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Abstract. A solenoidal manifold is the inverse limit space of a tower of proper coverings of a

compact base manifold. In this work, we introduce new invariants for solenoidal manifolds, their
type and their typeset. These are collections of equivalence classes of asymptotic Steinitz orders

associated to the monodromy Cantor action associated to the fibration of the solenoidal manifold

over its base. We show the type of a solenoidal manifold is an invariant of its homeomorphism
class. We introduce the notion of commensurable typesets, and show that homeomorphic solenoidal

manifolds have commensurable typesets. When the base manifold in question is an n-torus, then

there is a finite rank subgroup of Qn associated to the solenoidal manifold, and the type and type-
sets for subgroups of Qn are isomorphism invariants that have been well-studied in the literature.

Examples are given to illustrate the properties of the type and typeset invariants.

1. Introduction

A 1-dimensional solenoid is defined as the inverse limit of a sequence of finite covering maps of the
circle. The dyadic (2-fold coverings) solenoid was introduced by Vietoris [56] in 1927, and again later
independently by van Danzig [52]. Bing observed in [9] that a 1-dimensional solenoid is determined
up to homeomorphism by the supernatural number associated to the sequence of coverings defining it.
McCord showed in [35, Section 2] the converse, that if two 1-dimensional solenoids are homeomorphic
spaces, then the associated supernatural (or Steinitz) numbers are “equivalent”, or more precisely
they determine the same type invariant.

A solenoidal manifold of dimension n is defined as the inverse limit of a sequence of finite covering
maps of a compact manifold of dimension n. These natural generalizations of the Vietoris solenoids
were first studied by McCord [35] and Schori [46], who called them weak solenoids. The classification
of solenoidal manifolds, up to homeomorphism, is studied by the authors in their works [12, 26, 27,
28, 29]. A solenoidal manifold can be considered as a generalized manifold, which is the point of view
of the works of Sullivan [47, 48, 49] and Verjovsky [53, 54], where they investigate their differential
geometric properties.

The type of a Steinitz number was introduced by Baer in [6, Section 2], where the terminology genus
was used. Baer used the genus to analyze the classification problem for rank n subgroups Qn. The
classification problem for Vietoris solenoids corresponds exactly with the classification problem for
dense subgroups of Q. Giordano, Putnam and Skau in [24] related the classification problem for
solenoidal manifolds over Tn with the classification problem for dense subgroups of Qn. It is thus
natural to ask whether there are well-defined type invariants for more general solenoidal manifolds,
and to what extent they determine their homeomorphism types.

In this work, we introduce the type and typeset for solenoidal manifolds. We show that the type is
a homeomorphism invariant. We introduce the notion of commensurable typesets for Cantor actions
and show that the commensurable class of the typeset is a homeomorphism invariant. In Section 6
we give examples of Cantor actions of finitely generated groups which illustrate basic cases of the
results of this work. In Section 7, we consider the typeset invariants for Cantor actions induced on
the boundaries of spherically homogeneous trees.
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1.1. Solenoidal manifolds. We recall the definition and some properties of solenoidal manifolds.
A presentation is a sequence of proper finite covering maps P = { q` : M` → M`−1 | ` ≥ 1}, where
each M` is a compact connected manifold without boundary of dimension n. (This terminology was
introduced in [20].) The inverse limit

(1) SP ≡ lim
←−
{q` : M` →M`−1} ⊂

∏
`≥0

M`

is the weak solenoid, or solenoidal manifold, associated to P. The set SP is given the relative
topology, induced from the product topology, so that SP is compact and connected. By the definition
of the inverse limit, for a sequence {x` ∈M` | ` ≥ 0}, we have

(2) x = (x0, x1, . . .) ∈ SP ⇐⇒ q`(x`) = x`−1 for all ` ≥ 1 .

For each ` ≥ 0, there is a fibration q̂` : SP →M`, given by projection onto the `-th factor in (1), so
q̂`(x) = x`. For each ` > 0 there is a covering map denoted by q` = q` ◦ q`−1 ◦ · · · ◦ q1 : M` → M0.
Note that q̂0 = q` ◦ q̂`. The initial factor M0 is called the base manifold of the presentation P.

McCord showed in [35] that a solenoidal manifold SP is a foliated space with foliation FP , in the
sense of [36], where the leaves of FP are coverings of the base manifold M0 via the projection map
q̂0 : SP →M0 restricted to the path-connected components of SP . Solenoidal manifolds are matchbox
manifolds of dimension n in the terminology of [12]. The authors’ works [12, 13, 26] and the survey
by Verjovsky [54] discuss many examples of solenoidal manifolds.

Given a presentation P, define the truncated presentation Pm = { q` : M` →M`−1 | ` > m}, then it
is a formality that the solenoidal manifolds SP and SPm are homeomorphic. Thus, homeomorphism
invariants for solenoidal manifolds have an “asymptotic” character in terms of their presentations.

