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1. Introduction

The study of foliation dynamics seeks to understand the asymptotic properties of leaves of foliated
manifolds, their statistical properties such as orbit growth rates and geometric entropy, and to
classify geometric and topological “structures” which are associated to the dynamics, such as the
minimal sets of the foliation. The study is inspired by the seminal work of Smale [189] (see also
the comments by Anosov [13]) outlining a program of study for the differentiable dynamics for a
Cr-diffeomorphism f : N → N of a closed manifold N , r ≥ 1. The themes of this approach included:

(1) Classify dynamics as hyperbolic, or otherwise;
(2) Describe the minimal/transitive closed invariant sets and attractors;
(3) Understand when the system is structurally stable under Cr-perturbations, for r ≥ 1;
(4) Find invariants (such as cohomology, entropy or zeta functions) characterizing the system.

Smale also suggested to study these topics for large group actions, which leads directly to the topics
of these notes. The study of the dynamics of foliations began in ernest in the 1970’s with the research
programs of Georges Reeb, Stephen Smale, Itiro Tamura, and their students.
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2 STEVEN HURDER

A strict analogy between foliation dynamics and the theory for diffeomorphisms cannot be exact.
Perhaps the most fundamental problem is the role played by invariant probability measures in the
analysis of dynamics of diffeomorphisms. A diffeomorphism of a compact manifold generates an
action of the group of integers Z, which is amenable, so every minimal set carries at least one
invariant measure. Many of the techniques of smooth dynamics use such invariant measures to
analyze and approximate the “typical dynamics” of the map. In contrast, a foliation need not have
any transverse, holonomy-invariant measures. Moreover, the dynamics of foliations which do not
admit such invariant measures provide some of the most important examples in the subject.

Even when such invariant measures exist, there is the additional problem with “time”. In foliation
dynamics, the concept of linearly or time-ordered trajectories is replaced with the vague notion of
multi-dimensional futures for points, as defined by the leaves through the points. The geometry of
the leaves thus plays a fundamental role in the study of foliation dynamics, which is a fundamentally
new aspect of the subject, in contrast to the study of diffeomorphisms, or Z-actions.

Issues with other basic concepts also arise, such as the existence of periodic orbits, which for foliations
corresponds most precisely to compact leaves. However, analogs of hyperbolicity almost never imply
the existence of compact leaves, while this is a fundamental tool for the study of diffeomorphisms.
In spite of these obstacles, there is a robust theory of foliation dynamics.

Another aspect of foliation dynamics, is that the collection of examples illustrating “typical behavior”
is woefully incomplete. There is a vast richness of dynamical behaviors for foliations, much greater
than for flows and diffeomorphisms, yet the constructions of examples to illustrate these behaviors
is still very incomplete. We will highlight in these notes some examples of a more novel nature, with
the caveat that those presented are far from being close to a complete set of representatives. There
is much work to be done! The following are some of the topics we discuss in these notes:

(1) The asymptotic properties of leaves of F
• How do the leaves accumulate onto the minimal sets?
• What are the topological types of minimal sets? Are they “manifold-like”?
• Invariant measures: can you quantify the rates of recurrence of leaves?

(2) Directions of “stability” and “instability” of leaves
• Exponents: are there directions of exponential divergence?
• Stable manifolds: show the existence of dynamically defined transverse invariant man-

ifolds, and how do they influence the global behavior of leaves?
(3) Quantifying chaos

• Define a measure of transverse chaos – foliation entropy
• Estimate the entropy using linear approximations

(4) Dynamics of minimal sets
• Hyperbolic minimal sets
• Parabolic minimal sets

(5) Shape of minimal sets
• Matchbox manifolds
• Approximating minimal sets
• Algebraic invariants

The subject of foliation dynamics is very broad, and includes many other topics to study beyond
what is discussed in these notes, such as rigidity of the dynamical system defined by the leaves,
the behavior of random walks on leaves and properties of harmonic measures, and the Hausdorff
dimension of minimal sets, to name a few additional important ones.

This survey is based on a series of five lectures, given May 3–7, 2010, at the Centre de Recerca
Matemàtica, Barcelona. The goal of the lectures was to present aspects of the theory of foliation
dynamics which have particular importance for the classification of foliations of compact manifolds.
The lectures emphasized intuitive concepts and informal discussion, as can be seen from the slides
[128]. Due to its origins, these notes will eschew formal definitions when convenient, and the reader
is referred to the sources [45, 47, 132, 142, 167, 191, 213] for further details.
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Many of the illustrations in the following text were drawn by Lawrence Conlon, circa 1994. Our
thanks for his permission to use them.

The author would like to sincerely thank the organizers of this workshop, Jesús Álvarez López
(Universidade de Santiago de Compostela) and Marcel Nicolau (Universitat Autònoma de Barcelona)
for their efforts to make this month long event happen, and the C.R.M. for the excellent hospitality
offered to the participants.

2. Foliation Basics

A foliation F of dimension p on a manifold Mm is a decomposition into “uniform layers” – the leaves
– which are immersed submanifolds of codimension q = m − p: there is an open covering of M by
coordinate charts so that the leaves are mapped into linear planes of dimension p, and the transition
functions preserve these planes. See Figure 1.

Figure 1. Foliation charts

More precisely, we require that around each point x there is an open neighborhood x ∈ Ux and a
“foliation chart” ϕx : Ux → (−1, 1)m for which each inverse image Px(y) = ϕ−1

x ((−1, 1)p×{y}) ⊂ Ux,
y ∈ (−1, 1)q, is a connected component of L ∩ Ux for some leaf L. The foliation F is said to have
differentiability class Cr, 0 ≤ r ≤ ω, if the charts ϕx can be chosen to be Cr-coordinate charts for
the manifold M . For a compact manifold M , we can always choose a finite covering of M by foliation
charts U ≡ {(ϕi, Ui) | i = 1, 2, . . . , k} with the additional property that each chart ϕi admits an

extension to a foliation chart ϕ̃i : Ũi → (−2, 2)m where the closure U i ⊂ Ũi.

The subject of foliations tends to be quite abstract, as it is difficult to illustrate in full the implications
of the above definition in dimensions greater than two. One is typically presented with a few
“standard examples” in dimensions two and three, that hopefully yield intuitive insight from which
to gain a deeper understanding of the more general cases. For example, many talks with “foliations”
in the title start with the following example, the 2-torus T2 foliated by lines of irrational slope:

Figure 2. Linear foliation with all leaves dense

Never trust a talk which starts with this example! It is just too simple, in that the leaves are parallel
and contractible, hence the foliation has no germinal holonomy. Also, every leaf of F is uniformly
dense in T2 so the topological nature of the minimal sets for F is trivial to determine. The key
dynamical information about this example is given by the rates of returns to open subsets, which is
more analytical than topological information.
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At the other extreme of examples of foliations defined by flows on a surface are those with a compact
leaf as the unique minimal set, such as in Figure 3:

Figure 3. Flow with one attracting leaf

Every orbit limits to the circle, which is the forward (and backward) limit set for all leaves.

One other canonical example is that of the Reeb foliation of the solid 3-torus as pictured in Figure 4,
which has a similar dynamical description:

Figure 4. Reeb foliation of solid torus

This example illustrates several concepts: the limit sets of leaves, the existence of attracting holo-
nomy for the compact toral leaf, and also the (possible) existence of multiple hyperbolic measures
for the foliation geodesic flow, as in Definition 4.10.

We will introduce further examples in the text, that illustrate more advanced dynamical properties
of foliations. Although, as mentioned above, it becomes more difficult to illustrate concepts that
only arise for foliations of manifolds of more complicated 3-manifolds, or in higher dimensions. The
interested reader should view the illustrations in the beautiful article by Étienne Ghys and Jos Ley
for flows on 3-manifolds [99] to get some intuitive insights of the complexity that is “normal” for
foliation dynamics in higher dimensions.

3. Topological Dynamics

The study of the topological dynamics for continuous actions of non-compact groups on compact
spaces is a venerable topic, as in [15, 16, 87, 75, 206], or the more recent works [4, 3, 144]. The
holonomy along leafwise paths of F defines local homeomorphisms between open subsets of Rq, and
many concepts of topological dynamics adapt to this pseudogroup context.

Recall the concept of holonomy pseudogroup for a foliation. The point of view we adopt is best
illustrated by starting with the classical case of flows. Recall for a non-singular flow ϕt : M → M
the orbits define a 1-dimensional foliation F , whose leaves are the orbits of points.

Choose a cross-section T ⊂ M which is transversal to the orbits, and intersects each orbit (so T
need not be connected.) Then for each x ∈ T there is some least τx > 0 so that ϕτx(x) ∈ T . The
positive constant τx is called the return time for x. See the illustration Figure 5 below.
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Figure 5. Cross-section to a flow

The induced map f(x) = ϕτx(x) is a Borel map f : T → T , called the holonomy of the flow. The
choice of a cross-section for a flow reduces the study of its dynamical properties to that of the discrete
dynamical system f : T → T .

The holonomy for foliations is defined similarly to the case for flows, as local Cr-diffeomorphisms
associated to paths along leaves, starting and ending at a fixed transversal, except that there is a
fundamental difference. For the orbit of a flow Lw through a point w, there exists two choices of
trajectory along a unit speed path, either forward and backward. However, for a leaf Lw of a foliation
F of dimension at least two, there is no such concept as “forward” or “backward”, and all directions
yield paths along which one may discover dynamical properties of the foliation. The correct analog
is thus the holonomy pseudogroup GF construction, introduced by Haefliger [107, 108, 109].

We fix the following conventions. M is a compact Riemannian manifold without boundary, and
F is a codimension q-foliation, transversally Cr for 1 ≤ r ≤ ∞. Fix also a finite covering by
foliation charts, U ≡ {(ϕi, Ui) | i = 1, 2, . . . , k}. The projections along plaques in each chart defines
submersions φi : Ui → (−1, 1)q. When Ui ∩ Uj 6= ∅ we say that the pair (i, j) is admissible, and can
define the transition function γi,j : Ti,j → Tj,i where Ti,j = φi(Ui ∩ Uj) ⊂ Ti = (−1, 1)q.

The finite collection of local diffeomorphisms G(1)
F ≡ {γi,j | (i, j) admissible} generates a pseudogroup

GF of local Cr-diffeomorphisms modeled on the transverse space Rq. The choice of U yielding the

collection G(1)
F is analogous to the notion of a generating set for a group Γ.

Now assume, without loss of generality, that the submanifolds Ti = ϕ−1
i ({0}×Ti) ⊂ Ui have pairwise

disjoint closures, so for each x ∈ T = T1 ∪ · · · ∪ Tk there is a unique i with x ∈ Ti. Also, we assume
that there is given a metric on M , which restricts via the embedding T ⊂M to a metric dT on T .

Figure 6. Holonomy along a leafwise path

Fix w ∈ T , then choose z ∈ Lw ∩ T and a smooth path τw,z : [0, 1] → Lw. Cover the path τw,z by
foliation charts, which determines a plaque chain from w to z which contains the path τw,z. Then
there exists an open subset w ∈ Uw ⊂ Ti such that every w′ ∈ Uw admits a plaque chain that shadows
the one along τw,z and so defines an image point hτw,z (w′) ∈ Wz ⊂ Tj for some j. This defines a
local homeomorphism hτw,z : Uw →Wz of open subsets of Rq, and hence the holonomy pseudogroup
GF for F modeled on T , which is compactly generated in sense of Haefliger [111]. This most basic
concept of foliation theory is developed in detail in all standard texts [45, 47, 48, 114, 191].
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We introduce a notational convention that is quite convenient. For a leafwise path τw,z : [0, 1]→ Lw
with w, z ∈ T , let Dom(hτw,z

) ⊂ T denote the largest domain of definition for hτw,z
obtained

from some covering of the path τw,z by foliation charts. Note that this is an abuse of notation, as
the domain is well defined, once the covering is chosen, but different coverings may yield distinct
maximal domains, although all such consist of open sets in T containing the initial point w.

To eliminate the issue of domains, one introduces the germ at w of the local homeomorphism hτw,z
,

denoted by [hτw,z
]w. The collection of all such germs {[hτw,z

]w | w ∈ T , z ∈ Lw ∩ T } generates the
holonomy groupoid, denoted by ΓF . We summarize these properties as follows:

PROPOSITION 3.1. Let F be a foliation of a manifold M . Then

(1) [hτw,z
]w depends only on the leafwise homotopy class of the path, relative endpoints.

(2) The maximal sizes of the domain Uw and range Wz representing an equivalence class [hτw,z ]w
depends on the path τw,z.

(3) The collection of all such maps {hτw,z
: Uw → Wz | w ∈ T , z ∈ Lw ∩ T } generates the

holonomy pseudogroup GF .

Assume that F is a C1-foliation of a compact Riemannian manifold, with smoothly immersed leaves.
Then for each leaf Lw of F the induced Riemannian metric on Lw is complete, so there exists a
length minimizing geodesic in each homotopy class, modulo endpoints, of a path in Lw.

COROLLARY 3.2. Given a leafwise path τw,z : [0, 1] → Lw let σw,z : [0, 1] → Lw be a leafwise
geodesic segment which is homotopic relative the endpoints to τw,z. Then [hτw,z

]w = [hσw,z
]w.

While the germ γ of the holonomy along a leafwise path τw,z is well defined, up to conjugation, the
size of the domain of a representative map hτw,z ∈ GF need not be. It is a strong restriction on the
dynamics of GF or the topology of M that a uniform estimate on the sizes of the domains exists.
This is a very delicate technical point that arises in many proofs about the dynamics of a foliation.
Our choice of notation for the domains of the holonomy maps suppresses this technical issue, for the
purpose of simplicity of exposition.

In the study of the topological dynamics of group actions, the domains of definition for the transfor-
mations are always well defined. On the other hand, in the following formulations for pseudogroups,
we are careful to specify that the behavior is with respect to domains of the holonomy transforma-
tions associated to leafwise paths. Thus, while we will say that the groupoid GF has a particular
dynamical property, more precisely this is with respect to the subcollection of transformations in
GF defined geometrically by the holonomy parallel transport.

First, recall that a minimal set for F is a closed, saturated subset Z ⊂M for which every leaf L ⊂ Z
is dense. In terms of pseudogroup GF , a subset X ⊂ T is minimal if it is invariant under the action
of GF and every orbit is dense.

A related notion is that of a transitive set for F , which is a closed saturated subset Z ⊂ M such
that there exists at least one dense leaf L0 ⊂ Z. In other words, these are the subsets of a foliated
manifold which are the closure of a single leaf.

The concept of an equicontinuous action is classical for the dynamics of group actions.

DEFINITION 3.3. The dynamics of F restricted to a saturated subset Z ⊂M is equicontinuous
if for all ε > 0, there exists δ > 0 such that for all w 6= w′ ∈ Z ∩ T , and for any leafwise path
τw,z : [0, 1] → Lw starting at w and ending at some z ∈ Z ∩ T with w,w′ ∈ Dom(hτw,z

), then
dT (w,w′) < δ implies dT (hτw,z

(w), hτw,z
(w′)) < ε.

