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Abstract. A matchbox manifold with one-dimensional leaves which has equicontinuous holonomy

dynamics must be a homogeneous space, and so must be homeomorphic to a classical Vietoris
solenoid. In this work, we consider the problem, what can be said about a matchbox manifold

with equicontinuous holonomy dynamics, and all of whose leaves have at most polynomial growth

type? We show that such a space must have a finite covering for which the global holonomy group
of its foliation is nilpotent. As a consequence, we show that if the growth type of the leaves is

polynomial of degree at most 3, then there exists a finite covering which is homogeneous. If the

growth type of the leaves is polynomial of degree at least 4, then there are additional obstructions
to homogeneity, which arise from the structure of nilpotent groups.
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1. Introduction

A continuum is a compact connected metric space. A continuum X is homogeneous if for each
x, y ∈ X, there exists a homeomorphism h : X → X such that h(x) = y. For example, a compact
connected manifold without boundary is a homogeneous continuum, and the proof of this is a
standard exercise in manifold theory. On the other hand, Knaster and Kuratowski [33] posed the
problem in 1920 to classify the homogeneous continua in the plane R2, and this problem was only
recently solved by Hoehn and Oversteegen [27]. Their paper also gives a selection of references for the
“rich literature concerning homogeneous continua”. For a continuum embedded in Euclidean space
Rn with n > 2, the classification problem for homogeneous continua becomes intractable in this full
generality, so one formulates a more restricted problem by imposing conditions on the continua.

In this work, we are concerned with continua that are “manifold-like”. That is, the continuum is
a disjoint union of manifolds of the same dimension, and locally has a uniform structure. This is
formulated by introducing the notion of an n-dimensional foliated space M, which is a continuum that
has a regular local product structure [8, 40]; that is, every point x ∈M has an open neighborhood
x ∈ U ⊂ M homeomorphic to an open subset of Rn times a compact metric space Tx where Tx is
called the local transverse model. The homeomorphism ϕx : Ux → [−1, 1]n × Tx is called a local
foliation chart. A matchbox manifold is a foliated space M such that the local transverse models
Tx are totally disconnected. The leaves of the foliation F of M are the maximal path connected
components, and by assumption they are smooth manifolds, and can be endowed with complete
Riemannian metrics. Precise definitions can be found in the references [2, 8, 11, 13].

Bing conjectured in [7] that a homogeneous continuum whose arc-composants are arcs must be
a classical Van Dantzig - Vietoris solenoid [49, 50]. This condition is satisfied by 1-dimensional
matchbox manifolds, so in particular Bing’s conjecture implies that such spaces are solenoids if
homogeneous. An affirmative answer to this conjecture of Bing was given by Hagopian [26], and
subsequent proofs in the framework of 1-dimensional matchbox manifolds were given by Mislove and
Rogers [38] and by Aarts, Hagopian and Oversteegen [3].

Clark and Hurder generalized the 1-dimensional result to higher dimensional leaves in the work [11],
giving a positive solution to Conjecture 4 of [22]. In Section 2, we recall the notion of weak solenoids,
and the special case of normal (or McCord) solenoids, as introduced by McCord in [35]. Then the
following result was proved in [11]:

THEOREM 1.1 (Clark & Hurder). Let M be a homogeneous matchbox manifold. Then M is
homeomorphic to a McCord solenoid.

One step in the proof of Theorem 1.1 is the proof of the following result, which generalizes a key step
in the proofs of the 1-dimensional case in [3, 38]. A foliation F is said to be equicontinuous if the
transverse holonomy pseudogroup defined by the parallel transport along the leaves of F acting on a
transversal space has equicontinuous dynamics. (See [11] for a detailed discussion of this property.)

THEOREM 1.2 (Clark & Hurder [11]). Let M be an equicontinuous matchbox manifold. Then M
is homeomorphic to a weak solenoid.

The assumption that the holonomy action is equicontinuous is essential. The Williams solenoids,
as defined in [51] as inverse limits of maps between branched n-manifolds, are matchbox manifolds
whose holonomy dynamics is expansive, and they are not homeomorphic to a weak solenoid.

Examples of Schori [46] and Rogers and Tollefson [44] show that there exists weak solenoids that
are not homogeneous. The paper of Fokkink and Oversteegen [22] analyzed the problem of showing
that a weak solenoid is in fact homogeneous, introducing a technique based on the group chains
associated to a weak solenoid, to obtain a criterion for when a weak solenoid is homogeneous.

The study of equivalence classes of group chains in the paper [22] was continued in the thesis [18] of
the first author, and the subsequent work [19] of the authors of this paper. As discussed in Section 4
below, there are multiple phenomena in the algebraic structure of group chains, which may give rise
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to non-homogeneous weak solenoids. However, these properties of solenoids differ in their nature,
and it was observed in [19] that in some cases, the non-homogeneity property is not preserved under
finite coverings, while in other cases it is. This motivated our introduction of the following notion:

DEFINITION 1.3. Let Π0 : S →M0 be a weak solenoid with base a closed manifold M0. We say
that S is virtually homogeneous if there exists a finite-to-one covering map p′0 : M ′0 →M0 such that
the pullback solenoid Π′0 : S ′ →M ′0 is homogeneous.

As an example of this phenomenon, the example of Rogers and Tollefson in [44] (and as interpreted
by Fokkink and Oversteegen in [22, Section 6]) is not homogeneous due to the non-orientation-
preserving action of an element of the fundamental group of the base manifold in their example.
Passing to a finite covering removes this action, and results in a homogeneous solenoid.

More generally, there are other properties of weak solenoids which become evident after passing to
an appropriate finite covering. In this work, we will also consider the property that a solenoid has
transverse model space defined by a group chain in a nilpotent group, in which case we say that the
solenoid is virtually nilpotent. This will be considered further in Sections 5 and 6.

In this work, we consider the (virtual) homogeneity properties of weak solenoids in terms of the
geometry of their leaves. A weak solenoid with 1-dimensional leaves must be homogeneous, as
the base manifold M0 is then 1-dimensional, hence is homeomorphic to S1 and its fundamental
group H0 is free abelian. However, already in the case of a 2-dimensional weak solenoid, the base
manifold M0 is a closed 2-manifold, possibly non-orientable. If the base is orientable, then it is either
homeomorphic to the 2-torus T2 or to a closed surface with genus at least 2. Thus, if the leaves of
the solenoid S are simply connected, then they are either coarse-isometric to the Euclidean plane,
or to the hyperbolic plane. In the general case, a weak solenoid may have a mixture of topological
types for its leaves, as they may have differing fundamental groups for the leaves as in the examples
in [10, 19], and thus cannot be homogeneous.

The “growth rates of leaves” is a standard notion in the theory of smooth foliations of manifolds
[36, 41, 42], and adapts in a straightforward way to the case of matchbox manifolds. For the case of
weak solenoids as discussed in section 2, the growth rates of the leaves and of the fundamental group
are closely related, as discussed in section 3. The growth rates of leaves in a weak solenoid can either
be polynomial of some degree 0 ≤ k <∞, or can be subexponential but not polynomial, or can be
exponential. Groups with polynomial growth type are special, in that their algebraic structures are
understood in broad outline, as discussed in section 3. This is the basis of our main results, which
concern the (virtual) homogeneity properties of equicontinuous matchbox manifolds which have all
leaves of polynomial growth.

To state our results, we require the additional concept of “finite type” for foliations. Recall that a
topological space X has finite type if it is homotopy equivalent to a finite CW complex. A foliated
manifold has finite type if each of its leaves is a space of finite type. This is a non-trivial assumption,
as Hector constructed in [28] examples of smooth foliations of codimension-one on compact manifolds
which have leaves that are not of finite type. Also, the Schori solenoid [46] has leaves which are
surfaces of infinite genus, hence are not of finite type.

THEOREM 1.4. Let M be an equicontinuous matchbox manifold, and suppose that F has finite
type and all leaves of F have polynomial growth. Then M is homeomorphic to a virtually nilpotent
weak solenoid.

The definitions of a virtually nilpotent and virtually abelian solenoid are given in Definition 6.2.

The importance of the conclusion of Theorem 1.4, is that whether M is virtually homogeneous, or
not, is then determined by algebraic invariants associated with a group chain in a nilpotent group
N0, and the adjoint action of a finite group H0 acting on N0. The authors’ works [18, 19] give a
selection of examples to illustrate when such chains yield virtually homogeneous weak solenoids.

For a 1-dimensional matchbox manifold M, all leaves have polynomial growth of degree 1, and as
noted above, equicontinuity of the holonomy of the foliation implies that M is homogeneous. It
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is then natural to consider the applications of Theorem 1.4 to the virtual homogeneity for weak
solenoids, in the cases where the leaves of F have low degree polynomial growth.

THEOREM 1.5. Let M be an equicontinuous matchbox manifold, and suppose that F has finite
type and all leaves of F have polynomial growth of degree at most 3. Then M is homeomorphic to
a virtually abelian weak solenoid, and thus to a virtually homogeneous weak solenoid.

The proof of this result reveals that the lack of homogeneity in the weak solenoid S is due to the
monodromy action of some finite quotient group of the fundamental group of the base of the weak
solenoid, and this symmetry-breaking action can be removed by passing to a finite normal covering of
the base. Thus, all examples as in Theorem 1.5 are analogous to the Rogers and Tollefson example.

Our third result is an example as constructed by Dyer in [18], which shows that for higher growth
rates, the lack of homogeneity is due to the structural properties of the nilpotent group and the
group chain in it which defines the transverse model space for the solenoid.

THEOREM 1.6. There exist non-homogeneous weak solenoids with leaves of dimension 3, where
every leaf is covered by the Heisenberg space H, and thus has polynomial growth rate exactly 4.
Moreover, these examples are not virtually homogeneous.

These results suggest that the study of the homogeneity properties of weak solenoids with leaves of
subexponential growth is itself an interesting subject for further investigation.

In section 2 we discuss the definitions and some of the properties of weak solenoids. In section 3 we
discuss the relation between growth properties of leaves and the group structure for weak solenoids.
In section 4 we introduce the group chains associated to weak solenoids, and their classification as
discussed in the works [18, 19, 22]. In section 7 we first prove Theorem 1.4, then apply this result
to obtain the proof of Theorem 1.5. Finally, we give the constructions used to prove Theorem 1.6.
The last Section 8 discusses some directions for future research.