1.2. Types of solenoidal manifolds. We next define the notion of type. More detailed discussions
can be found Section 3 below, and in the works by Arnold [3, Section 1]), by Wilson [55, Chapter 2]
and by Ribes and Zalesskii [43, Chapter 2.3]. Let ~m = {mi | 1 ≤ i <∞} be an infinite collection of
positive integers. The supernatural number, or Steinitz number, defined by ~m is the infinite product

(3) ξ(~m) = lcm{m1m2 · · ·m` | ` > 0} ,

where lcm denotes the least common multiple of the collection of integers. A Steinitz number ξ can
be written uniquely as the formal product over the set of primes Π,

(4) ξ =
∏
p∈Π

pχξ(p) ,

where the characteristic function χξ : Π→ {0, 1, . . . ,∞} counts the multiplicity with which a prime
p appears in the infinite product ξ.

DEFINITION 1.1. Two Steinitz numbers ξ and ξ′ are said to be asymptotically equivalent if
there exists finite integers m,m′ ≥ 1 such that m · ξ = m′ · ξ′, and we then write ξ

a∼ ξ′. A type is
an asymptotic equivalence class of Steinitz numbers. Let τ [ξ] denote the type of a Steinitz number ξ.

The notion of the prime spectrum associated to a Steinitz number is useful in classification problems,
the study of the dynamical properties of solenoidal manifolds [30], and the calculation of the mapping
class group of a solenoidal manifold [31].

DEFINITION 1.2. Let Π = {2, 3, 5, . . .} denote the set of primes. Given ξ =
∏
p∈Π

pχ(p), define:

π(ξ) = {p ∈ Π | χ(p) > 0} , the prime spectrum of ξ ;

πf (ξ) = {p ∈ Π | 0 < χ(p) <∞} , the finite prime spectrum of ξ ;

π∞(ξ) = {p ∈ Π | χ(p) =∞} , the infinite prime spectrum of ξ .

Note that if ξ
a∼ ξ′, then π∞(ξ) = π∞(ξ′). The property that πf (ξ) is an infinite set is also preserved

by asymptotic equivalence of Steinitz numbers, so is an invariant of type.
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Let P be a presentation defining the solenoidal manifold SP . For each ` > 0, let m` > 1 denote the
degree of the covering map q` in (1).

DEFINITION 1.3. The Steinitz order of a presentation P is the Steinitz number

(5) ξ(P) = lcm{m1m2 · · ·m` | ` > 0}.
The type of P is the type class associated to ξ(P), denoted by τ [P].

As noted above, the type is a complete invariant for 1-dimensional solenoids. Given a sequence of
covering maps of the circle, their inverse limit S(~m) is a Vietoris solenoid,

(6) S(~m)
def
= lim←− { q` : S1 → S1 | ` ≥ 1} .

Bing observed in [9] that for 1-dimensional solenoids S(~m) and S(~m′), if ξ(~m)
a∼ ξ(~m′) then the

solenoids are homeomorphic. McCord showed in [35, Section 2] the converse, that if S(~m) and S( ~m′)

are homeomorphic spaces, then ξ(~m)
a∼ ξ(~m′). Aarts and Fokkink gave an alternative proof in [1].

THEOREM 1.4. [1, 9, 35] S(~m) and S(~m′) are homeomorphic if and only if ξ(~m)
a∼ ξ(~m′).

In this work, we generalize McCord’s result to all solenoidal manifolds.

THEOREM 1.5. The type τ [P] depends only on the homeomorphism class of SP as a continuum.

COROLLARY 1.6. The infinite prime spectrum π∞(ξ(P)) of a weak solenoid SP depends only
on the homeomorphism class of SP , as does also the property that πf (ξ(P)) is infinite.

1.3. Typesets for solenoidal manifolds. The classification problem of solenoidal manifolds over
tori is equivalent to the classification problem for finite rank, dense subgroups A ⊂ Qn for n ≥
2, which leads to the introduction of the typeset invariants for such subgroups, as discussed in
Remark 3.9. We extend the notion of typeset to solenoidal manifolds.

Let M0 be the base manifold of a presentation P and let Γ = π1(M0, x0) be its fundamental group,
for some choice of a basepoint x0 ∈M0. For each non-trivial γ ∈ Γ we associate a type τ [γ], whose
definition requires some technical preparations, and is deferred to Definition 3.7.

There is an intuitive description of the type τ [γ] when γ is represented by a simple closed curve
cγ : S1 → M0. Recall the projection map q̂0 : SP → M0 which restricts to a covering map on each

leaf of FP . When the preimage Sγ = q̂−1
0 (cγ(S1)) is connected, it is a 1-dimensional solenoid, then

τ [γ] is the type associated to the Vietoris solenoid Sγ .

DEFINITION 1.7. The typeset of P is the countable collection of types T [P] = {τ [γ] | γ ∈ Γ}.