The typical example is provided by the foliation defined by a flow with dense orbits on the 2-torus
given at the start of these notes. This is a special case of a Riemannian foliation, which admits a
transverse metric so that all the holonomy maps hτw,z

are isometries. We note that equicontinuity
is a strong hypothesis on a pseudogroup. In particular, we have:
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THEOREM 3.4 (Sacksteder [179]). If GF is an equicontinuous pseudogroup acting on a compact
Polish space X , then there exists a Borel probability measure µ on X which is GF -invariant. �

The concept of a distal action is closely related to the above.

DEFINITION 3.5. The dynamics of F restricted to a saturated subset Z ⊂M is distal if for all
w 6= w′ ∈ X = Z ∩ T , there exists δw,w′ > 0 so that for any leafwise path τw,z : [0, 1]→ Lw starting
at w and ending at some z ∈ X , with w,w′ ∈ Dom(hτw,z ), then dT (hτw,z (w), hτw,z (w′)) ≥ δw,w′ .

In other words, the metric distortion of the distance between two points in X ⊂ T under the
action of leafwise holonomy transformations is bounded from below. The typical examples are
provided by the foliations defined by an action of a parabolic subgroup on a compact quotient of
a nilpotent Lie group by a lattice subgroup. Distal and equicontinuous pseudogroups are closely
related [4, 76, 87, 144, 206].

The concept is of a proximal action is opposite to that of a distal action.

DEFINITION 3.6. The dynamics of F restricted to a saturated subset Z ⊂ M is proximal if
there exists ε > 0 so that for all w 6= w′ ∈ Z ∩Ti for some 1 ≤ i ≤ k with dT (w,w′) < ε, then for all
0 < δ ≤ ε there exists a leafwise path τw,z : [0, 1]→ Lw starting at w and ending at some z ∈ Z ∩ T
with w,w′ ∈ Dom(hτw,z

) such that dT (hτw,z
(w), hτw,z

(w′)) ≤ δ.

Proximality asserts for any pair of points that are sufficiently close, there is a holonomy map for
which the distance between their images can be made arbitrarily close. The typical examples are
provided by the foliations defined by an action of a Borel subgroup on a compact quotient of a simple
Lie group by a lattice subgroup. Typical examples of this special case are the weak-stable foliations
associated to the geodesic flows of compact hyperbolic manifolds.

Finally, there is the fundamental concept of an expansive action.

DEFINITION 3.7. The dynamics of F restricted to a saturated subset Z ⊂ M is expansive, or
more precisely ε-expansive, if there exists ε > 0 so that for all w 6= w′ ∈ Z ∩ Ti for some 1 ≤ i ≤ k
with dT (w,w′) < ε, then there exists a leafwise path τw,z : [0, 1] → Lw starting at w and ending at
some z ∈ Z ∩ T with w,w′ ∈ Dom(hτw,z

) such that dT (hτw,z
(w), hτw,z

(w′)) ≥ ε.

The simplest approach to classifying foliation topological dynamics, is to ask if a given closed invari-
ant set Z ⊂M is either equicontinuous, distal, proximal, or expansive. There are many interesting
examples of foliations with invariant sets exhibiting each of these dynamics.

4. Derivatives

The properties of foliation dynamics introduced above have been topological in nature. However, it
has been known at least since the discovery of the Denjoy-type examples [65] that the topological
dynamics of flows, and more generally foliations, are strongly influenced and restricted by the degree
of differentiability of its holonomy maps. A deeper understanding of foliation dynamics necessarily
proceeds with a more detailed study of the differential properties of the holonomy pseudogroups.

To begin, we introduce the transverse differentials for the holonomy groupoid. Consider first the
case of a foliation F defined by a smooth flow ϕ : R×M →M generated by a non-vanishing vector

field ~X. Then TF = 〈 ~X〉 ⊂ TM .

For z = ϕt(w), consider the Jacobian matrix Dϕt : TwM → TzM . The flow satisfies the group

law ϕs ◦ ϕt = ϕs+t, which implies the identity Dϕs( ~Xw) = ~Xz by the chain rule for derivatives.
Introduce the normal bundle to the flow Q = TM/TF . For each w ∈M , we identify Qw = TwF⊥.
Thus, Q can be considered as a subbundle of TM , and thereby the Riemannian metric on TM
induces metrics on each fiber Qw ⊂ TwM . The derivative transformation preserves the normal
bundle Q→M , so defines the normal derivative cocycle,

Dϕt : Qw −→ Qz , t ∈ R
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We can then define the norms of the normal derivative maps,

‖Dϕt‖ = ‖Dϕt : Qw −→ Qz‖

It is also useful to introduce the symmetric norm

‖Dϕt|w‖± = max
{
‖Dϕt : Qw −→ Qz‖, ‖Dϕ−1

t : Qz −→ Qw‖
}

For M compact and t fixed, the norms ‖Dϕt |w ‖± are uniformly bounded for w ∈M .

The maps Dϕt : Qw −→ Qz can be thought of as “non-autonomous local approximations” to the
transverse behavior of the flow ϕt. The actual values of these derivatives is only well defined up to
a global choice of framing of the normal bundle Q, so extracting useful dynamical information from
transverse derivatives presents a challenge. One solution to this problem was solved by seminal work
of Pesin in the 1970’s. “Pesin Theory” is a collection of results about the dynamical properties of
flows, based on defining non-autonomous linear approximations of the normal behavior to the flow.
Excellent discussions and references for this theory are in these references [168, 149, 20]. We use
only a small amount of the full Pesin theory in the discussion in these notes.

First, let us recall a basic fact for the dynamics induced by a linear map. Given a matrix A ∈
GL(q,R), let LA : Rn → Rn be the linear map defined by multiplication by A. We say the action
LA is partially hyperbolic if A has an eigenvalue of norm not equal to 1. In this case, there is an
eigenspace for A which is defined dynamically as the direction of maximum rate of expansion (or
minimum contraction) for the action LA. If A is conjugate to an orthogonal matrix, then we say
that A is elliptic. In this case, the action LA preserves ellipses in Rn, and all orbits of LA and its
inverse are bounded. Finally, if all eigenvalues of A have norm 1, but A is not elliptic, then we say
that A is parabolic. In this case, A is conjugate (over C) to an upper triangular matrix with all
diagonal entries of norm 1, and so the norm ‖A`‖ grows as a polynomial function of the power `.
The dynamics of LA in this case is distal, which is also a dynamically defined property.

One key idea of Pesin theory is that the hyperbolicity property is well defined also for non-autonomous
linear approximations to smooth dynamical systems, so we look for this behavior on the level of de-
rivative cocycles. This is the provided by the following concept.

DEFINITION 4.1. w ∈M is a hyperbolic point of the flow if

eϕ(w) ≡ lim sup
T→∞

{
1

T
·max
s≤T

{
ln
{
‖(Dϕs : Qw → Qz)‖±

}}}
> 0

LEMMA 4.2. The set of hyperbolic points H(ϕ) = {w ∈M | eϕ(w) > 0} is flow-invariant.

One of the first basic results if that if the set of hyperbolic points is non-empty, then the flow itself
has hyperbolic behavior on special subsets where the “lim sup” is replaced by a limit:

PROPOSITION 4.3. Let ϕ be a C1-flow. Then the closure H(ϕ) ⊂ M supports an invariant
ergodic probability measure µ∗ for ϕ, for which there exists λ > 0 such that for µ∗-a.e. w,

eϕ(w) = lim
s→∞

{
1

s
· ln{‖Dϕs : Qw → Qz‖

}
= λ

Proof. This follows from the continuity of the derivative and its cocycle property, the definition of
the asymptotic Schwartzman cycle associated to a flow [186], plus the usual subadditive techniques
of Oseledets Theory [168, 171, 20]. �

We want to apply the ideas behind Proposition 4.3 to the derivatives of the maps in the holonomy
pseudogroup GF . The difficulty is that the orbits of the pseudogroup are not necessarily ordered
into a single direction along which the leaf hyperbolicity is to be found, and hence along which the
integrals are defined in obtaining the Schwartzman asymptotic cycle as in the above. One approach
is to associate a flow to a foliation F , such that this flow captures the dynamical information for F .
Such a flow exists, and was introduced in the papers [122, 211].
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Let w ∈ M and consider Lw as a complete Riemannian manifold. For ~v ∈ TwF = TwLw with
‖~v‖w = 1, there is unique geodesic τw,~v(t) starting at w with τ ′w,~v(0) = ~v.

Define the map ϕw,~v : R→M by ϕw,~v(w) = τw,~v(t). Let M̂ = T 1F denote the unit tangent bundle
to the leaves, then the maps ϕw,~v define the foliation geodesic flow

ϕFt : R× M̂ → M̂

Let F̂ denote the foliation on M̂ whose leaves are the unit tangent bundles to leaves of F . Then the
following is immediate from the definitions:

LEMMA 4.4. ϕFt preserves the leaves of the foliation F̂ on M̂ , and hence DϕFt preserves the

normal bundle Q̂→ M̂ for F̂ .

Lemma 4.4 makes is possible to give an extension of Definition 4.1, to the case of the normal
derivative cocycle for the foliation geodesic flow. Consider the following three possible cases for the
asymptotic behavior of this cocycle.

DEFINITION 4.5. Let ϕFt be the foliation geodesic flow for a C1-foliation F . Then ŵ ∈ M̂ is:

H: hyperbolic if

eF (ŵ) ≡ lim sup
T→∞

{
1

T
·max
s≤T

{
ln ‖(DϕFs : Q̂ŵ → Q̂ẑ)‖±

}}
> 0

E: elliptic if eF (ŵ) = 0, and there exists κ(ŵ) such that

‖(DϕFt : Q̂ŵ → Qẑ)‖± ≤ κ(ŵ) for all t ∈ R

P: parabolic if eF (ŵ) = 0, and ŵ is not elliptic.

There is a variation on this definition which is also very useful, which takes into account the fact that
for foliation dynamics, one does not necessarily have a preferred direction for the foliation geodesic
flow: one considers all possible directions simultaneously in Definition 4.1.

Let ‖γ‖ denote the minimum length of a geodesic σ whose holonomy hσw,z
defines the germ γ =

[hσw,z
]w ∈ ΓF . Let Dwγ = Dwhσw,z

denote the derivative at w.

DEFINITION 4.6. The transverse expansion rate function for GF at w is

(1) e(GF , T, w) = max
‖γ‖≤T

{
ln
{
‖Dwγ‖±

}}
Note that e(GF , d, w) is a Borel function of w ∈ T , as each norm function ‖Dw′hσw,z‖ is continuous
for w′ ∈ D(hσw,z

) and the maximum of Borel functions is Borel.

DEFINITION 4.7. The asymptotic transverse expansion rate at w ∈ T is

(2) eF (w) = e(GF , w) = lim sup
T→∞

{
1

T
· e(GF , T, w)

}
≥ 0

The limit of Borel functions is Borel, and each e(GF , d, w) is a Borel function of w, hence e(GF , w) is
Borel. The value eF (w) can be thought of as the “maximal Lyapunov exponent” for the holonomy
groupoid at w. Analogous to the flow case, the chain rule and the definition of eF (w) imply:

LEMMA 4.8. eF (z) = eF (w) for all z ∈ Lw ∩ T . Moreover, the value of eF (w) is independent
of the choice of Riemannian metric on TM . Hence, the expansion function e(w) is constant along
leaves of F , and is a dynamical invariant of F .

There is a trichotomy for the expansion rate function e(GF , d, w) analogous to that in Definition 4.6.
Thus, there is a decomposition of the manifold M into those leaves which satisfy one of the three
types of asymptotic behavior for the normal derivative cocycle:
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THEOREM 4.9 (Dynamical decomposition of foliations). Let F be a C1-foliation on a compact
manifold M . Then M has a decomposition into disjoint saturated Borel subsets,

(3) M = EF ∪PF ∪HF

which are the leaf saturations of the sets defined by:

(1) Elliptic: ET = {w ∈ T | ∀ T ≥ 0, e(GF , T, w) ≤ κ(w)}
(2) Parabolic: PT = {w ∈ T \EF | e(GF , w) = 0}
(3) Hyperbolic: HT = {w ∈ T | e(GF , w) > 0}

Note that w ∈ ET means that the holonomy homomorphism Dwγ has bounded image in GL(q,R),
contained in a ball of radius exp{κ(w)} = sup{‖Dwγ‖ | γ ∈ GwF}, where GwF denotes the germs of
holonomy transport along paths starting at w.

The nomenclature in Theorem 4.9 reflects the trichotomy for the dynamics of a matrix A ∈ GL(q,R)
acting via the associated linear transformation LA : Rq → Rq: The elliptic points are the regions
where the infinitesimal holonomy transport “preserves ellipses up to bounded distortion”. The
parabolic points are where the infinitesimal holonomy acts similarly to that of a parabolic subgroup
of GL(q,R); for example, the action is “infinitesimally distal”. The hyperbolic points are where the
the infinitesimal holonomy has some degree of exponential expansion. Perhaps more properly, the
set HF should be called “non-uniform, partially hyperbolic leaves”. The study of the dynamical
properties of the set of hyperbolic leaves HF has close analogs with the study of non-uniformly
hyperbolic dynamics for flows, as in [37].

The decomposition in Theorem 4.9 has many applications to the study of foliation dynamics and
classification results, as discussed for example in [127], and also [120, 122, 125]. We illustrate some
of these applications with examples and selected results. Here is one important concept:

DEFINITION 4.10. An invariant probability measure µ∗ for the foliation geodesic flow on M̂ is
said to be transversally hyperbolic if eF (ŵ) > 0 for µ∗-a.e. ŵ.

The function eF (ŵ) is constant on orbits, so is constant on the ergodic components of µ∗. Thus, if
µ∗ is an ergodic invariant measure for the foliation geodesic flow, then µ∗ transversally hyperbolic
means there is some constant λ(µ∗) > 0 with λ(µ∗) = eF (ŵ) for for µ∗-a.e. ŵ.

Also, note that the support of a transversally hyperbolic measure µ∗ is contained in the unit tangent

bundle M̂ , and not M itself. A generic point ŵ in the support of µ∗ specifies both a point in a leaf,
and the direction along which to follow a geodesic to find infinitesimal normal hyperbolic behavior.

THEOREM 4.11. Let F be a C1-foliation of a compact manifold. If HF 6= ∅, then the foliation
geodesic flow has at least one transversally hyperbolic ergodic measure, which is contained in the
closure of unit tangent bundle over HF .

Proof. The proof is technical, but basically follows from calculus techniques applied to the foliation
pseudogroup, as in Oseledets Theory. The key point is that if Lw ⊂ HF , then there is a sequence of
geodesic segments of lengths going to infinity on the leaf Lw, along which the transverse infinitesimal
expansion grows at an exponential rate. Hence, by continuity of the normal derivative cocycle and
the cocycle law, these geodesic segments converge to a transversally hyperbolic invariant probability
measure µ for the foliation geodesic flow. The existence of an ergodic component µ∗ for this measure
with positive exponent then follows from the properties of the ergodic decomposition of µ. �

COROLLARY 4.12. Let F be a C1-foliation of a compact manifold with HF 6= ∅. Then there
exist w ∈ HF and a unit vector ~v ∈ TwF such that the forward orbit of the geodesic flow through
(w,~v) has a transverse direction which is uniformly exponentially contracting.