The results of this paper were partially presented in the talk [31] by the second author, and also
rely in part on the thesis work of the first author [18].

2. Weak solenoids

In this section, we describe the constructions of weak solenoids, and recall some of their properties.

A presentation is a collection P = {p`+1 : M`+1 → M` | ` ≥ 0}, where each M` is a connected
compact simplicial complex of dimension n, and each bonding map p`+1 is a proper surjective map
of simplicial complexes with discrete fibers. For ` ≥ 0 and x ∈ M`, the set {p−1

`+1(x)} ⊂ M`+1

is compact and discrete, so the cardinality #{p−1
`+1(x)} < ∞. For an inverse limit defined in this

generality, the cardinality of the fibers of the maps p`+1 need not be constant in either ` or x.

Associated to a presentation P is an inverse limit space,

(1) SP ≡ lim
←−
{p`+1 : M`+1 →M`} ⊂

∏
`≥0

M` .

By definition, for a sequence {x` ∈M` | ` ≥ 0}, we have

(2) x = (x0, x1, . . .) ∈ SP ⇐⇒ p`(x`) = x`−1 for all ` ≥ 1 .

The set SP is given the relative topology, induced from the product topology, so that SP is itself
compact and connected.

For example, if M` = S1 for each ` ≥ 0, and the map p` is a proper covering map of degree m` > 1
for ` ≥ 1, then SP is an example of a classic solenoid, discovered independently by van Dantzig [49]
and Vietoris [50]. If M` is a compact manifold without boundary for each ` ≥ 0, and the map p`
is a proper covering map of degree m` > 1 for ` ≥ 1, then SP is said to be a weak solenoid. This
generalization of 1-dimensional solenoids was originally considered in the papers by McCord [35]
and Schori [46]. In particular, McCord showed in [35] that SP has a local product structure.
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PROPOSITION 2.1. Let SP be a weak solenoid, whose base space M0 is a compact manifold of
dimension n ≥ 1. Then SP is a minimal matchbox manifold of dimension n with foliation FP .

Associated to a presentation P of compact manifolds is a sequence of proper surjective maps

(3) q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M` →M0 .

For each ` > 1, projection onto the `-th factor in the product
∏
`≥0

M` in (1) yields a fibration map

denoted by Π` : SP →M`, for which Π0 = Π` ◦ q` : SP →M0. A choice of a basepoint x0 ∈M0 fixes
a fiber X0 = Π−1

0 (x0), which is a Cantor set by the assumption that the fibers of each map p` have
cardinality at least 2. The choice of x0 will remain fixed throughout the following. We also then
have a fixed group H0 = π1(M0, x0).

A choice x ∈ X0 defines basepoints x` = Π`(x) ∈M` for ` ≥ 1. Define Hx` = π1(M`, x`), and let

(4) Hx
` = image {(q`)# : Hx` −→ H0}

denote the image of the induced map (q`)# on fundamental groups. Thus, associated to the presen-
tation P and basepoint x ∈ X0 we obtain a descending chain of subgroups of finite index

(5) H0 ⊃ Hx
1 ⊃ Hx

2 ⊃ · · · ⊃ Hx
` ⊃ · · · .

Each quotient Xx
` = H0/H

x
` is a finite set equipped with a left H0-action, and there are surjections

Xx
`+1 → Xx

` which commute with the action of H0. The inverse limit

(6) Xx
∞ = lim

←−
{p`+1 : Xx

`+1 → Xx
` } ⊂

∏
`≥0

Xx
`

is then a totally disconnected perfect set, so is a Cantor set. The fundamental group H0 acts on
the left on Xx

∞ via the coordinate-wise multiplication on the product in (6). We denote this Cantor
action by (Xx

∞, H0,Φx).

LEMMA 2.2. The left action Φx : H0 ×Xx
∞ → Xx

∞ is minimal.

Proof. The left action of H0 on each quotient space Xx
` is transitive, so the orbits are dense in the

product topology on Xx
∞. �

The choice of the basepoint x ∈ SP defines basepoints x` ∈ M` for all ` ≥ 1, which gives an
identification of Xx

` with the fiber of the covering map M` → M0. In the inverse limit, we thus

obtain a map τx : Xx
∞ → X0 = Π−1

0 (x0) which is a homeomorphism. The left action of H0 on
Xx
∞ is conjugated to an action of H0 on X0 called the monodromy action at x0 for the fibration

Π0 : SP → M0. The monodromy action can also be defined by the holonomy transport along the
leaves of the foliation FP on SP . It was shown in [13, Theorem 4.8] that the monodromy actions for
two homeomorphic solenoids are return equivalent, where return equivalence is a notion of Morita
equivalence for matchbox manifolds.

Note that while the group chain in (5) depends on the choice of basepoint x, for x 6= y ∈ X0 the
composition τ−1

y ◦ τx : Xx
∞ → Xy

∞ gives a topological conjugacy between the minimal Cantor actions
(Xx
∞, H0,Φx) and (Xy

∞, H0,Φy). That is, the map τx : Xx
∞ → X0 can be viewed as “coordinates” on

the inverse limit space X0, and so properties of the minimal Cantor action (Xx
∞, H0,Φx) which are

independent of the choice of coordinates are properties of the topological type of SP . In Section 4,
we discuss properties of (Xx

∞, H0,Φx) derived from the group chain (5) and their dependence on the
choices made which are used to define it.

Let M̃0 denote the universal covering of the compact manifold M0 and let (Xx
∞, H0,Φx) be the

minimal Cantor action associated to the presentation P and the choice of a basepoint x ∈ X0.
Associated to the left action Φx of H0 on Xx

∞ is a suspension space

(7) M = M̃0 ×Xx
∞/(z · g−1, x) ∼ (z,Φx(g)(x)) for z ∈ M̃0, g ∈ H0 ,
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which is a minimal matchbox manifold. Given coverings π′ : M ′ → M0 and π′′ : M ′′ → M0, and
choices of basepoints x′ ∈M ′ and x′′ ∈M ′′ with π′(x′) = π′′(x′′) = x0, such that the subgroups

π′#(π1(M ′, x′)) = π′′#(π1(M ′′, x′′)) ⊂ π1(M0, x0),

then there is a natural homeomorphism of coverings M ′ ∼= M ′′ which is defined using the path lifting
property. From this, it follows (see [11]) that:

THEOREM 2.3. Let SP be a weak solenoid with base space M0 where M0 is a compact manifold
of dimension n ≥ 1. Then there is a foliated homeomorphism SP ∼= M.

COROLLARY 2.4. The homeomorphism type of a weak solenoid SP is completely determined by
the base manifold M0 and the associated Cantor action by (Xx

∞, H0,Φx).

Note that all leaves in a McCord solenoid SP are homeomorphic, as it is homogeneous. In the case
of a weak solenoid SP , the leaves of FP need not be homeomorphic. For example, the work [10]
gives an example of a weak solenoid for which the leaves of FP have differing numbers of ends.

3. Growth properties

In this section, we discuss the growth properties of leaves of foliated spaces and of finitely generated
groups, and the relations between these two concepts in the case of weak solenoids.

Let M be a matchbox manifold. A map f : M → R is said to be smooth if for each flow box
ϕx : Ux → [−1, 1]n × Tx for M and w ∈ Tx the composition y 7→ f ◦ ϕ−1

x (y, w) is a smooth
function of y ∈ (−1, 1)n, and depends continuously on w in the C∞-topology on maps of the plaque
coordinates y. As noted in [40], and also [8, Chapter 11], this allows one to define smooth partitions
of unity, vector bundles, and tensors for smooth foliated spaces. In particular, one can define leafwise
Riemannian metrics, which are defined for vectors in the tangent bundle TF to F , and so define
a norm on the tangent space TxF for x ∈ M. This norm is smooth as x varies in a leaf, and is
continuous for x in M. We then recall a standard result, whose basic idea dates back to the work of
Plante [41] if not before. The proof for foliated spaces can be found in [8, Theorem 11.4.3].

THEOREM 3.1. Let M be a smooth foliated space. Then there exists a leafwise Riemannian
metric for F , such that for each x ∈M, the leaf Lx through x is a complete Riemannian manifold
with bounded geometry, and the Riemannian geometry depends continuously on x .

The survey [30] discusses results and problems concerned with the “coarse geometry” of smooth
foliations, and many of these results apply as well to the study of foliated spaces. We recall some
basic concepts of coarse geometry.

Let (X, dX) and (Y, dY ) be metric spaces. A homeomorphism f : X → Y is said to be bi-Lipschitz
if there exists a constant C ≥ 1 such that for all x, x′ ∈ X we have

(8) C−1 · dX(x, x′) ≤ dY (f(x), f(x′)) ≤ C · dX(x, x′) .

The map f is said to be an isometry if the condition (8) is true for C = 1.

A set map f : X → Y is said to be a quasi-isometry, or more precisely a (C,D)-quasi-isometry, if
there exists constants C ≥ 1 and D ≥ 0 such that for all x, x′ ∈ X we have

C−1 · dX(x, x′)−D ≤ dY (f(x), (x′)) ≤ C · dX(x, x′) +D

and the image of f is D-dense in Y . Recall that a subset Z ⊂ Y is said to be D-dense if for all
y ∈ Y , there exists z ∈ Z such that dY (y, z) ≤ D. In the case of the image of a map f , this means
that for all y ∈ Y , there exists x ∈ X such that dY (y, f(x)) ≤ D.

The coarse geometry of metric spaces is the study of the properties of the metric geometry which
are preserved by a quasi-isometry. One of the basic ideas is the notion of a net, or Delone set as it
is called in the tilings literature. Let (X, dX) be a metric space. Then a subset Z ⊂ X is a net if
there exists constants A,B > 0 such that:
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• For all x ∈ X there exists z ∈ Z such that dX(x, z) ≤ A.
• For all z 6= z′ ∈ Z then dX(z, z′) ≥ B.

It follows that for the metric dZ on Z obtained from the restriction of dX , the space (Z, dZ) is
discrete, and the inclusion Z ⊂ X is a (C,D)-coarse isometry where C = 1 and D = A.