The notion of the commensurable class of a typeset is discussed in Section 3.5, with the proper
definition given in Definition 3.12, after some technical preparations. Intuitively, this notion of
equivalence is modeled on the notion of the abstract commensurable equivalence between groups, as
presented for example in the works [2, 8]. Then our second main result is the following:

THEOREM 1.8. Suppose that the solenoidal manifolds SP and SP′ are homeomorphic, then their
typesets τ [P] and τ [P ′] are commensurable.

The proofs of Theorems 1.5 and 1.8 proceed by associating to a presentation P for the solenoidal
manifold SP its monodromy action Φ: Γ ×X∞ → X∞, which is a minimal, equicontinuous action
of Γ on a Cantor space X∞. This is discussed in Section 4.1. Theorem 4.1 implies that if two
solenoidal manifolds are homeomorphic, then their monodromy Cantor actions are return equivalent
(see Definition 2.6).

Given a minimal equicontinuous Cantor action (X,Γ,Φ) where Γ is finitely presented, and so is the
fundamental group of a compact closed connected manifold M , the suspension construction (see
[11, 12, 13]) yields a solenoidal manifold SΦ whose monodromy action is (X,Γ,Φ) with base M . In
particular, the invariants for Cantor actions of finitely presented groups translate into properties of
solenoidal spaces. That is, the study of type invariants for solenoidal manifolds is a special case of
the study of type invariants for Cantor actions. The following is the main result of this article.
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THEOREM 1.9. Let (X,Γ,Φ) be a minimal equicontinuous Cantor action. Then:

(1) There is a well defined Steinitz order associated to the action, ξ(X,Γ,Φ).
(2) There is a well-defined set of Steinitz orders {ξ(γ) | γ ∈ Γ}.
(3) If the Cantor action (X′,Γ′,Φ′) is return equivalent to (X,Γ,Φ), then

(a) their types are equal, τ [X,Γ,Φ] = τ [X′,Γ′,Φ′];
(b) their typesets T [X,Γ,Φ] and T [X′,Γ′,Φ′] are commensurable.

Various classes of Cantor actions admit stronger results, which follow from the method of proof of
Theorem 1.9. The next result that follows directly from the proof of Theorem 1.9.

COROLLARY 1.10. Suppose that Γ and Γ′ are abelian. If minimal equicontinuous Cantor actions
(X,Γ,Φ) and (X′,Γ′,Φ′) are return equivalent, then T [X,Γ,Φ] = T [X′,Γ′,Φ′].

Example 6.3 shows that the typesets need not be equal for return equivalent Cantor actions, if one
of the groups is virtually abelian, and the other is abelian. Section 6 also gives a selection of abelian
Cantor actions to illustrate the definitions of types and typesets.

A finitely-generated group Γ is said to be renormalizable if there exists a proper self-embedding
ϕ : Γ→ Γ whose image has finite index [32]. Another name for this property is that Γ is finitely non-
co-Hopfian. The embedding ϕ defines a group chain in Γ which gives rise to a minimal equicontinuous
Cantor action, denoted by (Xϕ,Γ,Φϕ). The properties of the Cantor actions obtained this way are
studied in the work [32]; see also Sabitova [45].

THEOREM 1.11. Let ϕ : Γ→ Γ be a renormalization with associated Cantor action (Xϕ,Γ,Φϕ).
Then the action has a well-defined type τ [Xϕ,Γ,Φϕ] and typeset T [Xϕ,Γ,Φϕ]. Let ϕ′ : Γ′ → Γ′ be
a renormalization of the group Γ′, and assume the actions (Xϕ,Γ,Φϕ) and (Xϕ′ ,Γ

′,Φϕ′) are return
equivalent, then their types and typesets are equal.

Many finitely-generated nilpotent groups admit renormalizations, as well as some other classes of
groups, as discussed in [32]. Examples 6.4 and 6.5 give constructions using renormalizable groups
which illustrate the conclusions of Theorem 1.11.

The proofs of Corollary 1.10 and Theorem 1.11 are given in Section 5.3.

1.4. Cardinality of typesets. Section 7.1 introduces d-regular Cantor actions, which are Cantor
actions that have faithful representations as actions on d-regular trees.

THEOREM 1.12. A minimal equicontinuous Cantor action (X,Γ,Φ) which is d-regular has finite
typeset T [X∞,Γ,Φ]. More precisely, suppose (X,Γ,Φ) is isomorphic to an action on a d-ary rooted
tree, for some d ≥ 2. Let Pd be the set of distinct prime divisors of the integers {2, . . . , d}, and let
Nd = |Pd|. Then

|T [X∞,Γ,Φ]| ≤
Nd∑
k=0

(
Nd
k

)
=

Nd∑
k=0

Nd!

(Nd − k)!k!
.(7)

Moreover, each equivalence class τ ∈ T [X∞,Γ,Φ] is represented by a Steinitz number ξ with empty
finite prime spectrum πf (ξ), and so π(ξ) = π∞(ξ).