Let us return to the examples introduced earlier, and consider what the trichotomy decomposition
means in each case. For the linear foliation of the 2-torus in Figure 1, every point is elliptic, as the
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foliation is Riemannian. However, if F is a C1-foliation which is topologically semi-conjugate to a
linear foliation, so is a generalized Denjoy example, then MP is not empty! Shigenori Matsumoto
has given a new construction of Denjoy-type C1-foliations on the 2-torus for which the exceptional
minimal set consists of elliptic points, and the points in the wandering set are all parabolic [157].

Consider next the Reeb foliation of the solid torus, as in Figure 3. Pick w ∈ M on an interior
parabolic leaf, and a direction ~v ∈ TwLw. Follow the geodesic σw,~v(t) starting from w. It is
asymptotic to the boundary torus, so defines a limiting Schwartzman cycle on the boundary torus
for some flow. Thus, it limits on either a circle, or a lamination. This will be a hyperbolic measure
if the holonomy of the compact leaf is hyperbolic. Note that the exponent of the invariant measure
for the foliation geodesic flow depends on the direction of the geodesic used to define it.

One of the basic problems about the foliation geodesic flow is to understand the support of its
transversally hyperbolic invariant measures whose generic starting points lie in HF , and if the
leaves intersecting the supports of these measures have “chaotic” behavior.

5. Counting

The decomposition of the foliated manifold M = EF ∪PF ∪HF uses the asymptotic properties of
the normal “derivative cocycle” D : GF → GL(n,R), where the transverse expansion is allowed to
“develop in any direction” when the leaves are higher dimensional.

A basic question is then, how do you tell whether one of the Borel, F-saturated components, such
as the hyperbolic set HF , is non-empty? Moreover, it is natural to speculate whether the “geometry
of the leaves” influences the structure of the sets in the trichotomy (3). To this end, we consider
in this section the notion of the growth rates of leaves. This leads to a variety of “counting type”
invariants for foliation dynamics, and various insights into the behavior of the derivative cocycle.

Let us first consider some examples with more complicated leaf geometry than seen above. Figure 7
depicts what is called the “Infinite Jungle Gym” in the foliation literature [172, 47].

Figure 7. The infinite “Jungle Gym”

The surface in Figure 7 can be realized as a leaf of a circle bundle over a compact surface, where
the holonomy consists of three commuting linearly independent rotations of the circle. Thus, even
though this is a surface of infinite genus, the transverse holonomy is just a generalization of that for
the Denjoy example, in that it consists of a group of isometries with dense orbits for the circle S1.

The next manifold L in Figure 8 doesn’t have a cute name, but has the interesting property that its
space of ends E(L1) has non-empty derived set, but the second derived set is empty.
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Figure 8. A leaf of “Level 2”

This manifold can be realized as a leaf in a smooth foliation which is asymptotic to a compact
surface of genus two. The construction of the foliation in which this occurs is given in [47]. It is just
one example of a large class of foliations with a proper leaf of finite depth [49, 50, 115, 203, 205].
As with the Reeb foliation, the hyperbolic invariant measures for the flow are concentrated on the
limiting compact leaf. The dynamics is not chaotic.

The manifold in Figure 9 has endset E(L2) which is a Cantor set, equal to its own derived set.

Figure 9. A leaf with Cantor endset

We present in more detail the construction of a foliated manifold containing this as a leaf, called the
“Hirsch foliation”, introduced in [118], as it illustrates a basic theme of the lectures and the elemen-
tary construction yields sophisticated dynamics. See [33] for generalizations of this construction.

Step 1: Choose an analytic embedding of S1 in the solid torus D2 × S1 so that its image is twice
a generator of the fundamental group of the solid torus. Remove an open tubular neighborhood of
the embedded S1, resulting in the manifold with boundary in Figure 10:

Figure 10. Solid torus with tube drilled in it

Step 2: What remains is a three dimensional manifold N1 whose boundary is two disjoint copies of

T2. D2× S1 fibers over S1 with fibers the 2-disc. This fibration – restricted to N1 – foliates N1 with
leaves consisting of 2-disks with two open subdisks removed.

Identify the two components of the boundary of N1 by a diffeomorphism which covers the map
h(z) = z2 of S1 to obtain the manifold N . Endow N with a Riemannian metric; then the punctured
2-disks foliating N1 can now be viewed as pairs of pants, as in Figure 11.
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Figure 11. A “pair of pants”

Step 3: The foliation of N1 is transverse to the boundary, so the punctured 2-disks assemble to
yield a foliation of foliation F on N , where the leaves without holonomy (corresponding to irrational
points for the chosen doubling map of S1) are infinitely branching surfaces, decomposable into
pairs-of-pants which correspond to the punctured disks in N1.

A basic point is that this works for any covering map f : T2 → T2 homotopic to the doubling map
h(z) along a meridian. In particular, as Hirsch remarked in his paper, the proper choice of such a
“bonding map” results in a codimension-one, real analytic foliation, such that all leaves accumulate
on a unique exceptional minimal set.

Figure 12. Leaf for eventually periodic orbit

The Hirsch foliation always has a leaf Lw pictured as in Figure 12, corresponding to a forward
periodic orbit of the doubling map g : S1 → S1. Consider the behavior of the geodesic flow, starting
at the “bottom point” w ∈ Lw. For a each radius R� 0, the terminal points of the geodesic rays of
length at most R will “jump” between the µR ends of this compact subset of the leaf, for some µ > 1.
Thus, for these examples, a small variation of the initial vector ~v will result in a large variation of
the terminal end of the geodesic σw,~v.

The constant µ appearing in the above example seems to be an “interesting” property of the foliation
dynamics, and a key point is that it can be obtained by “counting” the complexity of the leaf at
infinity, following a scheme introduced by Joseph Plante for leaves of foliations [173].

Recall the holonomy pseudogroup GF constructed in section 2, modeled on a complete transversal
T = T1 ∪ · · · ∪ Tk associated to a finite covering of M by foliations charts. Given w ∈ T and
z ∈ Lw ∩ T and a leafwise path τw,z joining them, we obtain an element hτw,z

∈ GF .

The orbit of w ∈ T under GF is

O(w) = Lw ∩ T = {z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g)}

Introduce the word norm on elements of GF . Given open sets Ui∩Uj 6= ∅ in the fixed covering of M
by foliation charts, they define an element hi,j ∈ GF . By the definition of holonomy along a path,
for each τw,z : [0, 1]→ Lw there is a sequence of indices {i0, i1, . . . , i`} such that

[hτw,z
]w = [hi`−1,i` ◦ · · · ◦ hi1,i0 ]w

That is, the germ of the holonomy map hτw,z
at w can be expressed as the composition of ` germs

of the basic maps hi,j . We then say that γ = [hτw,z
]w has word length at most `. Let ‖γ‖ denote

the least such ` for which this is possible. The norm of the identity germ is defined to be 0.

Define the “orbit of w of radius ` in the groupoid word norm” to be:

O`(w) = {z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g), ‖[g]w‖ ≤ `}
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DEFINITION 5.1. The growth function of an orbit is defined as Gr(w, `) = #O`(w).

Of course, the growth function for w depends upon many choices. However, its “growth type
function” is independent of choices, as observed by Plante. This follows from one of the basic facts
of the theory, that the word norm on GF is bounded above by a multiple of the length of geodesic
paths.

PROPOSITION 5.2. [161, 173] Let F be a C1-foliation of a compact manifold M . Then there
exists a constant Cm > 0 such that for all w ∈ T and z ∈ Lw ∩ T , if σw,z : [0, 1]→ Lw is a leafwise
geodesic segment from w to z of length ‖σw,z‖, then

‖[hσw,z ]w‖ ≤ Cm · ‖σw,z‖

In order to obtain a well defined invariant of growth of an orbit, one introduces the notion the
growth type of a function. The one which we use (there are many - see [113, 73, 17]) is essentially the
weakest one. Given given functions f1, f2 : [0,∞)→ [0,∞) say that f1 . f2 if there exists constants
A,B,C > 0 such that for all r ≥ 0, we have that f2(r) ≤ A · f1(B · r) + C. Say that f1 ∼ f2 if
both f1 . f2 and f2 . f1 hold. This defines equivalence relation on functions, which defines their
growth class.

One can consider a variety of special classes of growth types. For example, note that if f1 is the
constant function and f2 ∼ f1 then f2 is constant also.

We say that f has exponential growth type if f(r) ∼ exp(r). Note that exp(λ · r) ∼ exp(r) for any
λ > 0, so there is only one growth class of “exponential type”.

A function has nonexponential growth type if f . exp(r), but exp(r) 6. f .

We also have a subclass of uniform nonexponential growth type, called in the author’s papers by
subexponential growth type, if for any λ > 0 there exists A,C > 0 so that f(r) ≤ A · exp(λ · r) + C.

Finally, f has polynomial growth type if there exists d ≥ 0 such that f . rd. The growth type is
exactly polynomial of degree d if f ∼ rd.

DEFINITION 5.3. The growth type of an orbit O(w) is the growth type of Gr(w, `) = #O`(w).

A basic result of Plante is that:

PROPOSITION 5.4. Let M be a compact manifold. Then for all w ∈ T , Gr(z, `) . exp(`).
Moreover, for z ∈ Lw ∩ T , then Gr(z, `) ∼ Gr(w, `). Thus, the growth type of a leaf Lw is well
defined, and we say that Lw has the growth type of the function Gr(w, `).

We can thus speak of a leaf Lw of F having exponential growth type, and so forth. For example,
the Infinite Jungle Gym manifold in Figure 7 has growth type exactly polynomial of degree 3, while
the leaves of the Hirsch foliations (in Figures 10 and 12) have exponential growth type.

Before continuing with the discussion of the growth types of leaves, we note the correspondence
between these ideas and a basic problem in geometric group theory. Growth functions for finitely
generated groups are a basic object of study in geometric group theory.

Let Γ = 〈γ0 = 1, γ1, . . . , γk〉 be a finitely generated group. Then γ ∈ Γ has word norm ‖γ‖ ≤ ` if we
can express γ as a product of at most ` generators, γ = γ±i1 · · · γ

±
id

. Define the ball of radius ` about
the identity of Γ by

Γ` ≡ {γ ∈ Γ | ‖γ‖ ≤ `}
The growth function Gr(Γ, `) = #Γ` depends upon the choice of generating set for Γ, but its growth
type does not. The following is a celebrated theorem of Gromov:

THEOREM 5.5. [106] Suppose Γ has polynomial growth type for some generating set. Then there
exists a subgroup of finite index Γ′ ⊂ Γ such that Γ′ is a nilpotent group.
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In general, one asks to what extent does the growth type of a group determine its algebraic structure?

Questions of a similar nature can be asked about leaves of foliations; especially, to what extent does
the growth function of leaves determine how they are embedded in a compact manifold, and the
dynamical properties of the foliation?

Note that there is a fundamental difference between the growth types of groups and for leaves. The
homogeneity of groups implies that the growth rate is uniformly the same for balls in the word
metric about any point γ0 ∈ Γ. That is, one can choose the constants A,B,C > 0 in the definition
of growth type which are independent of the center γ0. For foliation pseudogroups, there is a basic
question about the uniformity of the growth function as the basepoint within an orbit varies:

QUESTION 5.6. How does the function d 7→ Gr(w, d) behave, as a Borel function of w ∈ T ?

Examples of Ana Rechtman [176, 9] (see also [134]) show that even for smooth foliations of compact
manifolds, this function is not uniform as function of w ∈ T . If one requires uniformity of the growth
function ` 7→ Gr(w, `), as a function of w ∈ T , then one can ask if there is some form of analog for
foliation pseudogroups of the classification program for finitely generated groups.

6. Exponential Complexity

Section 4 introduced exponential growth criteria for the normal derivative cocycle of the pseudogroup
GF acting on the transverse space T , and section 5 discussed the growth types for the orbits of the
groupoid. In both cases, exponential behavior represents a type of exponential complexity for the
dynamics of GF . These examples are part of a larger theme, that when studying classification
problems, Exponential Complexity is Simplicity. In this section, we develop this theme further.
First, we give an aside, presenting a well-known phenomenon for map germs.

Recall a simple example from advanced calculus. Let f(x) = x/2, and let g : (−ε, ε) → R be a
smooth map with g(0) = 0, g′(0) = 1/2. Then g ∼ f near x = 0. That is, for δ > 0 sufficiently
small, there is a smooth map h : (−ε, ε)→ R such that h−1 ◦ g ◦ h = f(x) for all |x| < δ.

This illustrates the principle that exponentially contracting maps, or more generally hyperbolic
maps in higher dimensions, the derivative is a complete invariant for their germinal conjugacy class
at the fixed point. For maps which are “completely flat” at the origin, where g(0) = 0, g′(0) = 1,
gk(0) = 0 for all k > 1, their “classification” is much more difficult [154, 215]. So, in contrast we have
Subexponential Complexity is Most Nettlesome. On the other, there are invariants for foliations which
are only defined for amenable systems, as discussed later, so the real point is that this distinction
between exponential and subexponential complexity pervades classification problems.

Analogously, for foliation dynamics, and the related problem of studying the dynamics of a finitely
generated group acting smoothly on a compact manifold, exponential complexity in the dynamics
often gives rise to hyperbolic behavior for the holonomy pseudogroup. Hyperbolic maps can be
put into a standard form, and so one obtains a fundamental tool for studying the dynamics of the
pseudogroup. The problem is thus, how does one pass from exponential complexity to hyperbolicity?

One issue with the “counting argument” for the growth of leaves is that just counting the growth
rate of an orbit ignores fundamental information about expansivity of the dynamics. The orbit
growth rate counts the number of times the leaf crosses a transversal T in a fixed distance within
the leaf, but does not take into account whether these crossings are “nearby” or “far apart”. For
example, there are Riemannian foliations with all leaves of exponential growth type. See [177], for
example. Thus, exponential orbit growth rate need not imply transversally hyperbolic behavior.

On the other hand, in the Hirsch examples, the handles at the end of each ball of radius ` in
a leaf appear to be widely separated transversally, so somehow this is different. The holonomy
pseudogroup GF of the Hirsch example is topologically semi-conjugate to the pseudogroup generated

by the doubling map z 7→ z2 on S1. After `-iterations, the inverse map to h(z) = z2`

has derivative
of norm 2`, and so for a Hirsch foliation modeled on this map, every leaf is transversally hyperbolic.
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The geometric entropy for pseudogroup C1-actions, introduced by Ghys, Langevin, and Walczak
[96], gives a measure of their exponential complexity which combines the two types of complexity.
It has found many applications in the study of foliation dynamical systems. One example of this is
the surprising role of these invariants in showing that certain secondary classes of C2-foliations are
zero in cohomology if the entropy vanishes [52, 121, 120, 129].