The simplest example of an A-dense set is the inclusion Z ⊂ R for the standard metric on R, where
A = 1/2. Moreover, the subset Z is a net in R. This is a special case of a more general class of

examples. Let M be a closed Riemannian manifold, with the path metric dM . Let π : M̃ → M
denote its universal covering space. Then the Riemannian metric on M lifts to a Riemannian metric

on M̃ , and the induced path length metric d̃ on M̃ is complete. Let x ∈M and Zx = π−1(x) ⊂ M̃ be

the fiber over x. Then Zx is a net for (M̃, d̃) for A = diam(M)/2 and B = inj(M), where diam(M)
is the diameter of M for the metric dM and inj(M) in the injectivity radius for M , which is positive
as M is compact without boundary. This was a key observation in the seminal work by Milnor [36].
For the covering π : R→ S1 with the usual metric on S1, this construction yields the example above
of the inclusion Z ⊂ R.

Another class of examples of coarse geometry are provided by the leaves of a foliation of a manifold,
or of a foliated space M. Assume that a leafwise Riemannian metric has been chosen for M. For each
leaf L ⊂M, let dL denote the path length metric on L defined by the restriction of the Riemannian
metric to L. Let dF denote the metric on M defined by the collection of leafwise metrics for the
leaves. That is, if x, y ∈ M and there is some leaf L with x, y ∈ L then dF (x, y) = dL(x, y).
Otherwise, we set dF (x, y) =∞. We call dF a leafwise metric for M.

Plante observed in [41] that for smooth foliations of compact manifolds, for any two choices of
leafwise Riemannian metrics on F , the resulting leafwise metrics dF and d′F on M are bi-Lipschitz
equivalent, where the Lipschitz constant C ≥ 1 depends on the choice of the metrics. This remains
true for leafwise metrics on foliated spaces and matchbox manifolds.

If Z ⊂ M is a complete transversal to F , then for each leaf L ⊂ M the intersection Z = Z ∩ L is
a net for (L, dL), so the inclusion map Z ⊂M induces a coarse isometry when restricted to leaves.
From this it follows that if M is a matchbox manifold with leafwise metric dF , and M′ is a matchbox
manifold with leafwise metric d′F , then a homeomorphism h : M → M′ induces a coarse isometry
between each leaf L ⊂M and the leaf L′ ⊂M′ for which h(L) ⊂ L′. We conclude:

THEOREM 3.2. Let h : M→M′ be a homeomorphism between matchbox manifolds. Let L ⊂M
be a leaf, and let L′ = h(L) ⊂ M′ be the image leaf. Then for any choice of leafwise Riemannian
metrics on M and M′, the map h : L→ L′ induces a coarse isometry between the leaves.

Theorem 3.2 states that the coarse geometry of leaves in a matchbox manifold are preserved by
homeomorphism of the ambient foliated spaces. It thus makes sense to consider invariants of the
coarse geometry of the leaves of a matchbox manifold M, and the relations between these invariants
and the group Homeo(M).

In the case of a weak solenoid, there is a standard construction of a leafwise metric dF on the
matchbox manifold M = SP . Let SP be defined by a presentation P = {p`+1 : M`+1 →M` | ` ≥ 0},
with Π0 : SP → M0 the projection map onto the base manifold M0. Recall that FP denotes the
resulting foliation on SP . Choose a Riemannian metric on TM0. Then for each leaf L ⊂ SP of
FP , the restriction Π0 : L → M0 is a covering map, so defines a smooth Riemannian metric on the
tangent bundle TL. Let dL denote the path metric induced on L, which is complete as M0 has
no boundary. The collection of metrics so defined yields a continuous Riemannian metric on the
tangential distribution TFP to FP , and dF is the resulting leafwise metric.

We next introduce the growth type of a complete Riemannian manifold L, with dL the associated
path length metric. Given x ∈ L and r > 0 let

BL(x, r) = {y ∈ L | dL(x, y) ≤ r}
denote the ball in L of radius r centered at x. The Riemannian metric on L defines a volume form,
and let V ol(B(x, r)) denote the volume of the ball for this volume form. The growth function of L at
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x is defined to be the function Gr(L, dL, x, r) = V ol(B(x, r)). This function depends on the choices
made, so we introduce an equivalence relation on functions, which is used to define the growth type
of L which is a quasi-isometry invariant.

Given functions f1, f2 : [0,∞) → [0,∞) say that f1 . f2 if there exist constants A,B,C > 0 such
that for all r ≥ 0, we have that f2(r) ≤ A · f1(B · r) + C. Say that f1 ∼ f2 if both f1 . f2 and
f2 . f1 hold. This defines an equivalence relation on functions, which defines their growth class.
The same definitions can also be applied to functions defined on any subset Λ ⊂ R. In the following
we will consider functions defined on the natural numbers N ⊂ R, for example, and speak of their
growth class.

One can consider a variety of special classes of growth types. For example, note that if f1 is the
constant function and f2 ∼ f1 then f2 is constant also.

We say that f : [0,∞)→ [0,∞) has exponential growth type if f(r) ∼ exp(r). Note that exp(λ · r) ∼
exp(r) for any λ > 0, so there is only one growth class of “exponential type”.

A function f has nonexponential growth type if f(r) . exp(r), but exp(r) 6. f(r).

A function f has subexponential growth type, if for any λ > 0 there exists A,C > 0 so that f(r) ≤
A · exp(λ · r) + C.

Finally, f has polynomial growth type if there exists d ≥ 0 such that f(r) . rd. The growth type is
exactly polynomial of degree d if f(r) ∼ rd.

From the remarks above in this section, we then conclude the following standard result, which is
proved for foliated manifolds by Plante [41], and see also [30]. The extension to leaves of foliated
manifolds and matchbox manifolds is an exercise.

PROPOSITION 3.3. Let (L, dL) be a complete Riemannian manifold. Then the growth class of
the function Gr(L, dL, x, r) is well-defined up to quasi-isometry. In particular, if L ⊂M is a leaf of
a matchbox manifold, then there is a well-defined growth class for L associated to a leafwise metric
dF on M, which is independent of the choice of Riemannian metric on leaves, and basepoint x ∈ L.

The question we address in this work, is how are the properties of the homeomorphism group
Homeo(M) related to the growth classes of the leaves of a weak solenoid? To address this question,
we recall the notions of growth class for finitely generated groups and nets, and their relation to
the growth class of leaves. Chapters VI and VII of the book [15] contain a concise overview of the
geometric theory of finitely generated groups.

Let Γ be a finitely generated group, and let Γ(1) = {γ0 = 1, γ1, . . . , γk} be a set of generators. Then
γ ∈ Γ has word norm ‖γ‖ ≤ ` (with respect to the set Γ(1)) if we can express γ as a product of at
most ` generators, γ = γ±i1 · · · γ

±
i`

. Define the ball of radius ` about the identity of Γ by

Γ(`) ≡ {γ ∈ Γ | ‖γ‖ ≤ `}.
Note that Γ finitely generated implies that the cardinality of the set Γ(`) is finite for all ` ≥ 1, so
we can define the growth function Gr(Γ,Γ(1), `) = #Γ(`). This function depends upon the choice of
generating set for Γ, but its growth class does not, due to the following elementary result.

LEMMA 3.4 ([36]). Let Γ(1) = {γ1, . . . , γk} and Γ(1)′ = {γ′1, . . . , γ′k′} be two sets of generators for
Γ. Let B ≥ 1 be an integer such that each generator γ′j can be expressed by a word in at most B

elements of {γ±1 , . . . , γ
±
k }. Then Gr(Γ′,Γ(1)′ , `) ≤ Gr(Γ,Γ(1), B · `).

For a finitely generated group Γ it thus makes sense to speak of its growth class, denoted by Gr(Γ).
There is also the following standard result, whose proof is again elementary:

LEMMA 3.5. Let H ⊂ Γ be a subgroup of finite index. Then Gr(H) = Gr(Γ).

Next, let H ⊂ Γ be an arbitrary subgroup, and let Λ = Γ/H be the set of cosets of H, with the left
Γ action. Let e ∈ Λ denote the coset of the identity element. The choice Γ(1) of a generating set of
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Γ defines a word metric on Γ as above, which can then be used to define a quotient metric on Λ, as
follows: given x, y ∈ Λ set

dΛ(x, y) = inf {‖γ‖ | γ · x = y} .
If H is a normal subgroup of Γ, then Λ is a group, and the set of generators for Γ projects to a set
of generators for Λ. Then dΛ is simply the word metric on Λ for this projected metric. For the case
when H is not a normal subgroup, then dΛ is the Cayley metric for the discrete space Λ. We define
the growth function of the set (Λ, dΛ) by counting the number of points in a ball of radius `,

Gr(Λ,Γ(1), `) = # {x ∈ Λ | dΛ(e, x) ≤ ` }

Let Gr(Λ) denote the growth class of the function Gr(Λ,Γ(1), `), which as before, is independent of
the choice of generating set Γ(1) for Γ. The following is then immediate:

LEMMA 3.6. Let H ⊂ Γ be a subgroup, and Λ = Γ/H. Then Gr(Λ) ≤ Gr(Γ).

One of the main problems in geometric group theory is to determine the algebraic properties of a
finitely generated group Γ which depend only on the quasi-isometry class of Γ for the word metric
as defined above. The following is a celebrated theorem of Gromov.

THEOREM 3.7 ([23]). Suppose Γ has polynomial growth type for some generating set. Then there
exists a subgroup of finite index Γ0 ⊂ Γ such that Γ0 is a nilpotent group.

Given a nilpotent group Γ0, the lower central series for Γ0 is defined as follows. Let Γ1 = [Γ0,Γ0] ⊂ Γ0

be the first commutator subgroup, which is characterized as the minimal normal subgroup H ⊂ Γ0

such that Γ0/H is abelian. Let r0 ≥ 0 denote the rank of the free abelian summand of Γ0/Γ1.

Then for ` ≥ 1, recursively define Γ`+1 ⊂ Γ` as the subgroup generated by all commutators:

[Γ0,Γ`] = {g−1h−1gh | g ∈ Γ0, h ∈ Γ`} .