Example 7.8 gives examples which realize the typesets arising in Theorem 1.12.

PROBLEM 1.13 (Realization). Given a finitely-generated torsion free group Γ, what (if any)
restrictions are there on the types and typesets which can be realized by minimal equicontinuous
actions of Γ?

The solution to Problem 1.13 is known for the case when Γ = Zn (see []), and is likely solvable when
Γ is a nilpotent group. The solution for a general finitely generated group Γ is unknown.

PROBLEM 1.14 (Classification). For a minimal equicontinuous Cantor action (X,Γ,Φ) with type
invariants τ [X,Γ,Φ] and T [X,Γ,Φ], classify the Cantor actions with the same type and typesets.
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2. Cantor actions

We recall some of the basic properties of Cantor actions, as required for the proofs of the results in
Section 1. More complete discussions of the properties of equicontinuous Cantor actions are given
in the text by Auslander [5], the papers by Cortez and Petite [15], Cortez and Medynets [16], and
the authors’ works, in particular [19, 20] and [28, Section 3].

2.1. Basic concepts. Let (X,Γ,Φ) denote an action Φ: Γ × X → X. We write g · x for Φ(g)(x)
when appropriate. The orbit of x ∈ X is the subset O(x) = {g · x | g ∈ Γ}. The action is minimal if
for all x ∈ X, its orbit O(x) is dense in X.

An action (X,Γ,Φ) is equicontinuous with respect to a metric dX on X, if for all ε > 0 there exists
δ > 0, such that for all x, y ∈ X and g ∈ Γ we have that dX(x, y) < δ implies dX(g · x, g · y) < ε. The
property of being equicontinuous is independent of the choice of the metric on X which is compatible
with the topology of X.

Now assume that X is a Cantor space. Let CO(X) denote the collection of all clopen (closed and open)
subsets of X, which forms a basis for the topology of X. For φ ∈ Homeo(X) and U ∈ CO(X), the
image φ(U) ∈ CO(X). The following result is folklore, and a proof is given in [27, Proposition 3.1].

PROPOSITION 2.1. For X a Cantor space, a minimal action Φ: Γ×X→ X is equicontinuous if
and only if the Γ-orbit of every U ∈ CO(X) is finite for the induced action Φ∗ : Γ×CO(X)→ CO(X).

All Cantor actions in this work are assumed to be minimal and equicontinuous

We say that U ⊂ X is adapted to the action (X,Γ,Φ) if U is a non-empty clopen subset, and for any
g ∈ Γ, if Φ(g)(U) ∩ U 6= ∅ implies that Φ(g)(U) = U . The proof of [27, Proposition 3.1] shows that
given x ∈ X and clopen set x ∈W , there is an adapted clopen set U with x ∈ U ⊂W .

For an adapted set U , the set of “return times” to U ,

(8) ΓU = {g ∈ Γ | g · U ∩ U 6= ∅}
is a subgroup of Γ, called the stabilizer of U . Then for g, g′ ∈ Γ with g · U ∩ g′ · U 6= ∅ we have
g−1 g′ ·U = U , hence g−1 g′ ∈ ΓU . Thus, the translates {g ·U | g ∈ Γ} form a finite clopen partition of
X, and are in 1-1 correspondence with the quotient space XU = Γ/ΓU . Then Γ acts by permutations
of the finite set XU and so the stabilizer group ΓU ⊂ G has finite index. Note that this implies that
if V ⊂ U is a proper inclusion of adapted sets, then the inclusion ΓV ⊂ ΓU is also proper.

DEFINITION 2.2. Let (X,Γ,Φ) be a Cantor action. A properly descending chain of clopen sets
U = {U` ⊂ X | ` > 0} is said to be an adapted neighborhood basis at x ∈ X for the action Φ, if
x ∈ U`+1 ⊂ U` is a proper inclusion for all ` > 0, with ∩`>0 U` = {x}, and each U` is adapted to
the action Φ.

Given x ∈ X and ε > 0, Proposition 2.1 implies there exists an adapted clopen set U ∈ CO(X) with
x ∈ U and diam(U) < ε. Thus, one can choose a descending chain U of adapted sets in CO(X)
whose intersection is x, from which the following result follows:

PROPOSITION 2.3. Let (X,Γ,Φ) be a Cantor action. Given x ∈ X, there exists an adapted
neighborhood basis U at x for the action Φ.

Combining the above remarks, we have:

COROLLARY 2.4. Let (X,Γ,Φ) be a Cantor action, and U be an adapted neighborhood basis. Set
Γ` = ΓU` , with Γ0 = Γ, then there is a nested chain of finite index subgroups, GU = {Γ0 ⊃ Γ1 ⊃ · · · }.