We begin with the basic notion of ε-separated sets, due to Bowen [40] for diffeomorphisms, and
extended to groupoids in [96]. Let ε > 0 and ` > 0. A subset E ⊂ T is said to be (ε, `)-separated
if for all w,w′ ∈ E ∩ Ti there exists g ∈ GF with w,w′ ∈ Dom(g) ⊂ Ti, and ‖g‖w ≤ ` so that
dT (g(w), g(w′)) ≥ ε. If w ∈ Ti and w′ ∈ Tj for i 6= j then they are (ε, `)-separated by default.

The “expansion growth function” counts the maximum of this quantity:

h(GF , ε, `) = max{#E | E ⊂ T is (ε, `)-separated}

If the pseudogroup GF consists of isometries, for example, then applying elements of GF does not
increase the separation between points, so the growth functions h(GF , ε, `) have polynomial growth
of degree equal the dimension of T , as functions of `. Thus, if the functions h(GF , ε, `) have greater
than polynomial growth type, then the action of the pseudogroup cannot be elliptic, for example.

Introduce the measure of the exponential growth type of the expansion growth function:

h(GF , ε) = lim sup
d→∞

ln {max{#E | E is (ε, d)-separated}}
d

(4)

h(GF ) = lim
ε→0

h(GF , ε)(5)

Then we have the fundamental result of Ghys, Langevin, and Walczak [96]:

THEOREM 6.1. Let F be a C1-foliation of a compact manifold M . Then h(GF ) is finite.

Moreover, the property h(GF ) > 0 is independent of all choices.

For example, if F is defined by a C1-flow φt : M → M , then h(GF ) > 0 if and only if htop(φ1) > 0.
Note that h(GF ) is defined using the word growth function for orbits, while the topological entropy
of the map φ1 is defined using the geodesic length function (the time parameter) along leaves. These
two notions of “distance along orbits” are comparable, which can be used to give estimates, but not
necessarily any more precise relations. This point is discussed in detail in [96].

In any case, the essential information contained in the invariant h(GF ) is simply whether the foliation
F exhibits exponential complexity for its orbit dynamics, or not. Exploiting further the information
contained in this basic invariant of C1-foliations has been one of the fundamental problems in the
study of foliation dynamics since the introduction of the concept of geometric entropy in 1988.

One aspect of the geometric entropy h(GF ) is that it is a “global invariant”, which does not indicate
“where” the chaotic dynamics is happening. The author introduced a variant of h(GF ) in [127],
the local geometric entropy h(GF , w) of GF which is a refinement of the global entropy. The local
geometric entropy is analogous to the local measure-theoretic entropy for maps introduced by Brin
and Katok [44, 103].

Given a subset X ⊂ T , in the definition of (ε, `)-separated sets above, we can demand that the
separated points be contained in X, yielding the relative expansion growth function:

h(GF , X, ε, `) = max{#E | E ⊂ X is (ε, `)-separated}

Form the corresponding limits as in (4) and (5), to obtain the relative geometric entropy h(GF , X).

Now, fix w ∈ T and let X = B(w, δ) ⊂ T be the open δ–ball about w ∈ T . Perform the same
double limit process as used to define h(GF ) for the sets B(w, δ), but then also let the radius of the
balls tend to zero, to obtain:
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DEFINITION 6.2. The local geometric entropy of GF at w is

(6) hloc(GF , w) = lim
δ→0

{
lim
ε→0

{
lim sup
`→∞

ln{h(GF , B(w, δ), `, ε)}
`

}}
The quantity hloc(GF , w) measures of the amount of “expansion” by the pseudogroup in an open
neighborhood of w. The following estimate is elementary to show.

PROPOSITION 6.3 (Hurder, [127]). Let GF a C1-pseudogroup. Then hloc(GF , w) is a Borel
function of w ∈ T , and hloc(GF , w) = hloc(GF , z) for z ∈ Lw ∩ T . Moreover,

(7) h(GF ) = sup
w∈T

hloc(GF , w)

It follows that there is a disjoint Borel decomposition of T into GF -saturated subsets T = ZF ∩CF ,
where CF = {w ∈ T | h(GF , w) > 0} consists of the “chaotic” points for the groupoid action, and
ZF = {w ∈ T | h(GF , w) = 0} are the “tame” points.

COROLLARY 6.4. h(GF ) > 0 if and only if CF 6= ∅.

We discuss in the next section the relationship between local entropy h(GF , w) > 0 and the transverse
Lyapunov spectrum of ergodic invariant measures for the leafwise geodesic flow on the closure Lw.

Next, we consider some examples where h(GF ) > 0.

PROPOSITION 6.5. The Hirsch foliations always have positive geometric entropy.

Proof. The idea of the proof is as follows. The holonomy pseudogroup GF of the Hirsch examples is
topologically semi-conjugate to the pseudogroup generated by the doubling map z 7→ z2 on S1.

After `-iterations, the inverse map to z 7→ z2`

has derivative of norm 2` so we have a rough estimate
h(GF , ε, `) ∼ (2π/ε) · 2`. Thus, h(GF ) ∼ ln 2. �

For these examples, the relationship between “orbit growth type” and expansion growth type is
transparent. Observe that in the Hirsch example, as we wander out the tree-like leaf, the exponential
growth of the ends of the typical leaf yield an exponential growth for the number of ε-separated points
along the “core circle” representing the transversal space T . This is suggested by comparing the
two illustrations below, where the ends of the left side wrap around the core, with a branching of a
pair of pants corresponding to a double covering of the core:

Figure 13. Comparing orbit with endset

It is natural to ask whether there are other classes of foliations for which this phenomenon occurs,
that exponential growth type of the leaves is equivalent to positive foliation geometric entropy? It
turns out that for the weak stable foliations of Anosov flows, this is also the case in general. First,
let us recall a result of Anthony Manning [150]:

THEOREM 6.6. Let B be a compact manifold of negative curvature, let M = T 1B denote the
unit tangent bundle to B, and let φt : M → M denote the geodesic flow of B. Then htop(φ) =
Gr(π1(B, b0)). That is, the entropy for the geodesic flow of B equals the growth rate of the volume
of balls in the universal covering of B.
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Proof. The idea of proof for this result is conveyed by the illustration Figure 14, representing the
fundamental domains for the universal covering. The assumption that B has non-positive curvature

implies that its universal covering B̃ is a disk, and we can “tile” it with fundamental domains.

Figure 14. Tiling by fundamental domains for hyperbolic manifold cover

From the center basepoint, there is a unique geodesic segment to the corresponding basepoint in
each translate. The number of such segments in a given radius is precisely the growth function for
the fundamental group π1(B, b0). On the other hand, the negative curvature hypothesis implies that
these geodesics separate points for the geodesic flow as well. �

We include this example, because it is actually a result about foliation entropy! The assumption
that B has uniformly negative sectional curvatures implies that the geodesic flow φt : M → M
defines a foliation on M , its weak-stable foliation. Then by a result of Pugh and Shub, the weak-
stable manifolds Lw form the leaves of a C1-foliation of M , called the weak-stable foliation for φt.
Moreover, the orbits of the geodesic flow φt(w) are contained in the leaves of F . Then again one
has h(GF ) ∼ htop(φ1) which equals the growth type of the leaves.

Besides special cases such as for the Hirsch foliations and their generalizations in [33] where one has
uniformly expanding holonomy groups, and the weak stable foliations for Anosov flows, how does
one determine when a foliation F has positive entropy?

There is a third case where h(GF ) > 0 can be concluded, as noted in [96], when the dynamics of GF
admits a “ping-pong game”. The term “ping-pong game” is adopted from the paper [64] which gives
a more geometric proof of Tits Theorem [198] for the dichotomy of the growth types of countable
subgroups of linear groups. To say that the dynamics of GF admits a ping-pong game, means that
there are disjoint open sets U0, U1 ⊂ V ⊂ T and maps g0, g1 ∈ GF such that for i = 0, 1:

• the closure V ⊂ Dom(gi) for i = 0, 1
• gi(V ) ⊂ Ui

It follows that for each w ∈ V the forward orbit

O+
g0,gi(w) = {gI(w) | I = (i1, . . . , ik) , i` ∈ {0, 1} , gI = gik ◦ · ◦ gi1}

consists of distinct points, and so the full orbit O(w) has exponential growth type. Moreover, if
ε > 0 is less than the distance between the disjoint closed subsets g0(V ) and g1(V ), then the points
in O+

g0,gi(w) are all (ε, `)-separated for appropriate ` > 0, and hence h(GF ,K) > 0.

For codimension-one foliations, the existence of ping-pong game dynamics for its pseudogroup is
equivalent to the existence of a “resilient leaf”, which in turn is analogous to the existence of
homoclinic orbits for a diffeomorphism. It is a well-known principle that the existence of homoclinic
orbits for a diffeomorphism implies positive topological entropy.

We conclude with a general question:

QUESTION 6.7. Are there other canonical classes of C1-foliations where positive entropy is to be
“expected”? For example, if F has leaves of exponential growth, when does there exist a C1-close
perturbation of F with positive entropy?
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7. Entropy and Exponent

Three aspects of “exponential complexity” for foliation dynamics have been introduced: Lyapunov
spectrum for the foliation geodesic flow, exponential growth of orbits, and the geometric entropy
which measures the transverse exponential expansion. In this section, we discuss the relationships
between these invariants, as is currently understood. The theme is summarized by:

Positive Entropy ↔ Chaotic Dynamics ↔ ??

As always, we assume that F is a Cr-foliation of a compact manifold M , for r ≥ 1. We formulate
three problems illustrating the themes of research:

PROBLEM 7.1. If h(GF ) > 0, what conclusions can we reach about the dynamics of F?

PROBLEM 7.2. What hypotheses on the dynamics of F are sufficient to imply that h(GF ) > 0?

PROBLEM 7.3. Are there cohomology hypotheses on F which would “improve” our understanding
of its dynamics? How does leafwise cohomology H∗(F) influence dynamics? How are the secondary
cohomology invariants for F related to entropy?

The solution to Problems 7.1 and 7.2 are well-known for foliations defined by a C2-flow, due to
work of Margulis and Mané [149]. The problem with extending these results to foliations of higher
dimensions, is that a foliation rarely has any holonomy-invariant measures, and if such exists, there
still do not exists methods for estimating recurrence of leaves to the support of the measure, so
that the techniques in [149] do not directly apply. Thus, given asymptotic data about either the
transverse derivative cocycle, or the transverse expansion growth function, one has to develop new
techniques to extract from this data dynamical conclusions.

On the other hand, there are examples supporting the hope that such relationships as suggested in
Problems 7.1-7.3 should exist, and remain to be discovered. We discuss below some “deterministic”
techniques, based on the orbit behavior of the foliation geodesic flow which relate transverse expan-
sion growth with the transverse Lyapunov spectrum of the foliation geodesic flow, and in special
cases to the foliation geometric entropy. Another approach, an active area of current research, is
to study the relation between exponent and recurrence for “typical” orbits of appropriately chosen
leafwise harmonic measures [46, 66, 67, 68, 92, 93].

We begin by recalling a result of Ghys, Langevin, and Walczak [96] which gives a straightforward
conclusion valid in all codimensions.

THEOREM 7.4 (G-L-W 1988). Let M be compact with a C1-foliation F of codimension q ≥ 1,
and X ⊂ T a closed subset. If h(GF , X) = 0, then the restricted action of GF on X admits an
invariant probability measure.

The idea of the proof is to interpret the condition h(GF ) = 0 as a type of equi-distribution result,
and form averaging sequences over the orbits, which yield GF -invariant probability measures on X.

COROLLARY 7.5. Let M be compact with a C1-foliation F of codimension one, and suppose
that Z ⊂ M is a minimal set for which the local entropy h(GF ,Z) = 0. Then the dynamics of GF
on X = T ∩Z is semi-conjugate to the pseudogroup of an isometric dense action on S1. If F is C2,
and M is connected, then Z = M and the action is conjugate to a rotation group.

Proof. Theorem 7.4 implies there exists an invariant probability measure for the action of GF on X,
so the conclusions follow from Sacksteder [179]. �

In the remainder of this section, we discuss three results of the author on geometric entropy. Note
that the works [30, 214] by Walczak and Bís also study the entropy and orbit growth rates of distal
groupoids and group actions.
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THEOREM 7.6. [125] Let M be compact with a Cr-foliation F of codimension-q. If q = 1 and
r ≥ 1, or q ≥ 2 and r > 1, then

GF distal =⇒ h(GF ) = 0

THEOREM 7.7. [125] Let M be compact with a codimension one, C1-foliation F . Then

h(GF ) > 0 =⇒ F has a resilient leaf

THEOREM 7.8. [129] Let M be compact with a codimension one C2-foliation F . Then

0 6= GV (F) ∈ H3(M,R) =⇒ h(GF ) > 0

where GV (F) ∈ H3(M,R) is the Godbillon-Vey class of F .

The proofs of all three results are based on the existence of stable transverse manifolds for hyperbolic
measures for the foliation geodesic flow. The first step is the following:

PROPOSITION 7.9. Let M be compact with a C1-foliation F , and suppose that Z ⊂ M is a
minimal set for which the relative entropy h(GF ,Z) > 0. Then, there exists a transversally hyperbolic
invariant probability measure µ∗ for the foliation geodesic flow, with the support of µ∗ contained in
the unit leafwise tangent bundle to Z.

Proof. We give a sketch of the proof. Let X = Z ∩ T . The assumption λ = h(GF , X) > 0
implies there exists ε > 0 so that λε = h(GF , X, ε) > 3

4λ > 0. Thus, there exists a sequence
of subsets {E` ⊂ X | ` → ∞} such that E` is (ε`, r`)-separated, where ε` → 0 and r` ≥ `, and
#E` ≥ exp{3r`λ/4}.

We can assume without loss that E` is contained in the transversal for a single coordinate chart, say
E` ⊂ T1. As T1 has bounded diameter, this implies there exists pairs {x`, y`} ⊂ E` so that

dT (x`, y`) . exp{−3r`λ/4} · diam(T1)

and leafwise geodesic segments σ` : [0, 1]→ Lx`
with ‖σ`‖ ≤ r` such that dT (hσ`

(x`), hσ`
(y`)) ≥ ε.

By the mean value theorem, there exists z` ∈ BT (x`, exp{−3r`λ/4}·diam(T1)) such that ‖Dz`hσ`
‖ &

exp{3r`λ/4}.

Noting that ε` → 0 and choosing appropriate subsequences, the resulting geodesic segments σ`
define an invariant probability measure µ∗ for the geodesic flow, with support in Z. Moreover, by
the cocycle equation and continuity of the derivative, the measure µ∗ will be hyperbolic. In fact,
with careful choices above, the exponent can be made arbitrarily close to h(GF , X), modulo the
adjustment for the relation between geodesic and word lengths. See [125] for details. �

The construction sketched in the proof of Proposition 7.9 is very “lossy” - at each stage, information
about the transverse expansion due to the assumption that h(GF , X) > 0 gets discarded, especially
in that for each n we only consider a pair of points (x`, y`) to obtain a geodesic segment σ` along
which the transverse derivative has exponentially increasing norm. We will return to this point later.