Then Γ`+1 is again a normal subgroup of Γ0 and each quotient group Γ`/Γ`+1 is abelian. Let r` ≥ 0
denote the rank of the free abelian summand of Γ`/Γ`+1. The assumption that Γ0 is nilpotent
implies that there is a finite least index k ≥ 1 such that Γk−1 is non-trivial, while Γk is the trivial
group. This is called the length k(Γ0) of Γ0. If the length k(Γ0) = 1 then Γ0 is abelian.

Note that if r` = 0 then Γ`/Γ`+1 is a finitely generated torsion abelian group, but need not be the
trivial group. We recall two elementary observations.

LEMMA 3.8. Let Γ0 be a finitely-generated nilpotent group, and suppose that r` = 0 for ` ≥ `0.
Then Γ`0 ⊂ Γ0 is a finite nilpotent normal subgroup.

Proof. Suppose that A→ B → C is an exact sequence of groups, with A and C finite, then B is also
a finite group. Let k = k(Γ0) then Γk = {0} and so Γk−1 = Γk−1/Γk is a finite group if k − 1 ≥ `0.
Next suppose that k − 2 ≥ `0, then we have the exact sequence Γk−1 → Γk−2 → Γk−2/Γk−1

so that Γk−2 is a finite group. We continue recursively in this manner with the exact sequences
Γ` → Γ`−1 → Γ`−1/Γ` and the claim follows. �

We also need a simple observation about the ranks r0 and r1.

LEMMA 3.9. If r1 ≥ 1 then r0 ≥ 2.

Proof. Note the commutator identity [x, yz] = [x, y][y, [x, z]][x, z] for elements x, y, z ∈ H, for any
group H. In the case H = Γ0/Γ2 all double commutators are the identity, so this by induction yields
[x, yp] = [x, y]p for all p > 1. Thus, if yp = id for some p > 1, then [x, y]p = e also, where e ∈ Γ0/Γ2

denotes the identity element.

Suppose r0 = 0. Then for every y ∈ Γ0 there is p > 0 such that yp is the product of commutators.
Then, using the identity above, [x, yp] is the product of double commutators, and so equals e in
Γ0/Γ2. Since [x, yp] = [x, y]p in Γ0/Γ2, then every commutator in Γ0/Γ2 is torsion. Thus, Γ1/Γ2 is
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generated by torsion elements, and as Γ1/Γ2 is abelian, it is a torsion group. This contradicts the
assumption that r1 = 1.

Suppose r0 = 1, and let y ∈ Γ0 be a generator of the free abelian factor in Γ0/Γ1. Then for every
element x ∈ Γ0 there is a power s > 0 such that xs is the product of yp and a finite number of
commutators, where p ≥ 0. Then we calculate in Γ0/Γ2 that

[yk, xs] = [yk, yp][yk, [., .]]..[yk, [.., ..]] = e ,

and so [yk, x]s = e in Γ1/Γ2. If z /∈ ykΓ1 for some k 6= 0, then there is t > 0 such that zt is the
product of commutators, and so [xs, zt] = [xs, z]t = e in Γ0/Γ2. It follows that every commutator is a
torsion element in Γ0/Γ2, and so Γ1/Γ2 is torsion, which contradicts the assumption that r1 = 1. �

Finally, we recall a basic result of Guivarc’h [24, 25] and Bass [6] about growth types.

THEOREM 3.10 ([6, 25]). Let Γ0 be a finitely generated nilpotent group. Then the growth type of
Γ0 is polynomial with degree

(9) d(Γ0) =

k(Γ0)∑
`=0

(`+ 1) · r` .

We apply formula (9) for the cases where d(Γ0) is small, as it then strongly proscribes the ranks r`.

PROPOSITION 3.11. Let Γ0 be a finitely generated nilpotent group. If 1 ≤ d(Γ0) ≤ 3, then there
exists a finite-index, free abelian subgroup Γ′0 ⊂ Γ0 with rank d(Γ0).

Proof. For d(Γ0) ≤ 3, Lemma 3.9 and formula (9) imply that r` = 0 for ` ≥ 1, and thus 1 ≤ r0 =
d(Γ0) ≤ 3. Moreover, for each ` ≥ 1, the quotient group Γ`/Γ`+1 is a finite torsion abelian group,
and thus Γ1 is a finite torsion group by Lemma 3.8.

On the other hand, r0 ≥ 1 implies that Γ0/Γ1 contains a free abelian subgroup of rank r0. We
consider the case r0 = 3, and the other cases are similar. Choose {γ1, γ2, γ3} ⊂ Γ0 which map
onto the generators of this free abelian subgroup of Γ0/Γ1. Then each commutator [γi, γj ] ∈ Γ1

for 1 ≤ i < j ≤ 3 is a torsion element. Therefore, there exists an integer m > 0 such that each
commutator [γmi , γ

m
j ] is the trivial element. Let Γ′0 be the subgroup of Γ0 generated by {γm1 , γm2 , γm3 }.

Then Γ′0 is free abelian with rank 3, and has finite index in Γ0/Γ1 hence has finite index in Γ0. �

Finally, we discuss the properties of the growth type of a covering of a compact manifold M0. Let

Γ0 = π1(M0, x0) for a basepoint x0 ∈ M0. Given a subgroup Γ′0 ⊂ Γ0 let π : M̃ ′0 → M0 be the

associated covering space. Then for x̃ ∈ M̃ ′0 with π(x̃) = x0 we have

Γ0 = image
{
π# : π1(M̃ ′0, x̃)→ π1(M0, x0)

}
.

The basic observation is that M0 compact implies that the subset Λ = π−1(x0) ⊂ M̃ ′0 is a net, so

that with the induced metric on Λ, the growth type of M̃ ′0 as a Riemannian manifold and the growth

type of Λ as a discrete subspace of M̃ ′0 agree. Moreover, covering space theory identifies Λ = Γ0/Γ
′
0.

We then have the fundamental result of Milnor and Švarc:

THEOREM 3.12 ([36, 47]). Let M0 be a compact Riemannian manifold with basepoint x0 ∈ M0

and fundamental group Γ0 = π1(M0, x0). Let Γ′0 ⊂ Γ0 be a subgroup and π : M̃ ′0 → M0 be the

associated covering space with pathlength metric d
M̃

on M̃ ′0. Then for the quotient space Λ = Γ0/Γ
′
0,

the growth type of M̃ ′0 equals the growth type of Λ as a coset space of Γ0.

By combining Theorem 3.7 with Theorem 3.12 for the case Γ′0 the trivial subgroup, we obtain:

COROLLARY 3.13. Let M = SP be a weak solenoid with base manifold M0 which has a simply
connected leaf with polynomial growth for some leafwise metric. Then the fundamental group Γ0 =
π1(M0, x0) has a nilpotent subgroup Γ′0 ⊂ Γ0 of finite index.
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4. Group chains

In this section, we consider group chains and some of their properties, and discuss the applications
to the study of the automorphism groups of equicontinuous Cantor minimal systems.

DEFINITION 4.1. Let G be a finitely generated group. A group chain G = {Gi}i≥0, with G0 = G,
is a properly descending chain of subgroups of G, such that |G : Gi| < ∞ for every i ≥ 0. Let G
denote the collection of all possible nested group chains for G.

Associated to a group chain {Gi}i≥0, there exists a Cantor space

G∞ = lim
←−
{G/Gi → G/Gi−1} = {(G0, g1G1, g2G2, . . .) | gjGi = giGi for all j ≥ i}.

There is a natural basepoint (eGi) ∈ G∞ corresponding to the identity element e ∈ G, and a natural
left G-action Φ on G∞, given by

Φ(γ)(giGi) = γ · (giGi) = (γgiGi), for all γ ∈ G.(10)

The G-action is transitive on each finite factor G/Gi, which implies that the G-action is minimal
on G∞. Moreover, the action is equicontinuous. Thus, given a group chain {Gi}i≥0 we obtain an
equicontinuous Cantor minimal system, denoted by (G∞, G,Φ).

Given the group G, recall that G denotes the collection of all possible group chains in G. Then there
are two equivalence relations defined on G. The first was defined by Rogers and Tollefson in [44],
and used by Fokkink and Oversteegen in [22] in a slightly different form.

DEFINITION 4.2. [44] In a finitely generated group G, two group chains {Gi}i≥0 and {Hi}i≥0

with G0 = H0 = G are equivalent, if and only if, there is a group chain {Ki}i≥0 and infinite
subsequences {Gik}k≥0 and {Hjk}k≥0 such that K2k = Gik and K2k+1 = Hjk for k ≥ 0.

The next definition was given by Fokkink and Oversteegen.

DEFINITION 4.3. [22] Two group chains {Gi}i≥0 and {Hi}i≥0 in G are conjugate equivalent if

and only if there exists a collection (gi) ∈ G, such that the group chains {giGig−1
i }i≥0 and {Hi}i≥0

are equivalent. Here giGi = gjGi for all i ≥ 0 and all j ≥ i.

The dynamical meaning of the equivalences in Definitions 4.2 and 4.3 is given by the following
theorem, which follows from results in [22]; see also [19, Section 3].

THEOREM 4.4. Let (G∞, G) and (H∞, G) be inverse limit dynamical systems for group chains
{Gi}i≥0 and {Hi}i≥0. Then we have:

(1) The group chains {Gi}i≥0 and {Hi}i≥0 are equivalent if and only if there exists a homeo-
morphism τ : G∞ → H∞ equivariant with respect to the G-actions on G∞ and H∞, and
such that φ(eGi) = (eHi).

(2) The group chains {Gi}i≥0 and {Hi}i≥0 are conjugate equivalent if and only if there exists a
homeomorphism τ : G∞ → H∞ equivariant with respect to the G-actions on G∞ and H∞.

That is, an equivalence of two group chains corresponds to the existence of a basepoint-preserving
conjugacy between their inverse limit systems, while a conjugate equivalence of two group chains
corresponds to the existence of a conjugacy between their inverse limit systems, which need not
preserve the basepoint.