2.2. Equivalence of Cantor actions. We next recall the notions of equivalence of Cantor actions
which we use in this work. The first and strongest is that of isomorphism of Cantor actions, which is
a generalization of the usual notion of conjugacy of topological actions. The definition below agrees
with the usage in the papers [16, 27, 34].
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DEFINITION 2.5. Cantor actions (X1,Γ1,Φ1) and (X2,Γ2,Φ2) are said to be isomorphic if there
is a homeomorphism h : X1 → X2 and group isomorphism Θ: Γ1 → Γ2 so that

(9) Φ1(g) = h−1 ◦ Φ2(Θ(g)) ◦ h ∈ Homeo(X1) for all g ∈ Γ1 .

The notion of return equivalence for Cantor actions is weaker than the notion of isomorphism, and
is natural when considering the Cantor systems defined by the holonomy actions for solenoidal
manifolds, as considered in the works [26, 27, 28].

For a Cantor action (X,Γ,Φ) and an adapted set U ⊂ X, by an abuse of notation, we use ΦU to denote
both the restricted action ΦU : ΓU × U → U , and the induced quotient action ΦU : HU × U → U ,
where HU = Φ(ΓU ) ⊂ Homeo(U). Then (U,HU ,ΦU ) is called the restricted holonomy action for Φ,
in analogy with the case where U is a transversal to a solenoidal manifold, and HU is the holonomy
group for this transversal. A technical issue that often arises though, is that while ΓU ⊂ Γ has finite
index, the action map ΦU : ΓU → HU need not be injective, and can in fact can have a large kernel
as is the case for example for the actions of weakly branch groups (see Example 7.10).

DEFINITION 2.6. Cantor actions (X,Γ,Φ) and (X′,Γ′,Φ′) are return equivalent if there exists
an adapted set U ⊂ X for the action Φ, and an adapted set U ′ ⊂ X′ for the action Φ′, such that the
restricted actions (U,HU ,ΦU ) and (U ′,H′U ′ ,Φ′U ′) are isomorphic.

Note that if we take U = X and U ′ = X′ in Definition 2.6, then return equivalence may still be weaker
than isomorphism in Definition 2.5, unless the actions Φ and Φ′ are topologically free [27, 34, 41].

2.3. Algebraic Cantor actions. Let G = {Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · } be a descending chain of
finite index subgroups. Let X` = Γ/Γ` and note that Γ acts transitively on the left on the finite
set X`. The inclusion Γ`+1 ⊂ Γ` induces a natural Γ-invariant quotient map p`+1 : X`+1 → X`.
Introduce the inverse limit

X∞ ≡ lim
←−
{p`+1 : X`+1 → X` | ` ≥ 0}(10)

= {(x0, x1, . . .) ∈ X∞ | p`+1(x`+1) = x` for all ` ≥ 0 } ⊂
∏
`≥0

X` .

Then X∞ is a Cantor space with the Tychonoff topology, where the actions of Γ on the factors
X` induce a minimal equicontinuous action denoted by Φ: Γ × X∞ → X∞. There is a natural
basepoint x∞ ∈ X∞ given by the cosets of the identity element e ∈ Γ, so x∞ = (eΓ`). An adapted
neighborhood basis of x∞ is given by the clopen sets

(11) U` = {x = (xi) ∈ X∞ | xi = eΓi ∈ Xi , 0 ≤ i ≤ ` } ⊂ X∞ .

Then there is the tautological identity Γ` = ΓU` .

Suppose that we are given a Cantor action (X,Γ,Φ), and an adapted neighborhood basis U . Define
subgroups Γ` = ΓU` , with Γ0 = Γ, which form the group chain GU = {Γ0 ⊃ Γ1 ⊃ · · · }. Then we
have the folklore result:

THEOREM 2.7. Let (X,Γ,Φ) be a minimal equicontinuous Cantor action, and U an adapted
neighborhood basis. Then the action (X,Γ,Φ) is isomorphic to the Cantor action (X∞,Γ,Φ) con-
structed from the group chain GU .

3. Type and typeset

The notion of type was introduced in 1937 by Baer in [6, Section 2] as part of the study of the
classification problem for finite rank dense subgroups of Qn . The work of Butler [10] introduced
a restricted class of subgroups in Qn now called Butler groups. The classification theory for Butler
groups was further developed by Richman [44] and Mutzbauer [37], and the works of Arnold (see [3,
Section 1]), and Arnold and Vinsonhaler [4]. For a comprehensive treatment of these ideas, see the
monograph by Fuchs [23]. Thomas applied the type invariants in his analysis of the classification
complexity of these groups in the work [51, Section 3]. The applications of type invariants to profinite
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groups are discussed in the works by Ribes [42, Chapter 1, Section 4], Wilson [55, Chapter 2] and
Ribes and Zalesskii [43, Chapter 2.3]. In this section, we recall basic notions and properties of
Steinitz numbers and their types, and their definitions for solenoidal manifolds.