The next step in the construction of stable manifolds, is to assume we are given a transversally
hyperbolic invariant probability measure µ∗ for the foliation geodesic flow. Then for a typical point

x̂ = (x,~v) ∈ M̂ in the support of µ∗ the geodesic ray at (x,~v) has an exponentially expanding norm
of its transverse derivative, and hence the normal Lyapunov spectrum of the leafwise geodesic flow

on M̂ contains a non-trivial expanding eigenspace. By reversing the time flow (via the inversion

~v 7→ −~v of M̂) we obtain an invariant probability measure µ−∗ for the foliation geodesic flow for
which the Lyapunov spectrum of the flow contains a non-trivial contracting eigenspace.

If we assume that the flow is C1+α for some Hölder exponent α > 0, then there exists non-trivial

stable manifolds in M̂ for almost every (x,~v) in the support of µ−∗ . Denote this stable manifold

by S(x,~v) and note that its tangent space projects non-trivially onto Q̂. Moreover, for points
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ŷ, ẑ ∈ S(x,~v) the distance d(ϕt(ŷ), ϕt(ẑ)) converges to 0 exponentially fast, as t → ∞. Thus, the
images y, z ∈M of these points converge together exponentially fast under the holonomy of F .

Combining these results we obtain:

THEOREM 7.10. Let F be C1+α and suppose that h(GF ) > 0. Then there exists a transversally
hyperbolic invariant probability measure µ∗ for the foliation geodesic flow. Moreover, for a typical
point x̂ = (x,~v) in the support of µ−∗ there is a transverse stable manifold S(x,~v) for the geodesic
ray starting at x̂.

If the codimension of F is one, then the differentiability is just required to be C1, as the stable

manifold for ϕt consists simply of the full transversal to F̂ .

Observe that Theorem 7.10 implies Theorem 7.6.

The assumption that h(GF ) > 0 has much stronger consequences than simply implying that the
dynamics of GF is not distal, but obtaining these results requires much more care. We sketch next
some ideas for analyzing these dynamics in the case of codimension-one foliations.

In the proof of Proposition 7.9, instead of choosing only a single pair of points (x`, y`) at each stage,
one can also use the Pigeon Hole Principle to choose a subset E ′` ⊂ E contained in a fixed ball
BT (w, δ`) where #E ′` grows exponentially fast as a function of `, and the diameter δ` of the ball
decreases exponentially fast, although at a rates less that λε. This leads to the following notion.

DEFINITION 7.11. An (ε`, δ`, `)-quiver is a subset Q` = {(xi, ~vi) | 1 ≤ i ≤ k`} ⊂ M̂ such that
xj ∈ BT (xi, δ`) for all 1 ≤ j ≤ k`, and for the unit-speed geodesic segment σi : [0, si]→ Lxi of length
si ≤ d, we have

dT (hσi(xi), hσi(xj)) ≥ ε , for all j 6= i

An exponential quiver is a collection of quivers {Q` | ` = 1, 2, . . .} such that the function ` 7→ #Q`
has exponential growth rate.

The idea is that one has a collection of points {xi | 1 ≤ i ≤ k`} contained in a ball of radius δ` along
with a corresponding geodesic segment based at each point whose transverse holonomy separates
points. The term “quiver” is based on the intuitive notion that the collection of geodesic segments
emanating from the δ`-clustered set of basepoints {xi} is like a collection of arrows in a quiver. It
is immediate that h(GF , ε, d) ≥ #Q`.

PROPOSITION 7.12. If F admits an exponential quiver, then h(GF ) > 0.

For codimension-one foliations, the results of [122] and [139] yields the converse estimate:

PROPOSITION 7.13. Let F be a C1-foliation of codimension-one on a compact manifold M . If
h(GF ) > 0 then there exists an exponential quiver.

It is an unresolved question whether a similar result holds for higher codimension. The point is that
if so, then h(GF ) is estimated by the entropy of the foliation geodesic flow, and most of the problems
we address here can be resolved using a form of Pesin Theory for flows relative to the foliation F .
(See [122] for further discussion of this point.)

The existence of an exponential quiver for a codimension-one foliation of a compact manifold M has
strong implications for its dynamics. The basic idea is that the basepoints of the geodesic rays in
the quiver are tightly clustered, and because the ranges of the endpoints of the geodesic rays are lie
in a compact set, one can pass to a subsequence for which the endpoints are also tightly clustered.
From this observation, one can show:

THEOREM 7.14. [125] Let F be a C1-foliation with codimension-one foliation of a compact
manifold M . If h(GF ) > 0, then GF acting on T admits a “ping-pong game”, which implies the
existence of a resilient leaf for F .
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This result is a C1-version of one of the main results concerning the dynamical meaning of positive
entropy given in [96]. In their paper, Ghys, Langevin, and Walczak require the foliations be C2, as
they invoke the Poincaré-Bendixson Theory for codimension-one foliations which is only valid for
C2-pseudogroups.

There is another approach to obtaining exponential quivers for a foliation F , which is based on
cohomology assumptions about F . For a C1-foliation F , there exists a leafwise closed, continuous
1-form η on M whose cohomology class [η] ∈ H1(M,F) in the leafwise foliated cohomology group is
well defined. The form η has the property that its integral along a leafwise path gives the logarithmic
infinitesimal expansion of the determinant of the linear holonomy defined by the path. Thus, for
codimension-one foliations, this integral is the expansion exponent of the holonomy.

For a C2-foliation F of codimension-q the form η can be chosen to be C1, and thus the exterior form
η∧dηq is well defined. As observed by Godbillon and Vey [104], the form η∧dηq is closed and yields a
well defined cohomology class GV (F) ∈ H2q+1(M,R). One of the basic problems of foliation theory
has been to understand the “dynamical meaning” of this class. A fundamental breakthrough was
made by Gerard Duminy in the unpublished manuscripts [69, 70], where the study of this problem
“entered its modern phase”. (See also the reformulation of these results by Cantwell and Conlon in
[52].) Based on this breakthrough, the papers [116, 121] showed that if GV (F) 6= 0, then there is a
saturated set of positive measure on which η is non-zero, and hence the set of hyperbolic leaves HF
has positive Lebesgue measure. This study culminated in the following result of the author with
Remi Langevin from [129]:

THEOREM 7.15. Let F be a C2-foliation of codimension-one on a compact manifold. If HF has
positive Lebesgue measure, then F admits exponential quivers, and in particular the dynamics of GF
admits ping-pong games. Thus, h(GF ) > 0.

Combining Theorem 7.15 with the previous remarks yields Theorem 7.8. Theorem 7.15 is the basis
for the somewhat-cryptic Problem 7.3 given at the start of this section. The assumption that the
class [η] ∈ H1(M,F) is non-trivial on a set of positive Lebesgue measure leads to positive entropy,
and raises the question whether there are other leafwise cohomology classes, possibly of higher
degrees, which if non-trivial have implications for the foliation dynamics.

In general, the results of this section are just part of a more general “Pesin Theory for foliations”
as sketched in the author’s overview paper [122], whose study continues to yield new insights into
the dynamical properties of foliations for which HF is non-empty. There is much work left to do!

8. Minimal Sets

Every foliation of a compact manifold has at least one minimal set, and possibly a continuum of
them. Can they be described? What are their topological properties? When does the dynamics
restricted to a minimal set have a “canonical form”? Is it possible to give an effective classification
of the dynamics of foliation minimal sets, at least for some particular classes?

For non-singular flows, this has been a major theme of research beginning with Poincaré’s work
concerning periodic orbits for flows, and continuing with the work in the 1960’s and 70’s of Smale
[189] and others, to more modern questions about which continua arise as invariant sets for flows
[137]. Of notable interest for foliation theory (in higher codimensions) is Williams’ work on the
topology of attractors for Axion A systems [216, 218], including the introduction of the so-called
Williams solenoids.

In this section, we discuss the differentiable dynamics properties of minimal sets, applying the
concepts of the last section. In sections 10 and 11, we generalize this discussion to the classification
problem for “matchbox manifolds” and their relevance to the study of foliation dynamics.

Recall that a minimal set for F is a closed, saturated subset Z ⊂ M for which every leaf L ⊂ Z
is dense. A transitive set for F is a closed saturated subset Z ⊂ M such that there exists at least
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one dense leaf L0 ⊂ Z; that is, the transitive sets are the closures of the leaves. Very little is known
in general about the transitive sets for foliations; a well-developed theory for transitive sets, would
include a generalization of the Poincaré-Bendixson Theory for codimension-one foliations.

Traditionally, the minimal sets are divided into three classes. A compact leaf of F is a minimal set.
If every leaf of F is dense, then M itself is a minimal set. The third possibility is that the minimal
set Z has no interior, but contains more than one leaf, hence the intersection Z ∩ T is always a
perfect set. This third case can be subdivided into further cases: if the intersection Z∩T is a Cantor
set, then Z is said to be an exceptional minimal set, and otherwise if Z ∩ T has no interior but is
not totally disconnected, then it is said to be an exotic minimal set. For codimension one foliations,
the case of exotic minimal sets cannot occur, but for foliations with codimension greater than one
there are various types of constructions of exotic minimal sets [33, 34].

DEFINITION 8.1. An invariant set Z is said to be elliptic if Z ⊂ EF .

For example, if F is a Riemannian foliation, then all holonomy maps are isometries for some smooth
transverse metric. Therefore, the expansion function e(GF , T, w) defined in Definition 4.6 is bounded.
It follows that every minimal set for a Riemannian foliation is elliptic.

PROBLEM 8.2. Does there exist an elliptic minimal set Z for a smooth foliation F , such that Z
is not a compact leaf and F is not Riemannian in some open neighborhood of Z?

No such example has been constructed, to the best of the author’s knowledge. Note that as remarked
previously, the Denjoy minimal sets are parabolic, but not elliptic.

DEFINITION 8.3. A minimal set Z is said to be parabolic if Z ⊂ EF ∪ PF , but Z 6⊂ EF . In
particular, Z ∩HF = ∅.

Various examples of parabolic minimal sets are known, such as the well-known Denjoy minimal
sets for C1-diffeomorphisms in codimension-one. The construction by Pat McSwiggen in [159, 160]
of Ck+1−ε-diffeomorphisms of Tk+1, uses a generalization of Smale’s “DA” (derived from Anosov)
construction to obtain parabolic minimal sets.

Recall that a compact foliation is one for which every leaf is compact [77, 190, 208, 209, 210].

PROPOSITION 8.4. Let F be a C1-foliation of a compact manifold M , with all leaves of F
compact. Then every leaf of F is a parabolic minimal set.

Proof. A compact foliation is clearly distal, so by the proof of Theorem 7.6, we have HF = ∅. �

The embedding theorems for solenoids in [57] yield another class of parabolic minimal sets for
foliations in arbitrary dimension.

This list of examples exhaust the constructions of parabolic minimal sets of C1-foliations, as known
to the author. It would be very interesting to have further constructions.

Note that we have seen previously that h(GF ,Z) > 0 implies Z ∩HF 6= ∅, so the parabolic minimal
sets include the zero entropy case. Also, a minimal set for a foliation for which GF acts distally will
be parabolic, so this provides a guide for further constructions.

DEFINITION 8.5. A minimal set Z is said to be hyperbolic if Z ∩HF 6= ∅.

As remarked above, h(GF ,Z) > 0 implies that Z is hyperbolic, and by Proposition 7.9, there exists
a transversally hyperbolic invariant probability measure µ∗ for the foliation geodesic flow restricted
to Z. One of the main open problems in foliation dynamics is to obtain a partial converse to this:

PROBLEM 8.6. Let F be a Cr-foliation of codimension q ≥ 1 on a compact manifold M , and let
Z be a hyperbolic minimal set. Find conditions on r ≥ 1, the topology of Z, and/or the Hausdorff
dimension of Z ∩HF ∩ T which are sufficient to imply that h(GF ,Z) > 0.
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This is easy to show in a very special case:

THEOREM 8.7. Let F be a C2-foliation of codimension q ≥ 1 on a compact manifold M , and let
Z be a hyperbolic minimal set. If the holonomy of GF is conformal, then h(GF ,Z) > 0.

Proof. The hyperbolic hypothesis implies that the geodesic flow has a stable manifold for some
hyperbolic measure. The conformal hypothesis implies that the holonomy is actually transversally
contracting for this measure. That is, the stable manifold for this measure has dimension equal to
the transverse dimension of F . Minimality of the dynamics then implies there is a “ping-pong game”
for the action of GF restricted to Z ∩ T , and thus h(GF ,Z) > 0. �

The difficulty with proving results of the kind in Problem 8.6 is that in general, the stable manifolds
of the hyperbolic measure for the geodesic flow on Z will have dimension less than the codimension
of F , and hence the “trapping” argument employed above requires some additional hypotheses.
Exactly what those hypotheses might be, that is the question.

Note that the construction of Bís, Nakayama, and Walczak in [32] give a C0-foliation with an exotic
minimal set Z that has h(GF ,Z) > 0. Their technique does not extend to smooth foliations, though
perhaps some modification of the method may yield C1-foliations.

There is another construction of foliations such that the hypotheses of Theorem 8.7 are always
satisfied. Let N be a Riemannian manifold of dimension q with metric dN . Let C ⊂ N be a convex
subset for the metric. A diffeomorphism f : N → N is said to be contracting on C if f(C) ⊂ C and
for all x, y ∈ C, we have dN (f(x), f(y)) < dN (x, y). Then define

DEFINITION 8.8. An iterated function system (IFS) on N is a collection of diffeomorphisms
{f1, . . . , fk} of N and a compact convex subset C ⊂ N such that each f` is contracting on C, and
for ` 6= `′ we have f`(C) ∩ f`′(C) = ∅.

Note that since C is assumed compact, the contracting assumption implies that for each map f`
the norm of its differential Df` is uniformly less than 1. That is, the maps f` are infinitesimal
contractions.

The suspension construction [45, 47] yields a foliation F on a fiber bundle M over a surface of genus
k with fiber N , for which the maps {f1, . . . , fk} define the holonomy of F . If the manifold N is
compact then M will also be compact.

The relevance of this construction is that such a system admits a minimal set Z ⊂ C, which is
necessarily hyperbolic. In fact, Z is the unique minimal set for the restriction of the action to C
is called the Markov Minimal Set associated to the IFS (see [34]). It is an exercise to show that
h(GF ,Z) > 0 for these examples.

The traditional construction of an IFS is for N = Rq and the maps f` are assumed to be affine
contractions. The compact convex set C can then be chosen to be any sufficiently large closed ball
about the origin in Rq. There is a vast literature on affine IFS’s, as well as beautiful computer-
generated illustrations in articles and books of the invariant sets for various systems.