Let {Gi}i≥0 ∈ G with associated Cantor minimal system (G∞, G,Φ). An automorphism of (G∞, G,Φ)
is a homeomorphism h : G∞ → G∞ which commutes with the G-action on G∞. That is, for ev-
ery (g`G`) ∈ G∞ and g ∈ G, g · h(g`G`) = h(gg`G`). Denote by Aut(G∞, G,Φ) the group of
automorphisms of the action (G∞, G,Φ). Note that Aut(G∞, G,Φ) is a topological group for the
compact-open topology on maps, and is a closed subgroup of Homeo(G∞).

We introduce the definitions:

DEFINITION 4.5. The Cantor minimal system (G∞, G,Φ) is:
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(1) regular if the action of Aut(G∞, G,Φ) on G∞ is transitive;
(2) weakly regular if the action of Aut(G∞, G,Φ) decomposes G∞ into a finite collection of

orbits;
(3) irregular if the action of Aut(G∞, G,Φ) decomposes G∞ into an infinite collection of orbits.

Let (G∞, G,Φ) denote the Cantor minimal system associated to a group chain {Gi}i≥0 ∈ G. Let
G(Φ) ⊂ G denote the collection of all group chains in G which are conjugate equivalent to {Gi}i≥0.
Then we have the following basic result, which follows from Theorem 4.4 above.

THEOREM 4.6. Let {Gi}i≥0 ∈ G with associated Cantor minimal system (G∞, G,Φ). Then
(G∞, G,Φ) is:

(1) regular if all group chains in G(Φ) are equivalent;
(2) weakly regular if G(Φ) contains a finite number of classes of equivalent group chains;
(3) irregular if G(Φ) contains an infinite number of classes of equivalent group chains.

We now consider the application of the above notions for the study of the homogeneity of weak
solenoids. Let SP be a weak solenoid, defined by a presentation P = {p`+1 : M`+1 → M` | ` ≥ 0}.
Let x ∈ SP be a basepoint, and let {Hx

i }i≥0 be the group chain in H0 = π1(M0, x0) defined by (5).

The following notion was introduced by McCord in [35].

DEFINITION 4.7. A presentation P is said to be normal if for each ` ≥ 1 the image Hx
` ⊂ H0

is a normal subgroup, and thus each quotient Xx
` = H0/H

x
` is finite group,

For example, if H0 is an abelian group, then every group chain {H`} in H0 is normal.

For a normal chain, the inverse limit (6) is a profinite group, which acts transitively on itself on the
right. The right action of H∞ on H∞, commutes with the left action of H0 on H∞, and, moreover,
H∞ = Aut(H∞, H0,Φ). Thus, the automorphism group acts transitively on H∞. McCord used this
observation in [35] to show that the group Homeo(SP) then acts transitively on SP .

Rogers and Tollefson in [44] gave an example of a weak solenoid for which the presentation is defined
by a group chain which is not normal, yet the inverse limit was still a profinite group, and so the
weak solenoid is homogeneous. This example was the motivation for the work of Fokkink and
Oversteegen in [22], where they gave a necessary and sufficient condition on the chain {Hi}i≥0 for
the weak solenoid to be homogeneous. In this work, they showed the following result. Denote by
NH0

(Hi) the normalizer of Hi in H0, that is, NH0
(Hi) = {h ∈ H0 | hHi h

−1 = Hi}. Then we have
the following result of Fokkink and Oversteegen [22].

THEOREM 4.8. [18] Given a group chain {Hi}i≥0 with associated equicontinuous Cantor minimal
system (H∞, H0,Φ0), then:

(1) (H∞, H0,Φ0) is regular if and only if there exists {Ni}i≥0 ∈ G(Φ0) such that Ni is a normal
subgroup of H0 for each i ≥ 0.

(2) (H∞, H0,Φ0) is weakly regular if and only if there exists {H ′i}i≥0 ∈ G(Φ0) and an n > 0
such that H ′i ⊂ Hn ⊆ NH0

(H ′i) for all i ≥ n.

It follows that the class of weakly regular equicontinuous systems in Definition 4.5 is precisely the
class of dynamical systems on the fibres of weakly normal solenoids in [22]. Note that the definition
of equivalence of group chains in [22] is equivalent to ours, even if it is formulated slightly differently.
Theorem 25 of [22] gave a criterion for when a weak solenoid is homogeneous, which combined with
Theorem 4.8 then yields:

THEOREM 4.9. Let SP be a weak solenoid, defined by a presentation P with associated group
chain {Hi}i≥0. Then SP is homogeneous if and only if {Hi}i≥0 is weakly regular.

The thesis [18] and the paper [19] considered an algebraic invariant for group chains, called the
discriminant. We do not include the definition here, but note that the study of the relation between
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the discriminant invariant and the homogeneity of a weak solenoid, leads to the following concept,
which is the group chain version of Definition 1.3 of the introduction.

DEFINITION 4.10. The minimal equicontinuous action (H∞, H0,Φ0) is virtually regular if there
is a subgroup H ′0 ⊂ H0 of finite index such that the chain {Hi ∩H ′0}i≥0 is regular as a chain in H ′0.

The virtually regular condition in Definition 4.10 appears to be similar to the criteria in case (2) of
Theorem 4.8. However, the work [19] gives several examples which show that the virtually regular
property is independent from the weakly regular property.

5. Germinal holonomy

In this section, we introduce the notion of the germinal holonomy groups for an action (X0, G0,Φ).
The definition is analogous to that of the germinal holonomy groups of a foliated space. Given
x ∈ X0, let Gx ⊂ G0 denote the isotropy subgroup of x.

DEFINITION 5.1. Given g1, g2 ∈ Gx, we say g1 and g2 have the same germinal Φ-holonomy at
x if there exists an open set Ux ⊂ X0 with x ∈ Ux, such that the restrictions Φ(g1)|Ux and Φ(g2)|Ux
agree on Ux. In particular, we say that g ∈ Gx has trivial germinal Φ-holonomy at x if there exists
an open set Ux ⊂ X with x ∈ Ux, such that the restriction Φ(g)|Ux is the trivial map.

Note that the notion “germinal Φ-holonomy at x” defines an equivalence relation on the isotropy
subgroup Gx. The reflexive and symmetric conditions are immediate, so we need only check the
transitive condition. Suppose that g1, g2, g3 ∈ Gx are such that Φ0(g1) and Φ0(g2) agree on the open
set Ux, and Φ0(g2) and Φ0(g3) agree on the open set Vx, then all three maps agree on the open set
Ux ∩ Vx so that g1 and g3 have the same germinal Φ0-holonomy at x. Thus, for each x ∈ X, the
germinal Φ0-holonomy group at x is defined, and denoted by Germ(Φ0, x), and there is surjective
quotient map Gx → Germ(Φ0, x).

We next recall a basic result of Epstein, Millet and Tischler [21].

THEOREM 5.2. Let (X0, G0,Φ) be a given action, and suppose that X0 is a Baire space. Then the
union of all x ∈ X0 such that Germ(Φ, x) is the trivial group forms a Gδ subset of X0. In particular,
there exists at least one x ∈ X0 such that Germ(Φ, x) is the trivial group.

The main result in [21] is stated in terms of the germinal holonomy groups of leaves of a foliation,
but an inspection of the proof shows that it applies directly to an action (X0, G0,Φ).

We consider these notions for the special case of a Cantor minimal system (G∞, G0,Φ) associated
to a group chain G = {Gi}i≥0 ∈ G. Let K(Φ) ⊂ G0 denote the kernel of Φ, then K(Φ) is always
a normal subgroup of G0. The action Φ is effective exactly when K(Φ) is the trivial subgroup.
Consider the subgroup k(G) ⊂ G0 defined by

(11) k(G) =
⋂
i≥0

Gi ⊂ G0 ,

which is called the kernel of the chain G in [14, 18, 19]. Note that for any g ∈ k(G) the action
Φ(g) fixes the identity element x0 = (eGi) ∈ G∞, thus, k(G) is the isotropy subgroup at x0 for
Φ: G0 → Homeo(G∞). Note that if Φ(g) is the identity map for all g ∈ k(G), that is, the action of
every g ∈ k(G) fixes every point in G∞, then k(G) = K(Φ).

Consider y ∈ G∞, and let Gy = {Gyi }i≥0 with Gy0 = G be a group chain at y associated to the action
(G∞, G0,Φ). Note that the kernel k(Gy) of the group chain Gy satisfies K(Φ) ⊆ k(Gy).

By Theorem 4.4, Gy is conjugate equivalent to G as group chains in G. If y is in the orbit of the
G-action on x0, then the kernels k(G) and k(Gy) are conjugate subgroups of G. However, if x0

and y are contained in distinct orbits of the G-action, then the groups k(G) and k(Gy) need not be
conjugate. There are examples of Cantor minimal systems constructed in [19, 22] from group chains,
such that k(G) is not trivial, but there exists y ∈ G∞ such that k(Gy) is trivial.



14 JESSICA DYER, STEVEN HURDER, AND OLGA LUKINA

Note that if there exists y, z ∈ G∞ such that the kernel groups k(Gy) and k(Gz) are distinct, then
the the action of Aut(G∞, G0,Φ) on G∞ is not transitive, so the study of the family of subgroups
{k(Gy) | y ∈ G∞} is a fundamental problem for the study of the dynamics of group chains.

We next explore a consequence of Theorem 5.2 for an action (G∞, G0,Φ) associated to a group chain
G = {Gi}i≥0. The theorem implies that there exists y ∈ G∞ such that the germinal holonomy group
Germ(Φ, y) is trivial. Fix such a choice of y, and let Gy = {Gyi }i≥0 with Gy0 = G be a group chain
at y associated to the action (G∞, G0,Φ), and let k(Gy) be its kernel. Then k(Gy) is the isotropy
group at y = (eGyi ) of the action of G on the inverse limit space Gy∞ associated with Gy. We have
the following observation:

LEMMA 5.3. For g ∈ k(Gy), there exists i(g) ≥ 0 such that h−1gh ∈ k(Gy) for all h ∈ Gyi(g).

Proof. Let g ∈ k(Gy) with Φ(g) 6= Id. Then Φ(g) is a homeomorphism of Gy∞ which fixes the
basepoint y = (eGyi ). As y has trivial germinal holonomy, there exists an open neighborhood
Uy ⊂ Gy∞ with y ∈ Ui and Φ(g) is the identity map when restricted to Uy.