3.1. Types and typesets. Recall that a Steinitz number ξ can be written uniquely as the formal
product over the set of primes,

(12) ξ =
∏
p∈Π

pχξ(p) ,

where the characteristic function χξ : Π→ {0, 1, . . . ,∞} counts the multiplicity with which a prime
p appears in the infinite product ξ.

Recall from Definition 1.1 that two Steinitz numbers ξ and ξ′ are said to be asymptotically equivalent
if there exists finite integers m,m′ ≥ 1 such that m · ξ = m′ · ξ′, and we then write ξ

a∼ ξ′. Recall
that the type τ [ξ] associated to a Steinitz number ξ is the asymptotic equivalence class of ξ.

LEMMA 3.1. ξ and ξ′ satisfy ξ
a∼ ξ′ if and only if their characteristic functions χ1, χ2 satisfy

• χ1(p) = χ2(p) for all but finitely many primes p ∈ Π ,
• χ1(p) =∞ if and only iff χ1(p) =∞ for all primes p ∈ Π.

Given two types τ and τ ′, we write τ ≤ τ ′ if there exists representatives ξ ∈ τ and ξ′ ∈ τ ′ such that
their characteristic functions satisfy χξ(p) ≤ χξ′(p) for all primes p ∈ Π. Then two Steinitz numbers
ξ and ξ′ are asymptotically equivalent if and only if χξ ≤ χξ′ and χξ′ ≤ χξ.

DEFINITION 3.2. A typeset T is a collection of types.

There are three operations on types τ and τ ′: sum, join and intersection. Let χ (respectively χ′) be
the characteristic function for a representative ξ ∈ τ (respectively ξ′ ∈ τ ′), then:

Sum : τ + τ ′ type defined by χ+(p) = χ(p) + χ′(p)
Join : τ ∨ τ ′ type defined by χ∨(p) = max{χ(p), χ′(p)}
Intersection : τ ∧ τ ′ type defined by χ∧(p) = min{χ(p), χ′(p)}

.

Note that τ ∧ τ ′ ≤ τ ∨ τ ′ ≤ τ + τ ′. A typeset T need not be closed under the operations of sum,
join or intersection. However, a typeset T always admits a partial ordering.

3.2. Type for profinite groups. The Steinitz order Π[G] of a profinite group G is defined by the
supernatural number associated to a presentation of G as an inverse limit of finite groups (see [55,
Chapter 2] or [43, Chapter 2.3]).

For a profinite group G, an open subgroup U ⊂ G has finite index [43, Lemma 2.1.2]. Let D ⊂ G
be a closed subgroup, and N ⊂ G is an open normal subgroup, then N ·D is an open subgroup of
G and N ∩D is an open normal subgroup of D.

DEFINITION 3.3. Let D ⊂ G be a closed subgroup of the profinite group G. Define the Steinitz
orders for the pair as follows:

(1) ξ(G) = lcm{# G/N | N ⊂ G open normal subgroup};
(2) ξ(D) = lcm{# D/(N ∩D) | N ⊂ G open normal subgroup},
(3) ξ(G : D) = lcm{# G/(N ·D) | N ⊂ G open normal subgroup}.

The Steinitz orders satisfy the Lagrange identity, where the multiplication is taken in the sense of
supernatural numbers (see [43, 55]), and we have

(13) ξ(G) = ξ(G : D) · ξ(D) .

In particular, we always have τ [D] ≤ τ [G].
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3.3. Type for Cantor actions. Let (X∞,Γ,Φ) be a Cantor action, defined by a group chain
G = {Γ = Γ0 ⊃ Γ1 ⊃ · · · }. Recall that the normal core of Γ` is the largest normal subgroup

C` ⊂ Γ`. The profinite group Γ̂(G) associated to the action (X∞,Γ,Φ) defined by G is given by:

DEFINITION 3.4. Let G be a group chain with associated normal core chain {C` | ` ≥ 0}. Set

(14) Γ̂(G) = lim
←−
{Γ/C`+1 → Γ/C` | ` ≥ 0} .

The profinite group Γ̂(G) is a quotient of the full profinite completion of Γ, but it is typically not

equal. The properties of the group Γ̂(G) associated to a Cantor action are studied extensively in the

authors’ works [19, 20, 26, 28]. The Steinitz order of Γ̂(G) is well-defined, and given by

(15) ξ(Γ̂(G)) = lcm{#(Γ/C`) | ` > 0} .

The type τ [Γ̂(G)] = τ [ξ(Γ̂(G))] need not be an invariant of return equivalence of the associated
Cantor action (X∞,Γ,Φ), as explained below.

DEFINITION 3.5. Let (X∞,Γ,Φ) be a minimal equicontinuous Cantor action. The type τ [X∞,Γ,Φ]
of the action is the equivalence class of the Steinitz order

(16) ξ(X∞,Γ,Φ) = lcm{#X` = #(Γ/Γ`) | ` > 0} .