Note that every affine map of Rq extends to a conformal map of Sq, so these constructions also provide
examples of hyperbolic minimal sets for smooth foliations of compact manifolds. The construction
of affine minimal sets via this method has many generalizations, and leads to a variety of interesting
examples, which can be considered from the foliation point of view.

9. Classification Schemes

After introducing several dynamical invariants of C1-foliations, it is time to ask: How to “classify”
all the foliations of fixed codimension-q on a given closed manifold M?

It all depends on the meaning of the word “classify” – modulo homeomorphism? diffeomorphism?
concordance? Borel orbit equivalence? measurable orbit equivalence? These are just some of the
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notions of equivalence that have been used to approach this issue - see the surveys [126, 127, 141, 142].
We discuss the role of the invariants introduced in the previous sections for the study of this problem.

Invariants of foliation dynamics such as orbit growth type, transverse expansiveness, or local entropy
are constant on leaves, and thus are associated in some fashion with the “leaf space” M/F . The
question is what notions of equivalence preserve the leaf space M/F and have enough additional
restrictions to preserve these invariants, yet are not so restricted as to be effectively uncomputable.

Given foliated manifolds (M1,F1) and (M2,F2), and r ≥ 0, the most basic equivalence relation is
to be Cr-conjugate; that is, there exists a Cr-diffeomorphism f : M1 → M2 such that the leaves of
F1 are mapped to the leaves of F2. If r = 0, then the map f is just a homeomorphism, and we
say the foliations are topologically conjugate. Certainly, two foliations which are Cr-conjugate have
“conjugate leaf spaces”. Most invariants in foliation theory are preserved by C1-conjugation, and
some such as leaf growth rate are preserved by topological conjugation. However, conjugation is an
extremely strong equivalence relation.

The introduction of secondary classes for C2-foliations in the 1970’s suggested classification modulo
“concordance”, a weaker form of equivalence than C2-conjugation. Two foliations F1 and F2 of
codimension-q on a manifold M are concordant if there exists a foliation F on M × R, also of
codimension-q, so that F is transverse to the slices M × {t} for t = 1, 2, and the restrictions
F|M × {t} = Ft for t = 1, 2. The lecture notes by Milnor [162] and the survey by Lawson [142]
discuss this concept further.

Concordance is the natural notion of equivalence associated to the study of homotopy classes of
maps from M into a foliation classifying space, such as BΓrq introduced in [108]. The celebrated
results by Thurston on classification of foliations are formulated in terms of homotopy classes of
maps into the classifying spaces BΓrq. (See [108, 109, 196, 197, 200, 201] and the surveys [127, 142].)

On the other hand, it is unknown if any of the invariants of dynamics discussed in these lectures
are preserved, in some fashion, by concordance. For example, given any two linear foliations of T2,
they are concordant [162, Lemma 8.5], so that a foliation whose leaves have linear growth rate can
be concordant to one with compact leaves. There appears to be no relation between concordance of
F1 and F2 and some form of equivalence of the leaf spaces M/F1 and M/F2.

QUESTION 9.1. Given concordant foliations F1 and F2 of a compact manifold M , does this imply
any relationship between their dynamically defined invariants?

At the other extreme from conjugation, is the notion of orbit equivalence [OE ]. Recall that the
equivalence relation on T defined by F is the Borel subset

RF ≡ {(w, z) | w ∈ T , z ∈ Lw ∩ T } ⊂ T × T

Two foliations F1,F2 with complete transversals T1 and T2, respectively, are Borel orbit equivalent
(bOE ) if there exists a Borel map h : T1 → T2 which induces a Borel isomorphism RF1

∼= RF2
. Note

that a Borel orbit equivalence h : T1 → T2 induces a Borel “isomorphism” h∗ : M1/F1 →M2/F2. If
two foliations are topologically conjugate, then they are bOE. On the other hand, the assumption
that F1 and F2 are bOE, does not imply that their leaves have the same dimensions, so this is a
much weaker equivalence than conjugation.

The foliations F1,F2 are said to be measurably orbit equivalent (mOE ) if there exists a Borel
measurable map h : T1 → T2 which induces a Borel orbit equivalence, up to sets of Lebesgue measure
zero. See the works [75, 81, 166, 119, 136] for more background on this topic.

For example, a foliation is said to be (measurably) hyperfinite if it is mOE to an action of the integers
Z on the interval [0, 1]. The celebrated result of Dye [71, 72, 138] implies:

THEOREM 9.2 (Dye 1957). A C1-foliation defined by a non-singular flow is always hyperfinite.

Caroline Series generalized this result in [188] to foliations whose leaves have polynomial growth.
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THEOREM 9.3 (Series 1980). Let F be a C1-foliation of a compact manifold M . If the growth
type of all functions Gr(w, `) are uniformly of polynomial type, then the equivalence relation on T
defined by GF is hyperfinite.

The most general form of such results is due to Connes, Feldman, and Weiss [62], and implies:

THEOREM 9.4 (Connes-Feldman-Weiss 1981). Let F be a C1-foliation of a compact manifold M .
If the equivalence relation RF is amenable, then the equivalence relation on T it defines is hyperfinite.
In particular, if the growth type of all functions Gr(w, `) are uniformly of subexponential type, then
the equivalence relation on T it defines is hyperfinite.

One conclusion of these results is that measurable orbit equivalence does preserves neither the growth
rates of leaves, nor many other “usual” invariants of smooth foliations. For example, all ergodic
actions of Zn which preserve a probability measure are mOE for all n ≥ 1, yet have polynomial orbit
growth rates of degree n. Also, the weak-stable foliation for a geodesic flow of a closed manifold with
constant negative curvature has leaves of exponential growth, has an amenable equivalence relation
[42], has positive entropy [96], and has non-trivial Godbillon-Vey class [104].

Two foliations F1,F2 on manifoldsM1 andM2 with complete transversals T1 and T2, respectively, are
said to be restricted orbit equivalent (rOE ) if there exists a Borel isomorphism f : M1 →M2 which
maps leaves of F1 homeomorphically to leaves of F2, and such that its restriction to transversals
induces a Borel map h : T1 → T2 which induces a Borel isomorphism RF1

∼= RF2
. Thus, a restricted

orbit equivalence “permutes” the leaves of the foliations. If the restriction of such a map induces
a quasi-isometry between the leaves, then we say the foliations are quasi-isometric orbit equivalent
(qiOE ). It is then obvious, for example, that the growth rate of a leaf is an invariant of qiOE. It is
not known if these refined notions of equivalence preserve the other invariants.

QUESTION 9.5. Suppose that C1-foliations F1,F2 are qiOE. Does h(GF1
) > 0 imply h(GF2

) > 0?

QUESTION 9.6. Suppose that C1-foliations F1,F2 are rOE. If L1 ⊂ M1 is a leaf of F1, and
L2 ⊂M2 is the corresponding leaf for F2 under a rOE. Must L1 and L2 have the same growth rates?

There are many variants of these questions, whose answers are essentially unknown. These sorts
of questions seem of fundamental importance to the study of foliations. While the topological
classification of foliations is surely an unsolvable problem, in any sense of the word “unsolvable”, a
variation on the Borel classification problem might be possible when restricted to special subclasses,
such as for foliations with uniformly polynomial growth, or amenable foliations.

In the late 1970’s and early 1980’s, Cantwell and Conlon, Hector, Nishimori, Tsuchiya in particular
[49, 50, 115, 203, 205], developed a Poincaré-Bendixson Theory of levels for codimension-one C2-
foliations. For real analytic foliations with all leaves of polynomial growth type, their results give
an algorithmic description of the limit sets of leaves.

PROBLEM 9.7. Classify the restricted orbit equivalence classes of codimension-one real analytic
foliations with all leaves of polynomial growth type.

For the general case of codimension-one C2-foliations, the theory of levels becomes much more
complicated, as there are numerous counter-examples which have been constructed to show that the
conclusions in the analytic case do not extend so easily. The theory of levels is even more problematic
for C1-foliations of codimension-one, and non-existent for foliations of codimension q > 1.

The concept of measurable amenable has a generalization to amenable Borel equivalence relations,
as given for example by Anantharaman–Delaroche and Renault in [11]. The class of foliations in
Problem 9.7 is amenable in this sense. Of course, every 1-dimensional foliation also has this property,
and the papers [87, 192, 217, 101] give classification schemes for special cases of flows (see also [60]).

PROBLEM 9.8. Find subclasses of amenable foliations for which restricted orbit equivalence gives
a good classification.
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The conclusion is that the two notions of equivalence of foliations discussed above, concordance and
orbit equivalence, yield classification schemes that are at least somewhat effectively computable, but
do not preserve the dynamically defined invariants discussed previously.

There is another invariant for measurable equivalence relations, their “cost”, as introduced by Gilbert
Levitt [143]. The “cost” is mOE, essentially by definition. All measurably amenable foliations have
cost equal zero, so this invariant does not distinguish a large class of foliation dynamics. On the
other hand, Gaboriau’s work in [88] showed that “cost” is a very effective invariant of mOE for
non-amenable foliations, and has led to spectacular results such as that by Gaboriau and Popa in
[89]. Other applications of the cost of an equivalence relation can be found in the literature, for
example in [5, 136, 170], but further discussion takes us too far away from our theme.

Bounded cohomology invariants can be used to distinguish measurable orbit equivalence classes, as
in [165]. As with the cost invariant, these classes vanish for measurable amenable group actions
and foliations. On the other hand, the bounded cohomology classes are often non-zero for the same
classes of foliations which have non-trivial secondary classes (see [120]), suggesting their study will
have further applications to classifying foliations with exponential complexity.

PROBLEM 9.9. Find classes of foliations with exponential complexity for which their are non-
trivial bounded cohomology invariants.

10. Matchbox Manifolds

Let M be a foliated manifold, with foliation F . If S ⊂M is a closed saturated subset, then it is an
example of a foliated space, as discussed for example in [167], [47, Chapter 11], or [57, 58].

DEFINITION 10.1. S is a Cr-foliated space if it admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Ti | 1 ≤ i ≤ k} where Ti are compact metric spaces. The transition func-
tions between overlapping charts are assumed to be Cr along leaves, for 1 ≤ r ≤ ∞, and the
derivatives depend uniform–continuously on the transverse parameter.

In particular, the minimal sets of a foliation F can be studied “independently” as foliated spaces. An
exceptional minimal set for a foliation can be considered as a transversally zero-dimensional foliated
space. For flows, these spaces have been called “matchbox manifolds” in the topological dynamics
literature [1, 2, 82]. The author, in the works with Alex Clark and Olga Lukina [57, 58, 60], propose
the term matchbox manifold for the more general case:

DEFINITION 10.2. An n-dimensional matchbox manifold M is a continuum (i.e., a connected
and compact metrizable space) which is a smooth n-dimensional foliated space with codimension zero.

For a matchbox manifold M, the transverse model spaces Ti in Definition 10.1 are totally discon-
nected. We define their disjoint union T = T1 ∪ · · · ∪ Tk which is a total transversal for FM.

The path connected components of M are precisely the leaves of FM, and thus the foliation of M is
defined by the topology. In particular, any homeomorphism h : M → M′ between two such spaces
maps leaves to leaves. We often abuse notation, and refer to M implying its foliated structure FM.

We say that M is minimal if every leaf is dense. In this case, the transverse model spaces Ti are
Cantor sets, and their disjoint union T is again a Cantor set.

Essentially, the concept of a matchbox manifold is the same as that of a lamination, except that
matchbox manifolds are not regarded as embedded in any manifold. In fact, whether a given
matchbox manifold M embeds as a minimal set of a foliated Cr-manifold is a fundamental question.

The holonomy groupoid GM is generated as in section 3, with object space T, and the transition
functions γi,j between open subsets of transversal spaces Ti and Tj defined when the open sets
Ui ∩ Uj 6= ∅. By a careful choice of the open covering by foliation charts of M, we can assume the
domains and ranges of the generating maps γi,j are clopen subsets.
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A matchbox manifold is said to be a suspension, if there exists:

• a compact manifold B0 with fundamental group G0 = π1(B0, b0) for some basepoint b0 ∈ B0

• a continuous action ρM : G0 → Homeo(T) on a totally disconnected space T

• a homeomorphism M ∼= B̃0 ×ρM T.

The holonomy pseudogroup GM is then equivalent to that generated by the action of G0 on T.

If B0 = Tn so G0 = Zn, then the suspension foliation is defined by an action of Rn on M.

In general, if G0 is generated by m > 1 elements, then the fundamental group of a surface Σ2m of
genus 2m maps onto G0, so the representation ρM lifts to an action of the surface group π1(Σ2m, x0)
on T. Then the resulting suspension foliation has all leaves isometric to some quotient of the
hyperbolic disk. This matchbox manifold has holonomy groupoid determined by ρM, so the “general
suspension case” is a 2-dimensional matchbox manifold with hyperbolic leaves, though the leaves
certainly need not be simply connected.

Analogous to the case for foliated manifolds, for a matchbox manifold M one can define the growth
rates of leaves, geometric entropy, and also the foliation geodesic flow. The one missing property is
the infinitesimal transverse behavior, as the transverse zero-dimension hypotheses implies there are
no transverse vectors. This issue will be discussed in section 12.

Next, we consider a selection of examples where matchbox manifolds arise naturally. The reader
will note, that whereas section 2 of these notes introduced some of the simplest examples of foliated
manifolds which can be visualized, the examples below are at the opposite extreme, in that they are
essentially impossible to visualize.

If M ⊂M is an exceptional minimal set in a compact foliated manifold M , then with the restricted
foliation, M is a matchbox manifold. For codimension-one foliations, the study of exceptional
minimal sets was started in 1960’s with work of Sacksteder [178, 179, 180], and Hector’s Thesis [112]
introduced many of the subsequent themes for their study [47, 48, 53, 124, 129, 126, 156, 173, 212].
The dynamical and topological properties of exceptional minimal sets in higher codimensions are not
well-understood. The case of exceptional minimal sets will be discussed further in the next section.

Another source of examples of matchbox manifolds is provided by the space of tilings associated to
a given quasi-periodic tiling ∆ of Rn. If ∆ satisfies the conditions: it is repetitive, aperiodic, and
has finite local complexity, then the “hull closure” Ω∆ of the translates of ∆ by the action of Rn
defines a matchbox manifold. These assumptions can be relaxed somewhat, as discussed by Franks
and Sadun [85]. The tiling space Ω∆ was introduced by Bellisard in his study of mathematical
models of electron transport [21]. This construction is the subject of many papers, as for example in
[12, 22, 23, 84, 102, 123, 187]. The results have been generalized to quasi-periodic tilings of G-spaces
in [24]. Sadun and Williams [182] showed that the space Ω∆ associated to a tiling of Rn is always a
Cantor bundle over Tn, associated to a minimal free action of Zn. A striking result of Marcy Barge
and Beverly Diamond [19] classifies 1-dimensional tiling spaces in terms of cohomology.

For a few classes of quasi-periodic tilings of Rn, the codimension one canonical cut and project tiling
spaces [83], it is known that the associated matchbox manifold Ω∆ is a minimal set for a C1-foliation
of a torus Tn+1, where the foliation is a generalized Denjoy example.