A point z ∈ Gy∞ is given by a sequence

z = (giG
y
i ) = (G0, g1G

y
1, g2G

y
2, . . .) where gjG

y
i = giG

y
i for all j ≥ i .

Define a descending chain U` of open neighborhoods of (eGyi ) as follows, for ` ≥ 0:

(12) U` = {(G0, g1G
y
1, g2G

y
2, . . .) | gjG

y
i = giG

y
i for all j ≥ i , gi = e for 1 ≤ i ≤ `}.

Choose i(g) sufficiently large so that Ui(g) ⊂ Uy.

By assumption, k(Gy) ⊂ Gyi for all i ≥ 0. Thus, as the multiplication by g is “coordinate-wise” on
the sequences in (12), for g ∈ k(Gy) the action of Φ(g) satisfies Φ(g)(U`) = U` for all ` ≥ 0.

The assumption that the action of Φ(g) is the identity on Uy implies the same for Ui(g), thus the
restriction Φ(g) : U` → U` is the identity map for ` ≥ i(g). That is, for each (hiG

y
i ) ∈ Ui(g) we have

ghiG
y
i = hiG

y
i for all i ≥ i(g).

Let h ∈ Gyi(g). Then define (hiG
y
i ) ∈ Ui(g) by setting hi = e for 1 ≤ i ≤ i(g), and hi = h for

i > i(g). Then we have ghGyi = hGyi for all i > i(g), so that h−1ghGyi = Gyi for all i > i(g). Thus,
h−1gh ∈ Gyi for all i > i(g), hence h−1gh ∈ k(Gy) as was to be shown. �

Now suppose that k(Gy) is a finitely generated subgroup of G. Choose generators {g1, . . . , gd} for
k(Gy). Then by Lemma 5.3, for each 1 ≤ ` ≤ d there exists an index i` such that h−1g`h ∈ k(Gy)
for all h ∈ Gi` . Set i0 = max{i1, . . . , id}, then we have that h−1g`h ∈ k(Gy) for all h ∈ Gi0 and each
1 ≤ ` ≤ d. It follows that k(Gy) is a normal subgroup of Gyi0 . We have shown:

LEMMA 5.4. Assume that k(Gy) is a finitely generated subgroup of G0, then there exists i0 ≥ 0
such that k(Gy) is a normal subgroup of Gyi0 .

6. Virtually nilpotent solenoids

In this section, we give the definitions of nilpotent and virtually nilpotent weak solenoids, and show
that these notions are homeomorphism invariants of weak solenoids.

Let SP be a weak solenoid with presentation P, and recall that Π0 : SP → M0 is the projection
onto the base of the solenoid. Choose a basepoint x0 ∈ M0 then the fiber over x0 is denoted by
X0 = Π−1

0 (x0), and the fundamental group of M0 is denoted by H0 = π1(M0, x0). The induced
action on the fiber X0 is given by the representation Φ: H0 → Homeo(X0).

DEFINITION 6.1. Let SP be a weak solenoid with presentation P. We say that SP is nilpotent,
respectively abelian, if the image Φ(H0) ⊂ Homeo(X0) is nilpotent, respectively is abelian.

We next introduce the virtual versions of these conditions, which are analogous to the notion of
virtually regular in Definition 4.10. Let H ′0 ⊂ H0 be a subgroup of finite index. Let p′0 : M ′0 → M0
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be the finite covering map associated to the subgroup H ′0 ⊂ H0 = π1(M0, x0). Then for x′0 ∈ M ′0
such that p′0(x′0) = x0, the induced map on fundamental groups (p′0)# : G′0 = π1(M ′0, x

′
0)→ H0 has

image H ′0 by construction. Let Π′0 : S ′P →M ′0 be the weak solenoid which is the pull-back of SP via
the map p′0 of their base manifolds. Then we have an induced map P ′0 : S ′P → SP which satisfies the
commutative diagram:

SP

M0

S ′P

M ′0

?
Π′0 ?

Π0

P ′0

p′0-

-

The assumption that p′0 is a finite covering map implies that the fibers of the induced map P ′0
have the same finite cardinality, hence P ′0 : S ′P → SP is a finite covering map of solenoids. Let
X′0 = (Π′0)−1(x′0) denote the fiber over x′0, then the image P ′0(X′0) ⊂ X0 is a clopen subset. Let
(X′0, G

′
0,Φ

′) be the induced action for S ′P .

DEFINITION 6.2. Let SP be a weak solenoid. Then SP is virtually nilpotent, respectively virtu-
ally abelian, if there exists a subgroup H ′0 ⊂ H0 of finite index such that the induced weak solenoid S ′P
is nilpotent, respectively is abelian. That is, the image Φ′(G′0) ⊂ Homeo(X′0) is nilpotent, respectively
is abelian.

The following result shows the these virtual properties are homeomorphism invariants of weak
solenoids. The proof omits some details that can be found in the works [11, 13].

PROPOSITION 6.3. Suppose that SP and SQ are homeomorphic weak solenoids, then SP is
virtually nilpotent, respectively virtually abelian, if and only if SQ is as well.

Proof. Let SP and SQ be homeomorphic weak solenoids, defined by presentations P and Q, respec-
tively, with base manifolds M0 and N0 of the same dimension. Choose basepoints x0 ∈ M0 and
y0 ∈ N0, and let XP ⊂ SP be the fiber over x0, and XQ ⊂ SQ the fiber over y0. Let G0 = π1(M0, x0)
and H0 = π1(N0, y0). Let (XP , G0,ΦP) denote the monodromy action for SP and (XQ, H0,ΦQ) the
monodromy action for SQ.

The actions (XP , G0,ΦP) and (XQ, H0,ΦQ) are both minimal, so by [13, Theorem 4.8] they are
return equivalent. By definition, this means that there exists clopen subsets U ⊂ XP and V ⊂ XQ
and a homeomorphism φ : U → V which conjugates the induced pseudogroup action on U to the
induced pseudogroup action on V . Using the results of [13, Sections 5,6], the assumption that the
action (XP , G0,ΦP) is equicontinuous implies that there exists a clopen subset U ′ ⊂ U so that for
V ′ = φ(U ′) ⊂ V , the sets

GU ′ = {g ∈ G0 | ΦP(g)(U ′) = U ′} ⊂ G0

HV ′ = {h ∈ H0 | ΦQ(h)(V ′) = V ′} ⊂ H0

are subgroups of finite index. Then the image ΦP(GU ′) ⊂ Homeo(XP) maps the set U ′ to itself.
Similarly, the image ΦQ(GV ′) ⊂ Homeo(XQ) maps the set V ′ to itself.

Now, suppose that SP is virtually nilpotent, then there exists a subgroup of finite index G′0 ⊂ G0

such that the image ΦP(G′0) ⊂ Homeo(XP) is a nilpotent group. Then G′0 ∩GU ′ is also a subgroup
of finite index in G0, and its image Γ = ΦP(G′0 ∩GU ′) ⊂ Homeo(XP) maps the set U ′ to itself. As
ΦP(G′0) is a nilpotent group, every subgroup of it is also nilpotent, and so Γ is a nilpotent group.

The conjugation map φ : U ′ → V ′ then induces a subgroup φ∗(Γ) ⊂ Homeo(V ′) which is also
nilpotent. As G′0 ∩GU ′ is a subgroup of finite index in GU ′ , the image φ∗(Γ) is a subgroup of finite
index in ΦQ(HV ′) ⊂ Homeo(XQ). It follows that SQ is virtually nilpotent.

The reverse case, where we assume that SQ is virtually nilpotent, follows in the same way. The case
of virtually abelian weak solenoids follows in exactly the same way. �
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7. Proofs of main theorems

We first give the proof of Theorem 1.4. We assume that M is an equicontinuous matchbox manifold,
all of whose leaves have finite type and polynomial growth. Choose a homeomorphism M ∼= SP with
a weak solenoid, and choose a basepoint x0 ∈ M0 in the base manifold of the presentation P and
set H0 = π1(M0, x0) and X0 = Π−1

0 (x0). Let (X0, H0,Φ) be the associated Cantor system. Then by
Theorem 5.2 there exists x ∈ X0 so such that Germ(Φ, x) is the trivial group. Let Lx denote the
leaf of the foliation FP on SP containing x, then Lx has no holonomy.

By Theorem 3.2, the assumption that all leaves of the foliation F on M have polynomial growth,
implies that the leaf Lx also has polynomial growth type. That is, there exists some integer dx ≥ 1
such that Lx has polynomial growth type of degree at most dx.

Let Hx = {Hx
i }i≥0 be the group chain defined by (5) for the basepoint x. Then by Theorem 2.3,

there is a homeomorphism Lx = M̃0/k(Hx). That is, Lx is the covering space of M0 associated to
the subgroup k(Hx) ⊂ H0. Then by the Milnor-Švarc Theorem 3.12, the set H0/k(Hx) equipped
with the word metric induced from H0 also has polynomial growth type of degree at most dx.

The assumption that all leaves of M have finite type implies that Lx has finite type, and thus the
subgroup k(Hx) is finitely generated. The group Germ(Φ, x) is trivial by the choice of x, so by
Lemma 5.4, there exists an index i0 ≥ 0 such that k(Hx) is a normal subgroup of Hi0 .

Choose a set of generators H
(1)
0 = {γ1, . . . , γν} ⊂ H0 such that the restriction H

(1)
0 ∩ Hi0 is also

a generating set for Hi0 . The growth type of H0/k(Hx) is independent of the choice of generators
for H0, so the set H0/k(Hx) again has polynomial growth type with respect to the generating set

H
(1)
0 . Then for the word metric on H0 defined by the generating set H

(1)
0 , which is used to define

the metrics on quotient sets, the inclusion Hi0/k(Hx) ⊂ H0/k(Hx) is an isometry. It then follows
that Hi0/k(Hx) has polynomial growth type of degree at most dx.

The quotient set Hi0/k(Hx) has a group structure, as k(Hx) is a normal subgroup. The generating

set H
(1)
0 ∩Hi0 for Hi0 descends to a generating set for the group Hi0/k(Hx), and thus this quotient

group has polynomial growth type of degree at most dx. Thus, by Theorem 3.7 of Gromov, there
exists a nilpotent subgroup Nx ⊂ Hi0/k(Hx) of finite index.