Recall that there is a transitive action Φ̂ : Γ̂(G) ×X∞ → X∞ induced by the minimal action of Γ.

The action (X∞, Γ̂(G), Φ̂) is free precisely when the isotropy subgroup D(G) ⊂ Γ̂(G) of the action

at the basepoint x∞ ∈ X∞ is trivial. In this case, we have a homeomorphism X∞ ∼= Γ̂(G) that
commutes with the action, and so X∞ inherits the structure of a Cantor group from the action.

However, when the action (X∞, Γ̂(G), Φ̂) is not free, then D(G) is not trivial, and we have:

PROPOSITION 3.6. Let (X∞,Γ,Φ) be a Cantor action. Then ξ(X∞,Γ,Φ) = ξ(Γ̂(G) : D(G)).

We omit the proof of this, as it is a direct consequence of the definitions, and the result is not
needed for the proofs of our main theorems. However, Proposition 3.6 provides some insights on the
properties of the type τ [X∞,Γ,Φ] of an action with respect to return equivalence.

The Lagrange Theorem for profinite groups (13) implies that τ [Γ̂(G)] = τ [X∞,Γ,Φ] τ [D(G)]. The
type τ [D(G)] need not be invariant under restriction to adapted subsets, and so τ [D(G)] need not

be invariant under the relation of return equivalence, and thus the same is true for τ [Γ̂(G)]. On the

other hand, the proof of Theorem 1.9 shows that the relative type τ [Γ̂(G) : D(G)] = τ [G] is invariant
under restriction to adapted subsets.

3.4. Typesets for Cantor actions. Next, we introduce the definition of the type of an element
γ ∈ Γ, and its properties under restriction, which leads to the the notion of commensurable typesets.

Let (X∞,Γ,Φ) be a Cantor action defined by a group chain G = {Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · }. Recall
that C` ⊂ Γ` is the normal core.

Let γ ∈ Γ, and let 〈γ〉 ⊂ Γ denote the subgroup it generates. For ` > 0, the intersection 〈γ〉` =
〈γ〉 ∩ C` is a subgroup of finite index in 〈γ〉 ∼= Z. We thus obtain a group chain in 〈γ〉, denoted

(17) Cγ = {〈γ〉 ⊃ 〈γ〉1 ⊃ 〈γ〉2 ⊃ · · · } .

DEFINITION 3.7. Let (X∞,Γ,Φ) be the Cantor action defined by a group chain G. For γ ∈ Γ,
the type τ [γ] of γ is the asymptotic equivalence class of the Steinitz order

(18) ξ(γ) = lcm{#(〈γ〉/〈γ〉`) | ` > 0} .

The typeset of the action is the collection

(19) T [X∞,Γ,Φ] = {τ [γ] | γ ∈ Γ} .



TYPE INVARIANTS FOR SOLENOIDAL MANIFOLDS 9

Note that we allow γ to be the identity in this definition, which has type τ [e] = {0}, and it may
happen as well that there exists γ ∈ Γ such that γ ∈ C` for all ` sufficiently large, and then we also
have that τ [γ] = {0}. For example, if γ has finite order, or the action of Φ(γ) on X∞ is periodic
with bounded period, then τ [γ] = {0}.

Observe that if the group chain Cγ in (17) does not stabilize, that is, 〈γ〉`+1 ⊂ 〈γ〉` is a proper
inclusion for infinitely many values of `, then Cγ defines an inverse limit Cantor space Xγ as in (10),

with a minimal equicontinuous action by Z ∼= 〈γ〉. Then Xγ is isomorphic to the closure 〈γ〉 of

the subgroup 〈γ〉 ⊂ Γ̂(G), which is a profinite abelian group. The type τ [γ] equals the type of the

1-dimensional action of Z on the profinite torus 〈γ〉.

For all ` > 0, we have that 〈γ〉` ⊂ C`, so the order of the subgroup 〈γ〉/〈γ〉` divides the order of
Γ/C` by Lagrange’s Theorem. Thus we have:

PROPOSITION 3.8. For a group chain G, τ [G] ≤ τ [Γ̂(G)], and for each γ ∈ Γ, τ [γ] ≤ τ [Γ̂(G)].

The definition of typesets for Cantor actions is not an intuitively obvious notion, except for the
special case of abelian Cantor actions. We give an extended remark concerning this case.

REMARK 3.9. Let Γ = Zn and G = {Γ` | ` > 0} be a group chain in Zn. The chain G defines a
presentation P of covers of the torus Tn, and so a solenoidal manifold SP with base manifold Tn.
Then by Theorem 1.3 in [13], the classification of SP up to homeomorphism is equivalent to the
classification up to return equivalence of the action (X∞,Φ,Zn) defined by the group chain G.