The “Ghys-Kenyon” construction, introduced by Ghys in [98], associates a matchbox manifold to
translates of subgraphs of a fixed graph G. This construction has been studied by E. Blanc in
[35, 36], and by F. Alcalde-Cuesta, A. Lozano–Rojo, and M. Macho Stadler in [6, 145]. This class
of examples provides a wide variety of dynamical behavior, related to the properties of the graph
G. For example, in contrast to the tiling spaces, constructions of Lukina [147, 148] yield graph
matchbox manifolds which are not minimal, and can have leaves with non-trivial holonomy.

Next, we discuss a very general (and very abstract) procedure for obtaining Cantor bundle examples,
which has a variety of important special cases. Let Γ be a countable group, and choose an integer
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M ≥ 1. Set Nm ≡ {1, 2, . . . ,m} with the discrete topology. Then the product space ΩΓ,m ≡
∏
γ∈Γ

Nm

is compact. For a “word” ω ∈ Ω, which is considered as a function ω : Γ→ Nm, and for δ ∈ Γ, define
δ · ω(γ) = ω(γ · δ). This yields a continuous action of Γ on ΩΓ,m.

For a word ω0 let Ωω0
= Γ · ω0 denote the closure of the translates of the “basepoint” ω0. Then Ωω0

is compact and totally disconnected, and the action of Γ restricts to an action on Ωω0
, clearly with

a dense orbit. If Ωω0
is minimal and not periodic for the Γ-action, then it is expansive. Otherwise,

it is essentially impossible to predict the dynamical properties of the restricted action of Γ on Ωω0
.

If Γ is finitely generated, then the choice of a Riemann surface Σ whose fundamental group maps onto
Γ yields, via the suspension construction, a 2-dimensional matchbox manifold M whose holonomy
pseudogroup is defined by the action of Γ on Ωω0 . This construction is clearly related to both of
the above constructions, using graphs and using translates of tiles. In these cases, the dynamical
properties are related to either the structure of the graph, or the geometry of the tiling.

For the case where Γ = Zn there is an alternate approach to choosing invariant closed subsets of
Ωσ ⊂ ΩΓ,m, using translation-invariant pattern rules. When Ωσ is non-empty, this yields generalized
subshifts of finite type, which are called algebraic dynamical systems. There is an extensive literature
on these examples, especially relating their dynamical properties to commutative algebra and number
theory. For example, the textbooks by Graham Everest and Thomas Ward [78] and Klaus Schmidt
[184] give introductions to the dynamics of algebraically defined actions of Zn, and the papers [43, 74]
lead to the more recent works, following the citations to these papers.

Finally, we discuss a class of examples of matchbox manifolds, the generalized solenoids, which have a
more dynamical origin and geometric interpretations. The classical “Vietoris solenoid”, introduced
in [207], provides examples of 1-dimensional matchbox manifolds. Given a sequence of smooth
covering maps p` : S1 → S1 of degree d` > 1, form the inverse limit space S = lim←− {p` : S1 → S1}.
Then S has a smooth flow, whose flow boxes give S a matchbox manifold structure. An application
of Pontryagin duality [18, 174] implies that the space S is determined up to foliated homeomorphism
by the sequence of integers {d` | ` = 1, 2, . . .}, modulo “tail equivalence”.

The existence of 1-dimensional Vietoris solenoids as minimal sets of smooth flows has an extensive
history in topological dynamics. See for example, [41, 90, 91, 135, 153, 189, 192]. The existence
is generally shown via an iterated perturbation argument, which is essentially folklore. That is,
starting with a closed orbit, M0

∼= S1, it is modified in an open neighborhood of M0 so that the
flow now has a nearby closed orbit M1

∼= S1 which covers M0 with degree d1 > 1. This process
is inductively repeated for all subsequent closed orbits M` with ` > 1. With suitable care in the
choices, the resulting flow will be C∞ and has a minimal set homeomorphic to the inverse limit of
the system of closed orbits resulting from the construction.

A generalization of the Vietoris solenoid construction was introduced by Bob Williams in [216, 217]
to describe the topology of 1-dimensional attractor of an Axiom A diffeomorphism f : N → N , are
again matchbox manifolds. A 1-dimensional “Williams solenoid” is the inverse limit of the iterations
of a single expanding map f : B → B of a special form, where B is a branched 1-manifold. Williams
generalized this construction to higher dimensional branched manifolds in [218], which again gives
rise to matchbox manifolds. Farrell and Jones showed in [79, 80] that bizarre topology can arise if
higher dimensions, even in this special case where the maps p` are dynamically defined.

Finally, we discuss the class of “weak solenoids” introduced by McCord in [158]. For ` ≥ 0, let B`
be compact, orientable connected manifolds without boundary of dimension n ≥ 1 . Assume there
are given orientation-preserving, smooth, proper covering maps P = {p` : B` → B`−1 | ` > 0}. Then
the inverse limit topological space

(8) SP ≡ lim←− {p` : B` → B`−1} ⊂
∞∏
`=0

B`
π0−→ B0
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is said to be a weak solenoid with base B0. The p` are the bonding maps for the weak solenoid. Let
S denote the homeomorphism class of SP , then the collection P defining the space SP is said to be
a presentation for S.

THEOREM 10.3 (McCord [158]). SP has a natural structure as an orientable, n-dimensional
smooth matchbox manifold, with every leaf dense.

The foliated homeomorphism types of weak solenoids are determined by the algebraic structure of
the inverse limit of the maps on fundamental groups [158, 185, 63, 151, 59]. These maps are induced
by the bonding maps in the given presentation P, which we consider in more detail.

Chose a basepoint b0 ∈ B0, inductively chose b` ∈ B` with p`(b`) = b`−1. Let G` = π1(B`, b`) denote
the corresponding fundamental groups. We obtain a descending chain of groups and injective maps

P# ≡
{
p`+1−→ G`

p`−→ G`−1
p`−1−→ · · · p2−→ G1

p1−→ G0

}
Set q`,k = p` ◦ · · · ◦ pk+1 : B` −→ Bk. We say that SP is a McCord solenoid if for some fixed `0 ≥ 0,
for all ` ≥ `0 the image (q`,`0)# : G` → H` ⊂ G`0 is a normal subgroup of G`0 . Replacing B0 with
B`0 , we can reduce to the case where `0 = 0. Then define

ΓP = lim←− {G0/G` → G0/G`−1}
which is a Cantor group. Then the space SP is homeomorphic to the principal ΓP -bundle over B0

defined by the canonical representation G0 → ΓP . Thus, the McCord solenoids are the “natural”
generalizations of the Vietoris solenoids to higher dimensions.

Note that if the base manifold B0 satisfies G0 = π1(B0, b0) is abelian, then every weak solenoid over
B0 is a McCord solenoid. In particular, when B0

∼= Tn this is the case.

Unlike the case of Vietoris solenoids, very little is known about when an n-dimensional weak solenoid
is homeomorphic to an exceptional minimal set for a Cr-foliation, for n ≥ 2 and r ≥ 1. A discussion
of this question, and some partial realization results for the case G0

∼= Zk, are given in [57].

PROBLEM 10.4. Let P be a presentation of a weak solenoid SP . Find conditions on P such that
SP is foliated homeomorphic to an exceptional minimal set of a Cr-foliation, for r > 1.

The varieties of examples of matchbox manifolds described above shows that they form a large class
of interesting foliated spaces, certainly deserving of further study. We can ask the same questions
for matchbox manifolds as for foliations, and foliation minimal sets: Find invariants of their foliated
homeomorphism type, and find classification schemes for their topological dynamics.

Note that a 1-dimensional oriented matchbox manifold is defined by a non-singular flow, and all
such examples can be obtained by the suspension of a Z-action on a 0-dimensional space [1, 2,
192]. The minimal 1-dimensional matchbox manifolds thus correspond to suspensions of minimal
Cantor systems, which have been extensively studied, and even classified up to orbit equivalence and
homeomorphism – see for example [19, 26, 27, 100, 117]. Thus, the questions we pose below can be
considered as asking for extensions of these results from 1-dimensional flows, to higher dimensions.

Minimal Cantor systems are classified by the “full groups” [117, 100, 101, 27], which suggests the in-
troduction and study of an analogous concept for matchbox manifolds. Define the closed topological
subgroup of all leaf-preserving homeomorphisms:

Inner(M,FM) = Homeo(FM) ⊂ Homeo(M,FM)

That is, h ∈ Inner(M,FM) maps each leaf of FM to itself. This is a normal subgroup of Homeo(M,FM).
In analogy with the full group concept, and also group theoretic constructions, we introduce:

DEFINITION 10.5. The group of outer automorphisms of a matchbox manifold M is the quotient
topological group

(9) Out(M) = Homeo(M,FM)/Inner(M,FM)
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One can think of Out(M) as the group of automorphisms of the leaf space M/FM and thus should
reflect many aspects of the space M – its topological, dynamical and algebraic properties. Very little
is known, in general, concerning some basic questions in higher dimensions:

PROBLEM 10.6. Let M be a matchbox manifold with foliation FM. Study Out(M):

(1) If Out(M) is not discrete, must it act transitively? If not, what are the examples?
(2) If Out(M) is discrete and infinite, what conditions on M imply that it is finitely generated?
(3) Suppose that M is minimal and expansive, must Out(M) be discrete?
(4) For what hypotheses on M must Out(M) be a finite group?

A matchbox manifold M is said to be homogeneous if the group of homeomorphisms Homeo(M) of
M acts transitively. For a matchbox manifold, every homeomorphism is a foliated homeomorphism,
so we have Homeo(M) = Homeo(M,FM). A result of Bing [28] showed that if M is a homogeneous
matchbox manifold of dimension 1, then M is homeomorphic to a Vietoris solenoid. The higher
dimensional versions of this result have been an open problem, with one direction proven by McCord:

THEOREM 10.7 (McCord [158]). Let M be homeomorphic to a McCord solenoid SP . Then M
is homogeneous, and the pseudogroup associated to it is equicontinuous.

Results of the author with Alex Clark give a converse to this, which generalizes Bing’s Theorem.

THEOREM 10.8 (Clark and Hurder 2010 [58]). Let M be a smooth, oriented matchbox manifold.
If the pseudogroup associated to M is equicontinuous, then M is minimal, and is homeomorphic to
a weak solenoid. If M is homogeneous, then M is homeomorphic to a McCord solenoid.

That is, if Out(M) acts transitively on M/FM, then M is homeomorphic to a McCord solenoid.

PROBLEM 10.9. For what hypotheses on M does the isomorphism class of Out(M) characterize
the homeomorphism class of M?

There is an analogy between Theorem 10.8, and the classification theory for Riemannian foliations
[164, 163]. Recall that a Riemannian foliation F on a compact manifold M is said to be transversally
parallelizable (or TP) if the group of foliation-preserving diffeomorphisms of M acts transitively. In
this case, the minimal sets for F are principle H-bundles, where H is the structural Lie group of
the foliation. Theorem 10.8 is the analog of this result for matchbox manifolds. It is interesting to
compare this result with the theory of equicontinuous foliations on compact manifolds, as in [10].

However, if M is equicontinuous, but not homogeneous, then the analogy becomes more tenuous.
Clark, Fokkink, and Lukina introduce in [55] the Schreier continuum for weak solenoids, an invariant
of the topology of M, which they use to calculate the end structures of leaves. In particular, they
show that there exists weak solenoids for which the number of ends of leaves can be between 2 and
infinity, which is impossible for Riemannian foliations (see also [97]).

The classification of equicontinuous matchbox manifolds implies a classification of weak solenoids,
and this appears far from being understood, if not simply impossible [119, 136, 193, 194].

As in Definitions 3.5, 3.6 and 3.7, one can likewise define distal, proximal, and expansive matchbox
manifolds. Here is a basic question:

PROBLEM 10.10. Give an algebraic classification for minimal expansive matchbox manifolds,
analogous to the classification of weak solenoids by the tower of the fundamental groups P#.

In the case where M is a Cantor bundle associated to a free minimal Zn-action, all such actions are
affable Borel equivalence relations by work of Giordano, Matui, Putnam, and Skau [100, 102, 175].
This concept generalizes to the Borel category the notion of hyperfinite discussed in section 9 above.
The authors prove that with the above hypotheses, the equivalence relation associated to M is
affable. Again, for the case of minimal Zn-actions, it then follows that M is classified up to foliated
homeomorphism by the directed K-Theory groups associated to the affable structure [102, 199].
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Following along these lines, one approach to a partial algebraic classification would be to first show:

PROBLEM 10.11. Let M be a Cantor bundle associated to a free minimal action of a countable
amenable group Γ. Show that the equivalence relation associated to M is affable.

Another approach to classification, in the special case of 2-dimensional matchbox manifolds and
using the leafwise Euler class, was given by Bermudez and Hector in [25].

The definition of the geometric entropy for a C1-foliation extends to the pseudogroup associated to
a matchbox manifold, except that one does not know a priori that the geometric entropy h(GF ,M)
is finite. None the less, the following extension of a result of Ghys, Langevin, and Walczak holds:

THEOREM 10.12 (G-L-W [96]). Let M be a matchbox manifold with h(GF ,M) = 0, then the
holonomy pseudogroup associated to M admits an invariant probability measure. Thus, if M does
not admit a transverse invariant measure, then h(GF ,M) > 0.

It seems that very little is known about the classification of matchbox manifolds with h(GF ,M) > 0.
The works on expansive algebraic dynamical systems cited above provide a source of questions and
conjectures about this case.

After discussing the variety of examples and properties of matchbox manifolds, we introduce the
concept of a “resolution” of a foliated space by a matchbox manifold.

DEFINITION 10.13. Let S be a foliated space with foliation FS . A resolution for (S,FS) consists
of a matchbox manifold M with foliation FM and a foliated continuous surjection ρ : M → S such
that the restriction of ρ to a leaf of FM is a covering of a leaf of FS .

Note that we do not assume that S is transversally totally disconnected, so the hypothesis that the
map is foliated is required.

If S is an exceptional minimal set for a foliation F of a compact manifold M , then S equipped with
the restricted foliation FS = F|S is a resolution of itself. There are many further examples.

Let Fα be a foliation of Tn+1 by linear hyperplanes of codimension-one, associated to an injective
representation α : Zn → S1. Select a leaf L0 ⊂ Tn+1, and apply the “inflation” technique as in the
construction of the Denjoy examples, to obtain a C1-foliation F on Tn+1 of codimension-one, which
then has a unique exceptional minimal set S ⊂ Tn+1. Let M = S as above. Then using the collapse
map, which is the inverse of inflation, we obtain a resolution ρ : M → S → Tn+1. This example is
motivated by a standard technique employed in the study of the spectrum of quasi-crystals, and can
be generalized to any linear foliation of a torus with contractible leaves.

Another example is provided by the “semi-Markov” examples of foliations constructed in [33, 34], for
which there exists a unique exotic minimal set S. The notation semi-Markov refers to the property
that in these examples, both the resolving matchbox manifold M, and the fibers of the resolution
map ρ : M→ S, admit descriptions as Markovian dynamics.