Let H ′0 ⊂ Hi0 denote the preimage of Nx under the quotient map Hi0 → Hi0/k(Hx), so that H ′0 is
a subgroup of finite index in Hi0 . As Hi0 ⊂ H0 has finite index, we conclude that H ′0 also has finite
index in H0. Let p′0 : M ′0 →M0 be the finite covering associated to H ′0 ⊂ H0, and let p′0 : S ′P → SP
be the induced covering solenoid.

Choose a basepoint x′0 ∈ M ′0 such that p′0(x′0) = x0 and set G0 = π1(M ′0, x
′
0). Define the the

group chain G = {Gi}i≥0 where Gi is the preimage in G0 of the subgroup Hi ∩ H ′0. Then S ′P is
homeomorphic to the suspension space defined by the action of the fundamental group G0 of M ′0 on
the inverse limit space G∞ for the group chain {Gi}i≥0.

Let Φ′ : H ′0 → Homeo(G∞) be the global holonomy map for the solenoid S ′P . Let K(Φ′) ⊂ G0 denote
the kernel of the homomorphism h′F . Observe that by construction, the kernel k(G) is normal in
G0, and hence k(G) = K(Φ′). Thus, the image h′F (G0) is isomorphic to H ′0/k(Hx′) ∼= Nx which is
a nilpotent group. This completes the proof of Theorem 1.4.

We next give the proof of Theorem 1.5, which uses the the conclusions and notations of the proof
of Theorem 1.4 above, and the algebraic results in Section 3.

Let M be an equicontinuous matchbox manifold, and suppose that all leaves of F have polynomial
growth at most 3. By Theorem 1.4, we obtain a nilpotent subgroup Nx ⊂ Hi0/k(Hx) of finite index,
whose growth type in bounded above by the growth type of the leaf Lx. It is given that Lx has
polynomial polynomial growth of degree most 3, and thus Nx is a nilpotent group of growth type at
most 3. Thus, by Proposition 3.11, Nx contains a free abelian subgroup Γ′0 ⊂ Nx of finite index.
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If the subgroup Γ′0 is the trivial group, then Nx is a finite group by Lemma 3.8, which implies that
H0 is a finite group, which is impossible. Thus, we may assume that Γ′0 has rank at least 1.

Again using the notation as in the proof of Theorem 1.4, let H ′0 ⊂ Hi0 be the preimage of

Γ′0 ⊂ Nx ⊂ Hi0/k(Hx) .

Then H ′0 has finite index in Hi0 since Γ′0 has finite index in Hi0/k(Hx). As Hi0 has finite index in
H0 we have that H ′0 has finite index in H0. Let p′0 : M ′0 → M0 be the finite covering associated to
H ′0 ⊂ H0, and let p′0 : S ′P → SP be the induced covering solenoid. Choose a basepoint x′0 ∈M ′0 such
that p′0(x′0) = x0 and set G0 = π1(M ′0, x

′
0). Define the group chain G = {Gi}i≥0 where Gi is the

preimage in G0 of the subgroup Hi∩H ′0. Then S ′P is homeomorphic to the suspension space defined
by the action of the fundamental group G0 of M ′0 on the inverse limit space G∞ for the group chain
{Gi}i≥0. The global holonomy of the weak solenoid S ′P is conjugate to the image h′F (H ′0), which is
isomorphic to H ′0/k(Hx′) ∼= Γ′0 which is an abelian group.

By the proof of Theorem 1.4, the group chain {Gi}i≥0 associated to the weak solenoid S ′P and given
by Gi = H ′0 ∩Hx

i has kernel k(Hx′) = K(Φ′), and the quotients Gi/k(Hx′) are abelian for i ≥ i0.
Thus, the chain {Gi}i≥0 is normal, so by Theorem 4.8 and the result Theorem 4.9 of Fokkink and
Oversteegen [22], we conclude that S ′P is a homogeneous weak solenoid. This completes the proof
of Theorem 1.5.

EXAMPLE 7.1. We give an example of a solenoid which satisfies the hypotheses of Theorem 1.5,
and is not homogeneous, but is virtually homogeneous. The following construction can be viewed as
an oriented version with trivial kernel of the example by Rogers and Tollefson in [45], as described
in [22, page 3750].

First, we construct the group H0. Let Z2 be the free abelian group of rank 2, and we write Z2 =
{(a, b) | a, b ∈ Z}. Define an automorphism of Z2 which acts on the generators by A(a, b) = (−a,−b).
That is, this automorphism is the rotation of the plane by the angle π, and so A has order 2.

Define H0 to be the split extension of Z2 by Z, so we have a split exact sequence Z2 → H0 → Z,
and so can write elements of H0 as H0 = {(a, b, c) | a, b, c ∈ Z}. The quotient group Z acts via
conjugation on the normal subgroup Z2 via the automorphism A. That is,

(13) (a, b, c) ∗ (a′, b′, c′) = (a′′, b′′, c′′) where (a′′, b′′) = (a, b) +Ac(a′, b′) , c′′ = c+ c′.

The base manifold M0 is a quotient of the product manifold T2×S1 by the action of an isometry f of
order 2. Let φA : T2 → T2 be the action on R2/Z2 induced by the action A(x, y) = (−x,−y) on R2,
which is orientation-preserving. Let Rπ : S1 → S1 be the rotation of the circle in the counterclockwise
direction by the angle π, so Rπ also has order 2. Then let f = φA × Rπ be the product action on
T2 × S1, and M0 is the quotient manifold under this action. Note that M0 is a T2-bundle over S1,
where the monodromy action of the fundamental group of the base circle on the fundamental group
of the fiber is A.

Next, define a group chain H = {Hn}n≥0 in Γ. Choose primes p, q > 3 and set

(14) Hn = {(pna, qnb, 3nc) | a, b, c ∈ Z}.

The adjoint action A preserves the subspace {(pna, qnb, 0) | a, b ∈ Z} so each Hn is a subgroup.
Note that the kernel k(H) = {(0, 0, 0)}.

Set H ′0 = {(a, b, 2c) | a, b, c ∈ Z}, which is a normal abelian subgroup of index 2 in H0. For n ≥ 0,
set:

Gn = Hn ∩H ′0 = {(pna, qnb, 2 · 3nc) | a, b, c ∈ Z}.

The chain {Gn}n≥0 consists of free abelian groups, so is regular as a chain in G0 = H ′0. Hence, the
solenoid S ′P formed from the group chain {Gn}n≥0 is homogeneous, and thus the solenoid formed
from the group chain {Hn}n≥0 is virtually homogeneous. On the other hand, we have:

LEMMA 7.2. The group chain H = {Hn}n≥0 is irregular as a chain in H0.
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Proof. The proof follows the same ideas as used by Fokkink and Oversteegen in [22, page 3750] to
show that the Rogers and Tollefson example is irregular.

Fix n ≥ 1 and let γ = (0, 0, 3n) ∈ Hn. Note that γ2 = (0, 0, 2 · 3n) is in the center of Γ.

Let e1 = (1, 0, 0) ∈ H0 and e2 = (0, 1, 0) ∈ H0. Then e−1
1 = (−1, 0, 0) and e−1

2 = (0,−1, 0). We
calculate using (13)

e1 · (pna, qnb, 3n) · e−1
1 = e1 · e1 · (pna, qnb, 3n) = (2 + pna, qnb, 3n),

e2 · (pna, qnb, 3n) · e−1
2 = e2 · e2 · (pna, qnb, 3n) = (pna, 2 + qnb, 3n).

Since p, q are relatively prime to 2, the adjoint action Ad(ae1 + be2) : H0 → H0 does not fix the
subgroup Hn for 0 < a < pn and 0 < b < qn. However, the cosets (a, b, 0) ·Hn for (a, b) of this form
exhaust all left cosets of Hn in H0, so we have that NH0(Hn) = Hn. It then follows by the criteria
in part (2) of Theorem 4.8 that the group chain H cannot be weakly regular, and so the associated
solenoid is not homogeneous �

Finally, we give the proof of Theorem 1.6. The conclusion in Theorem 1.5 that the solenoid SP
is virtually homogeneous required that the induced group chain {Gi}i≥0 is weakly regular, which
follows trivially for the case of a group chain in an abelian group G0. However, Theorem 1.6 asserts
that this conclusion fails without the abelian property on the chain, and so for the case where the
growth type is polynomial of degree greater than 3. This follows as a consequence of a construction
of an irregular group chain in a nilpotent group with polynomial growth rate 4. The construction
of this example was given in the thesis of the first author [18].

Let H denote the continuous Heisenberg group, presented in the form H = (R3, ∗) with the group
operation ∗ given by (x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′). This operation is standard
addition in the first two coordinates, with the added twist in the last coordinate. The subgroup
H = (Z3, ∗) ⊂ H is called the discrete Heisenberg group. We think about H as Z2 × Z, where the
Z2 × {0} factor is an abelian subgroup, and the {0} × Z factor has non-trivial commutator with
the first factor. Then the coset space M0 = H/H is a compact 3-manifold without boundary. Let
x0 ∈M0 be the coset of the identity (0, 0, 0) ∈ H, then H is naturally identified with the fundamental
group π1(M0, x0). We consider towers of coverings of M0 defined by subgroup chains in H.

The authors Lightwood, Şahin and Ugarcovici considered in [34] the normal subgroup chains in H,
and gave a classification according to a scheme that was introduced in [14]. Our interest is in the
chains in H which are irregular, and so not classified in [34]. The corresponding towers of coverings
of M0 then define weak solenoids, which need not be homogeneous.

We recall from [34] the class of subgroups in H which can be written in the form Γ = AZ2 ×mZ

where A =

(
i j
k l

)
is a 2-by-2 matrix with non-negative integer entries and m > 0 is an integer.

Then γ ∈ Γ is of the form γ = (ix + jy, kx + ly,mz) for some x, y, z ∈ Z. A straightforward
computation gives the following lemma.

LEMMA 7.3. A set Γ = AZ2 ×mZ, where A is a matrix with integer entries, and m > 0 is an
integer, is a subgroup if and only if m divides both entries of one of the rows of A.

