPLE 8.1 An expansive Cω-action of a solvable group on S1 with minimal set a point.

Define maps of the real line by f(u) = 2u and g(u) = u + 1. Embed the real line into the circle
S1 = {z = x + iy | x2 + y2 = 1} ⊂ C by the linear fractional map h(u) = (1 + iu)/(1 − iu). This
map conjugates f to α = h ◦ f ◦ h−1 and β = h ◦ g ◦ h−1, which are both real analytic linear
fractional transformations of S

1. Let Γ be the solvable subgroup of Diffω(S1) they generate, and
ϕ: Γ: S1 → S

1 the action they determine.

The action of f, g on R has every orbit dense, hence the action of Γ on S1 admits a unique
fixed–point (−1, 0), and every other orbit is dense. In particular, the fixed-point (−1, 0) for the full
action is the unique minimal set.

Given x 6= y ∈ S1, at least one of these cannot be the fixed–point (−1, 0). Hence, there exists
` such that g`(h−1(x)) and g`(h−1(y)) lie on opposite sides of the origin in R. Applying a suitable
power k > 0 of f we can ensure that their images fk ◦ g`(h−1(x)) and fk ◦ g`(h−1(y)) span an
interval containing either [0,1] or [-1,0] in R, hence h ◦ fk ◦ g`(h−1(x)) and h ◦ fk ◦ g`(h−1(y)) are ε
separated in S1 for ε < 1/2.

This example is interesting for two reasons. First, it shows that expansiveness is not sufficient
to imply there is a free subgroup on two generators in Γ, even for analytic actions, as the group Γ is
solvable. Secondly, the action of Γ does have a ping-pong table, which is given in terms of f and g
by the two maps h−1◦h1◦h(u) = g−2◦f−2(u) = −2+u/4 and h−1◦h2◦h(u) = g2◦f−2(u) = 2+u/4.
We can take h−1(I0) = [−4, 4], h−1(I1) = [−3,−1] and h−1(I2) = [1, 3]. The forward iterates of
I0 define a Cantor set K which is invariant under the semigroup generated by {h1,h2}. But the
set K is not invariant for the full group Γ as the only minimal set for Γ is (−1, 0). Thus, properties
of the subdynamics generated by a ping-pong game need not carry over to the full group action.

EXAMPLE 8.2 An expansive action of a solvable group on S1 with exceptional minimal set.

Let γ: S1 → S
1 be a (Denjoy) C1-diffeomorphism with an invariant exceptional minimal set K. The

complement of K consists of a disjoint union of open intervals {U1, U2, . . .} and γ acts transitively
on the set of intervals. Thus, we can index the open sets by Z where U` = γ`U0.

Let h1 and h2 be the linear fractional maps of S1 constructed in Example 8.1. Let h3 be a
modification of the map h1 so that h3 agrees with h1 away from a small neighborhood of the
fixed-point (−1, 0). Near (−1, 0), we require that h3 also have (−1, 0) as a unique sink, but such
that h′

3(−1, 0) = 1, and all higher derivatives vanish at (−1, 0). That is, we make h1 flat at (−1, 0).

Let φ: S1 − (−1, 0) → U0 be an affine diffeomorphism (which is unique).
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Define α ∈ Diff1(S1) with fixed–point set K, and on U` we define

α|U` = γ` ◦ φ ◦ h3 ◦ φ−1 ◦ γ−`

Define β ∈ Diff1(S1) with fixed–point set K, and on U` we define

β|U` = γ` ◦ φ ◦ h2 ◦ φ−1 ◦ γ−`

Let Γ ⊂ Diff1(S1) be the subgroup generated by {α, β, γ}. Clearly, K is the unique minimal set
for the action of Γ, and every point in the complement of K has dense orbit in S1.

The action of Γ is expansive. There are two cases to consider. If x 6= y ∈ S1, and both points
lie in the same connected component of the complement of K, then a suitable power γ`(x) ∈ U0

so we can proceed as in Example 8.1. If x 6= y do not lie in the closure of the same connected
component of the complement of K, then there exists some U` contained in the interval xy, thus
γ−`(x) and γ−`(y) contain U0 in the interval they determine, so the points are again ε-separated.

This example is a little more subtle than the first, as it has a unique exceptional minimal set,
which is obviously of finite type, and the action is expansive on K. The set of hyperbolic periodic
points Ph

log 2(ϕ) is dense in the complement of K. (The point (1, 0) is fixed by α, where α′(1, 0) = 2,
and the conjugates of α provide a dense set of fixed-points.) However, K ∩ E(ϕ) = ∅ as there is
an invariant measure for the action on K. This shows that in general, E(ϕ) is not a closed set.
Also, the orbits in the complement of K have exponential growth, so that in Theorem 6.3, it is not
sufficient that the exponential growth orbit limit to K - it must be an orbit of a point in K.

EXAMPLE 8.3 A proper C∞-action of a solvable group on S1 with countably many hyperbolic
fixed-points and no ping-pong games.

Let h1 be the hyperbolic linear fractional map as in Example 8.1. Choose a fundamental domain
I = [a, b] for h1 in the invariant open set S

1
+ = {z = x + iy | x2 + y2 = 1 & y > 0}.

Let φ: S1 − (−1, 0) → I be an affine diffeomorphism (which is unique) and us it to define h4 on
I as h4 = φ ◦ h1 ◦ φ−1. Extend h4 to all of S

1 as the identity outside of I. On the interior of the
interval I, h4 has a unique hyperbolic fixed-point y0 ∈ I with derivative 2, and all other points are
asymptotic to the endpoints of I.

Let Γ be the subgroup of Diff∞(S1) generated by {h1,h4}, and ϕ the action it generates. The
group Γ is solvable, but its commutator subgroup is infinitely generated, so Γ must have exponential
growth. Note that ϕ has countably many hyperbolic fixed-points {yk = hk

1(y0) | k ∈ Z}, where yk

is fixed by all of the maps g`
k = hk

1 ◦ h`
4 ◦ h−k

1 . Thus, λ(yk) > ` · log(2)/(2k + `) for all `.

On the other hand, the orbits of ϕ consist of either a singleton (for x = (−1, 0)); or copy of Z

(for the translates h`
1(y0), for the endpoints of I, and for all points in S

1
−); or they are isomorphic

to Z
2. That is, all orbits have quadratic growth.

Obviously, ϕ has no ping-pong table, in spite of the existence of many hyperbolic fixed-points.
The issue is that the domains of contractions of these fixed-points do not overlap, so do not generate
the complicated dynamics of a ping-pong table. It is cautionary, for many of the constructions made
in this paper require producing contractions with overlapping domains, and it is not sufficient to
just exhibit the contractions, as the domains must be controlled as well.

The suspension of this example is one of the most basic in the study of foliations, as it is “depth
two” and the leaves have quadratic growth, even though the group Γ has exponential growth. More
examples and constructions can be found in Hector [17], and also in the book [1].
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[17] G. Hector. Quleques exemples de feuilletages espèces rares. Ann. Inst. Fourier, Grenoble, 26:239–264,
1976.
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