The following problem thus appears quite interesting:

QUESTION 10.14. Which minimal sets, or foliated spaces more generally, admit resolutions?

Note that if ρ : M → S is a resolution of a minimal set S ⊂ M for the foliation F of the compact
manifold M , and leaf L ⊂ M is a dense leaf, then ρ(L) ⊂ S is a dense leaf of F . One version
of Question 10.14 is to ask, given a leaf L ⊂ M of a Cr-foliation F , under what hypotheses on
F does the closure SL = L admit a resolution? A solution to this question, along with a better
understanding of how the the topology and dynamics of matchbox manifolds behave for resolutions,
yields a new approach to the study of the Cr-embedding problem.
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11. Topological Shape

Next, we discuss the classical notion of shape for topological spaces, and apply these ideas to minimal
sets of foliations.

The concept of shape for a compact metric space was introduced by Borsuk [38] and “modern shape
theory” develops algebraic topology of the shape approximations of spaces [151, 152]. The Conley
Index of invariant sets for flows is one traditional application of shape theory to the dynamics of
flows. The shape of matchbox manifolds is studied in [61].

DEFINITION 11.1. Let Z ⊂ X be a compact subset of a complete metric space X. The shape
of Z is the equivalence class of any descending chain of open subsets X ⊃ V1 ⊃ · · · ⊃ Vk ⊃ · · · ⊃ Z
with Z =

⋂∞
k=1 Vk.

The notion of equivalence referred to in the definition is defined by a “tower of equivalences” between
such approximating neighborhood systems. The reader is referred to [151, 152] for details and
especially the subtleties of this definition. One property of shape theory, is that the shape of Z is
independent of the space X and the embedding Z ⊂ X. We recall an important notion:

DEFINITION 11.2. Let Z ⊂ X be a compact subset, and x0 ∈ Z a fixed basepoint. Then Z has
stable shape if the pointed inclusions (Vk+1, x0) ⊂ (Vk, x0) are homotopy equivalences for all k � 0.

The shape fundamental group of Z defined by

(10) π̂1(Z, x0) = lim←− {π1(Vk+1, x0)→ π1(Vk, x0)}

is then well defined. Note that if Z has stable shape, then for k � 0 we have π̂1(Z, x0) ∼= π1(Vk, x0).

The following example from [56] is perhaps the simplest non-trivial example of stable shape. Consider
a Denjoy flow on the 2-torus T2, obtained by applying inflation to an orbit of the flow, as illustrated
in Figure 15 below. Let Z be the unique minimal set for the flow. Then Z is stable, and is
shape equivalent to the pointed wedge of two circles, Z ∼= S1 ∨x0

S1. Consequently, π̂1(Z, x0) ∼=
π1(S1 ∨x0 S1, x0) ∼= Z ∗ Z.

Figure 15. Inflating an orbit to obtain a Denjoy flow

As another example, let F be a codimension-one foliation with an exceptional minimal set M ⊂M .
Then M has stable shape if and only if the complement M − M consists of a finite union of
connected open saturated subsets. In the shape framework, one of the long-standing open problems
for codimension-one foliation theory is then:

PROBLEM 11.3. Let F be a codimension-one, C2-foliation of a compact manifold M . Show that
an exceptional minimal set M for F must have stable shape.

More generally, one can ask whether there are other classes of foliations with codimension greater
than one, for which the minimal sets are “expected” to have stable shape?

Now let M be a matchbox manifold, with metric dM defining the topology. Choose a basepoint
x0 ∈M and let L0 be the leaf containing L0. For ε > 0, let τx0,z : [0, 1]→ L0 be a leafwise path such

that dM(x0, z) < ε. Define an equivalence relation on such loops by τ0
ε∼ τ1 if there is a leafwise
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homotopy τt from τ0 to τ1 such that τt(0) = x0 and dM(τt(1), x0) < ε for all 0 ≤ t ≤ 1. The
collection of all such approximate loops up to equivalence is denoted by

(11) πε1(M, x0) = {τ̂ | τ̂ ε∼ τ̂ ′}
The sets πε1(M, x0) do not have a group structure, as concatenation of paths is not necessarily well

defined. In any case, there are always maps πε
′

1 (M, x0) ⊂ πε1(M, x0) for 0 < ε′ < ε.

Note that the sets πε1(M, x0) may depend strongly on the choice of the basepoint x0.

Next, suppose that ρ : M → Z ⊂ M is a resolution of a closed invariant subset Z for a foliation
F of a foliated manifold M . Let δ0 > 0 be a Lebesgue number for a covering of M by foliation
charts, and let ε0 > be a modulus of continuity for ρ. That is, if x, y ∈M satisfy dM(x, y) < ε0 then
dM (ρ(x), ρ(y)) < δ0. Set xρ = ρ(x0).

LEMMA 11.4. Let ε < ε0 then there is a well defined map ρ# : πε1(M, x0)→ π1(M,xρ).

Proof. The assumption dM(τt(1), x0) < ε < ε0 for all 0 ≤ t ≤ 1 implies that the endpoints satisfy
dM (ρ(τt(1), xρ) < δ0, hence are joined by a family of paths contained in a foliation chart. �

There is also a well defined map from the shape fundamental group, ρ# : π̂1(M, x0)→ π1(M,xρ).

For example, suppose the M is a McCord solenoid, which is resolution of a minimal set Z ⊂ M .
Then the shape of M is not stable, and π̂1(M, x0) is an non-trivial inverse limit. Since π1(M,xρ) is
always finitely presented, it is a countable group. Thus, the kernel of ρ# : π̂1(M, x0) → π1(M,xρ)
must be non-trivial. We conclude this technical digression with a basic question:

PROBLEM 11.5. Let ρ : M→ Z be a resolution of a closed saturated subset of the foliated manifold
M . How are the subgroups of π1(M,xρ) given by the images ρ#(π̂1(M, x0)) and ρ#(πε

′

1 (M, x0))
related to the dynamics of F and the topology of M?

It is natural to ask why this problem, and whether these abstract notions have any applications?
One point is that such related ideas have already been introduced in the foliation literature, by
Haefliger [110] in his study of Riemannian pseudogroups, and in the study of approximate orbits
in foliation dynamics [29, 139, 140, 133]. We include the above discussion, as the author believes
such considerations are a fundamental part of the study of shape theory of minimal sets, and these
ideas have not been explored. For example, any difference between the subgroups appearing in
Problem 11.5 will be a measure of how far the set Z is from being stable.

12. Shape Dynamics

Finally, we introduce the notion of shape dynamics, which is a refinement of the notion of shape
for a closed saturated subset Z ⊂M of the foliated manifold M . The shape dynamics of a foliated
space Z studies the germinal dynamics of a sequence of coverings of Z which define its shape, and
where the open sets are the union of foliation charts associated to a Γrq-cocycle over the fundamental
groupoid of FZ . We illustrate this concept with an example.

Let Z ⊂M be a closed saturated set. Given ε > 0, we can choose a finite covering of Z by foliation
charts of M , whose diameters are bounded above by ε. Taking the union of these open sets which
intersect Z, we obtain a shape approximation Z ⊂ Vε ⊂M . The shape of Z can then be defined by
the collection of open neighborhoods {Vε | ε = 1/` , ` = 1, 2, . . .} for example.

Associated to each leafwise path τ : [0, 1]→ Z, its holonomy map hτ can be defined using a covering
of Z by foliation charts. In particular, defining the shape approximations of Z using foliation charts
yields well defined germinal holonomy along all leafwise paths in Z. The collection of all such
holonomy maps defines the shape dynamics of Z.

In terms of sheaf-theoretic approach to foliations of Haefliger’s thesis [107, 109], the foliation F
defines a Γrq-cocycle over the fundamental groupoid ΓF of F . A closed saturated subset Z ⊂ M
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induces a subgroupoid ΓF|Z ⊂ ΓF given by the germinal holonomy along leafwise paths of F which
lie in Z. That is, a shape approximation to a closed saturated subset of M yields more than just
the topological shape of Z, it also yields a ΓF -cocycle on the shape approximations.

Now consider the restriction of the ΓF -cocycle defined by F to the elements of πε1(M, x0). This is
well defined, as the germinal holonomy depends only on the leafwise homotopy class of the path.
We thus obtain the holonomy along “almost closed leafwise paths”, a concept has a long tradition in
foliation folklore. Shape theory simply adds some additional formal structure to their consideration.

This notion is closely associated to the concept of “germinal holonomy” introduced by Timothy
Gendron [94, 95]. A related construction has been used by André Haefliger in his study of the
isometry groups associated to the holonomy along a fixed leaf of a Riemannian foliation [110].

The study of foliation entropy, at its most technical level, often relies on the transformations induced
by restriction of the ΓF -cocycle to the elements of πε1(M, x0), for ε > 0 sufficiently small. This is
seen in the works [29, 139, 140, 133], and also in the proof of Theorem 7.15 in [129].

Motivated by these examples, we state a very general problem:

PROBLEM 12.1. Given a minimal set M, what can we say about the “shape dynamics” of M?

For example, the local entropy hloc(GF , w) introduced in Definition 6.2 is an invariant of the shape
dynamics of Z with w ∈ Z. What other dynamical invariants can be formulated in terms of shape?

The ΓF -cocycle defined by F is functorial, so if we are given a resolution ρ : M → Z, then the
ΓF -cocycle over Z lifts to a ΓF,ρ-cocycle over M. Moreover, the derivative of the holonomy maps
defines a functor D : ΓF → GL(q,R), thus a resolution ρ yields a GL(q,R)-valued cocycle D ◦ρ over
the homotopy groupoid of M. We can then define, exactly as in section 4, the normal exponents for
the geodesic flow in shape dynamics.

We say that the shape dynamics for ρ : M → Z ⊂ M has hyperbolic type if ρ(M) ∩HF 6= ∅. The
normal cocycle for the leafwise geodesic flow on M then has non-zero exponents. What restrictions
does this place on the dynamics of M and the map ρ?

Finally, we reveal the point of our fascination with the formulation of the dynamics of a foliation in
terms of the shape approximations of its closed invariant sets. Recall that the simplicial geometric
realization functor (as described for example in [142]) yields classifying map ν : M → BGL(q,R) ∼=
BO(q) of the normal bundle to F , and hence induces the universal normal bundle maps ν̂ : BΓrq →
BO(q) for all r ≥ 1. The celebrated Bott Vanishing Theorem [39] and the very deep works of Tsuboi
[200, 201] show that in fact, there is a strong interaction between the degree of differentiability Cr,
the topology of the classifying map ν̂, and the dynamics of foliations. One of the deepest open
problems of foliation theory is to understand these relationships for r > 1.

The functoriality of the construction of classifying maps implies that if ρ : M→ Z ⊂M is a resolu-
tion of Z, then we obtain a universal classifying map HM : BΓF,M → BΓrq which depends only on
the shape dynamics of M. We can then formulate a very general version of the “Sullivan Conjec-
ture” concerning the non-triviality of the Godbillon-Vey classes, extended to the shape dynamics of
matchbox manifolds.

QUESTION 12.2. How is the homotopy class of HM related to the shape dynamics of M?

The point of this problem, is the folklore concept conveyed to the author by Hans Sah around 1981,
that the topology of the space BΓrq is somehow related to algebraic K-Theory invariants of number
fields, and the maps HM represent the sort of generalized cycles for such a theory. The motivation
for this is the celebrated Mather-Thurston Theorem [155, 195], which states that the cohomology of
the pointed iterated loop space ΩqBΓrq is naturally isomorphic to the group cohomology of the group
of compactly supported diffeomorphisms of Rq, so H∗(ΩqBΓrq;Z) ∼= H∗(Diffrc(Rq);Z). The point of
Question 12.2, is to ask whether the “cycles” represented by matchbox manifolds resolving a minimal
set fit into this scheme, and if so, how the homology classes obtained are related to dynamics in a
germinal neighborhood of the minimal set. (For more on this, see [131, 132].)
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Appendix A. Homework

Monday: Characterize the transversally hyperbolic invariant probability measures µ∗ for the foliation
geodesic flow of a given foliation.

Tuesday: Classify the foliations with subexponential orbit complexity and distal transverse structure.

Wednesday: Find conditions on the geometry of a foliation such that exponential orbit growth implies
positive entropy.

Thursday: Find conditions on the Lyapunov spectrum and invariant measures for the geodesic flow
which imply positive entropy.

Friday: Characterize the exceptional minimal sets of zero entropy.

Extra Credit: Which matchbox manifolds are homeomorphic to an inverse limit of covering maps of
branched n-manifolds?
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[10] J. Álvarez López and A. Candel, Equicontinuous foliated spaces, Math. Z., 263:725–774, 2009.

[11] C. Anantharaman–Delaroche and J. Renault, Amenable groupoids, Monographies de L’Enseignement
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2010.

[24] R. Benedetti and J.-M. Gambaudo, On the dynamics of G-solenoids. Applications to Delone sets, Ergodic
Theory Dyn. Syst., 23:673–691, 2003.



LECTURES ON FOLIATION DYNAMICS: BARCELONA 2010 37

[25] M. Bermudez and G. Hector, Laminations hyperfinies et revêtements, Ergodic Theory Dynam. Systems,
26:305–339, 2006.

[26] S. Bezuglyi, J. Kwiatkowski and K. Medynets, Approximation in ergodic theory, Borel, and Cantor dynamics,

In: Algebraic and topological dynamics, Contemp Math. Vol. 385, American Math. Soc., Providence, RI,
2005: 39–64.

[27] S. Bezuglyi and K. Medynets, Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems,

Colloq. Math., 110:409–429, 2008.
[28] R.H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad.

J. Math., 12:209–230, 1960.
[29] A. Bís and P. Walczak, Pseudo-orbits, pseudoleaves and geometric entropy of foliations, Ergodic Theory

Dynam. Systems, 18:1335–1348, 1998.

[30] A. Bís and P. Walczak, Entropy of distal groups, pseudogroups, foliations and laminations, Ann. Polon. Math.,
100:45–54, 2010.

[31] A. Bís, H. Nakayama and P. Walczak, Locally connected exceptional minimal sets of surface homeomorphisms,

Ann. Inst. Fourier (Grenoble), 54:711–731, 2004.
[32] A. Bís, H. Nakayama and P. Walczak, Modelling minimal foliated spaces with positive entropy, Hokkaido Math.

J., 36:283–310, 2007.

[33] A. Bís, S. Hurder, and J. Shive, Hirsch foliations in codimension greater than one, In: Foliations 2005, World
Scientific Publishing Co. Inc., River Edge, N.J., 2006: 71–108.

[34] A. Bís and S. Hurder, Markov minimal sets of foliations, in preparation, 2011.

[35] E. Blanc, Propriétées génériques des laminations, Thesis, Universit’e de Claude Bernard-Lyon 1, Lyon,
2001.

[36] E. Blanc, Laminations minimales résiduellement à 2 bouts, Comment. Math. Helv., 78:845–864, 2003.
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