THEOREM 7.4. Let H be the Heisenberg group, and let An =

(
pn 0
0 qn

)
, where p and q are

distinct primes. Then the action represented by the group chain

(15) H0 = H , {Hn}n≥1 = {AnZ2 × pnZ}n≥1

is irregular, and has trivial kernel.

Proof. First consider an arbitrary subgroup L = MZ2 × mZ, where m > 0 is an integer, and M
has integer entries. Let h = (a, b, c) ∈ H. Then for any γ = (ix+ jy, kx+ ly,mz) ∈ L, we compute
h ∗ γ ∗ h−1. First, we compute that h−1 = (−a,−b,−c+ ab). Then a straightforward computation
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shows that

(16) h ∗ γ ∗ h−1 = (ix+ jy, kx+ ly,mz + akx+ aly − ixb− jyb) .
Then h ∗ γ ∗ h−1 is in L only if m divides mz + akx+ aly − ixb− jyb. Then set

i = pn, j = 0, k = 0, l = qn.

Suppose that {Hn}n≥0 is a weakly regular chain. Then by Theorem 4.6 there exists a subgroup of
finite index H ⊂ H and subscript t ≥ 0, such that H ⊇ Ht ⊃ Ht+1 ⊃ · · · , and {Hn}n≥t is equivalent
to {gnHng

−1
n }n≥t for any choice of (gn) ⊂ N such that gsHn = gnHn for any s ≥ n. We can choose

H = Hs, for any s ≥ t.

We are now going to show that for every such s, there is an element h ∈ Hs such that {Hn}n≥s is
not equivalent to {hHnh

−1}n≥s, and so {Hn}n≥0 cannot represent a weakly regular action.

If h = (psx′, qsy′, psz′) ∈ Hs, and γ = (pnx, qny, pnz) ∈ Hn, then the third entry of h ∗ γ ∗ h−1 in
(16) is equal to

pnz + psqnx′y − qspnxy′ = ps(pn−sz + qnx′y − qspn−sxy′).(17)

Let x′ = q, so h = (psq, qsy′, psz′), and let y = q, so γ = (pnx, qn+1, pnz). Then for any n > s the
element h ∗ γ ∗ h−1 is never in Hs+1, since ps+1 does not divide (17). So {Hn}n≥0 is not weakly
regular.

It is clear from the definition (15) that the kernel ∩i≥1Hn = {0}. �

We now complete the proof of Theorem 1.6. Associated to the chain {Hn}n≥0 is a sequence of
compact quotient manifolds Mn = H/Hn where Mn+1 is a finite covering of Mn for n ≥ 0. Let P be
the resulting presentation, and let SP denote the weak solenoid defined by this inverse limit system.
Then SP is not homogeneous by Theorem 4.9.

Note that each leaf of the foliation of SP is covered by the Heisenberg group H, and thus has growth
type at most polynomial of degree 4. To complete the proof of Theorem 1.6, we show:

LEMMA 7.5. The solenoid SP is not virtually homogeneous.

Proof. Let H′ ⊂ H be a subgroup of finite index. We can assume that H′ is a normal subgroup by
passing to its normal core. Then consider the group chain {H ′n}n≥1 in H′, where H ′n = Hn ∩ H′.
We show that {H ′n}n≥1 is not regular in H′.

Consider the free abelian subgroup Z2 ⊂ H generated by the elements {(1, 0, 0), (0, 0, 1)}. The inter-
section H′ ∩Z2 is then also free abelian, and so is generated by elements {(a, 0, 0), (0, 0, 0), (0, 0, c)}
where a, c are positive integers. We also have the free subgroup Z ⊂ H generated by the element
{(0, 1, 0)}, so its intersection with H′ is generated by {(0, b, 0)} for some positive integer b. Thus,
every element of H′ has the form (ax, by, cz) for (x, y, z) ∈ Z3.

Let s > 0 be such that max{a, b, c} < min{ps, qs}. Let

A = lcm{a, ps} , B = lcm{b, qs} , C = lcm{c, ps},
where lcm denotes the least common multiple. Then

H ′s = H′ ∩Hs = {(Ax,By,Cz) | (x, y, z) ∈ Z3}
and so for n ≥ s, we have

H ′n = H′ ∩Hn = {(Apn−sx,Bqn−sy, Cpn−sz) | (x, y, z) ∈ Z3} .

Note that if {H ′n}n≥s is not regular in H ′s, then it is not regular in H′. We show that {H ′n}n≥s is
not regular in H ′s, using an argument similar to the one used to prove that {Hn}n≥0 is not weakly
regular in H. It will follow that {Hn}n≥0 is not virtually regular in H. As before, see also Theorem
4.6, we note that {H ′n}n≥s is regular in H ′s if and only if for any sequence (gn) ∈ H ′s such that
gnH

′
n = gmH

′
n for all m ≥ n the chain {gnH ′ng−1

n }n≥s is equivalent to {H ′n}n≥s.



20 JESSICA DYER, STEVEN HURDER, AND OLGA LUKINA

If h = (Aq,By′, Cz′) ∈ Hs, and γ = (Apn−sx,Bqn−sy, Cpn−sz) ∈ H ′n, then for the third entry of
the expression (16) we obtain

Cpn−sz +ABqn−sqy −ABpn−sxy′ .

Let y = q, and let t ≥ s be the power of p in the prime decomposition of AB. Then h(x, q, z)h−1 is
not in H ′n for n ≥ t, hence for n > t the chain {hH ′nh−1}n≥s is not equivalent to {H ′n}n≥s. �

8. Future research

There are a variety of questions about the geometry and classification of weak solenoids suggested by
Theorems 1.4, 1.5 and 1.6 and their proofs. In this section, we discuss three such areas of research:
the role of the geometry of the base manifold M0; the algebraic classification of subgroup chains in
the fundamental group H0 = π1(M0, x0); and the relation between the discriminant invariant and
foliation theory for equicontinuous foliated spaces.

8.1. 3-manifolds. When the compact base manifold M0 for a solenoid has dimension 2, the only
possible growth types are zero, linear, quadratic, or the fundamental group contains a free subgroup
on two generators, and hence has exponential growth. In the case where M0 has dimension 3,
there are two more possibilities for the growth type of its fundamental group H0, as described in
Theorem 12.17 of [17]:

(1) H0 has growth type polynomial of order at most 3, and so Theorem 1.5 applies;
(2) H0 is a nilpotent group with growth type polynomial of order 4 and so Theorem 1.5 applies;
(3) H0 is solvable with exponential growth type;
(4) H0 contains a free subgroup on two generators, and hence has exponential growth.

An example of the groups of the third type are the Baumslag-Solitar groups

H0 = BS(1, p) = 〈a, b | aba−1 = bp〉

which can be realized as the fundamental groups of compact 3-manifolds via a geometric surgery
construction.

PROBLEM 8.1. Describe the group chains for Baumslag-Solitar groups, or more generally, for
solvable groups with exponential growth type. Show that the discriminant invariant for all such group
chains must be non-trivial.

The fundamental group of a hyperbolic 3-manifold provides an example of groups of the fourth
type. Moreover these groups are always residually finite, so admit many group chains. That is, a
hyperbolic 3-manifold admits towers of finite coverings, not necessarily normal coverings, such that
the inverse limit solenoid has a leaf with trivial fundamental group. Hyperbolic 3-manifolds and
their fundamental groups have been extensively studied, and their invariants have a central role in
recent research in geometry.

PROBLEM 8.2. Relate the discriminant invariant for a tower of finite coverings of a hyperbolic
3-manifold with its traditional geometric invariants.

8.2. Heisenberg manifolds. The examples constructed in the proof of Theorem 1.6 are Heisenberg
manifolds of dimension 3. For higher dimensions, it is also possible to construct analogous examples
of Heisenberg manifolds which have fundamental groups with polynomial growth types, but there
is no systematic understanding of which group chains in their fundamental groups have trivial or
finite discriminant groups. The following problem lends itself nicely to an inductive approach by the
growth rates of the groups.

PROBLEM 8.3. Characterize the group chains in general Heisenberg groups, such as was done
for normal group chains in [34]. Characterize the group chains with finite discriminant groups, and
those for which the discriminant is a Cantor group.
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8.3. Foliated spaces. A weak solenoid is an equicontinuous matchbox manifold, and by Theo-
rem 1.2 all such connected spaces are homeomorphic to a weak solenoid. A matchbox manifold is a
special case of a foliated space, as introduced by Moore and Schochet [40], and the matchbox man-
ifolds are characterized by the property that they are transversally totally disconnected. The work
of Álvarez López and Moreira Galicia [4] studied the properties of equicontinuous foliated spaces
in general, from the point of view of their being the topological analog of Riemannian foliations of
smooth manifolds. In particular, their work developed a version of the Molino theory [39] for the
topological setting of foliated spaces. For the case of matchbox manifolds, the work of the authors
in [19] gives an alternate approach to constructing a Molino theory for these spaces, and in fact
provides even stronger results for this special case as explained in [20].

The proof of Theorem 1.4 in Section 6 implicitly uses ideas of foliation theory, via Theorem 5.2, and
the study of the ends of leaves in weak solenoids in [10] was also inspired by results from the theory
of foliations of smooth manifolds. We formulate two questions, the first one, in a less general form,
was asked by Rogers and Tollefson [44, Problem 2].

PROBLEM 8.4. Let M be an equicontinuous matchbox manifold, hence a weak solenoid. Show
that if M is not a homogeneous space, then some leaf of its foliation F has non-trivial holonomy.

Another related problem is based on the observation, that if a solenoid is homogeneous, then all
leaves in this solenoid have either 1, or 2, or a Cantor set of ends.

PROBLEM 8.5. Let M be an equicontinuous matchbox manifold. Suppose that M is virtually
homogeneous, are their any restrictions imposed on the end structures of its leaves? That is, is it
possible to have a virtually homogeneous solenoid with a leaf for which the number of its ends is
other than 1, 2 or a Cantor set?

Note that Rogers and Tollefson example is virtually homogeneous, and all of its leaves have either
1 or 2 ends. The Schori example has a leaf with 4 ends, but we do not know if it is virtually
homogeneous.
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