The group chain G in Zn is a descending chain of rank n subgroups Γ` ⊂ Zn, so for each ` > 0 there
exists an n× n integer matrix so that multiplication yields an isomorphism A` : Zn → Γ`. Then the
type of the Cantor action is

ξ(X∞,Z,Φ) = lcm{det(A1A2 · · ·A`) | ` > 0} .

Thus, the well-defined property of ξ(X∞,Z,Φ) is just the independence of the asymptotic determi-
nant of the composite of the maps A` on the choice of basis. Moreover, all the subgroups Γ` in a
group chain in Zn are normal, so the notion of restricted type is the same as the type. However, it
is not easy to give a geometric interpretation of the type of an individual element γ ∈ Zn.

There is a duality between group chains in Zn and direct limit subgroups of Qn. Define the dual
lattice chain G∗ = {Γ∗` | ` ≥ 0} where Γ∗` = Hom(Γ`,Z). This is an ascending chain and admits
an embedding into the vector space Qn with Γ∗ ∼= Zn ⊂ Qn. Let Λ(G) ⊂ Qn denote the direct
limit of this chain of subgroups. Moreover, in this case X∞ is now a profinite abelian group, as
each subgroup Γ` ⊂ Zn is obviously normal. Giordano, Putnam and Skau gave in [24, Theorem 1.5]
a series of equivalent forms of the classification problem for effective, minimal equicontinuous Zn-
Cantor actions, one of which is the classification of rank n subgroups of Qn up to commensurability.

Thus, the classification problem for solenoidal manifolds over Tn is equivalent to the classification of
rank n dense subgroups on Qn, which was the original motivation for Baer [6] for the introduction
of the type invariants. It is natural to impose further restrictions on the properties of the subgroup
Λ(G) ⊂ Qn, such as the class of Butler groups introduced in [10], which have been extensively
studied and classified [4]; see also the compendium by Fuchs [23]. Moreover, for general groups, the
typeset has a poset structure, and Thomas discusses the role of the poset structure on a typeset in
[51, Section 4] for the classification of subgroups of Qn. He observes that by the work of Nazarova
[38], the classification of representations of finite posets is itself an intractable problem.

The study of abelian Cantor actions suggests new lines of investigation of general Cantor actions.

PROBLEM 3.10. Are there special classes of finitely-generated groups, beyond the abelian case,
for which there are analogs of the Butler groups that lead to effective classification results? Are
there assumptions on the poset structure of the typeset which lead to new classification results?
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3.5. Commensurable typesets. We next examine the behavior of the typeset of a Cantor action
(X∞,Γ,Φ) under return equivalence. This leads to the notion of commensurable typesets.

Let U ⊂ X∞ be an adapted set for the action. The translates {δ ·U | δ ∈ Γ} define a finite partition
of X∞. Assume Φ(γ) leaves each set in the partition invariant. Then one can consider the Steinitz
order of the restricted action Φ(γ) on each set in the partition δ · U , and it may happen that these
Steinitz orders depend on the choice of δ. This is the case, for example, with the actions of branch
groups on the boundary of the tree on which they are defined; see Example 7.10. On the other hand,
the collection of all types for elements acting on U includes the types of the group elements δγδ−1

for all δ, which belong to the restricted typeset for the action. We show that the typeset is invariant
on restriction to adapted sets, modulo an equivalence relation of commensurable typesets.

Let G = {Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · } be the subgroup chain associated to the Cantor action, and let
H ⊂ Γ be a subgroup of finite index such that Γ` ⊂ H for some ` > 0. By omitting some initial
terms, we can assume that Γ1 ⊂ H. Then for each ` > 0, define

(20) CH` =
⋂
δ∈H

δΓ`δ
−1 .

Then CH` ⊂ Γ` is a subgroup of finite index, as Γ` has finite index in Γ. In particular, C` = CΓ
`

is the normal core of Γ`, and there is an inclusion C` ⊂ CH` for any choice of H. Also note that
CH`+1 ⊂ CH` for all ` ≥ 0.

Given γ ∈ Γ define CHγ,` = 〈γ〉 ∩ CH` , and let CHγ = {〈γ〉 ∩H = CHγ,0 ⊃ CHγ,1 ⊃ CHγ,2 ⊃ · · · } denote

the resulting subgroup chain in 〈γ〉.

DEFINITION 3.11. Given a group chain G and H ⊂ Γ a subgroup with Γ1 ⊂ H, the H-restricted
order of γ ∈ Γ is the Steinitz order with respect to the chain CHγ ,

(21) ξH(γ) = lcm{#(〈γ〉/CHγ,`) | ` > 0} .
The H−restricted typeset for the chain G is the collection

(22) TH [G] = {τ [ξH(γ)] | γ ∈ Γ} .

Note that when H = Γ we recover the typeset T [G] in Definition 3.7. Also, the restriction Γ1 ⊂ H
is not significant, as will be seen in the proofs below, as one can always conjugate the chain G by an
element of Γ so that this condition is satisfied.

We can now formulate the notion of commensurable typesets for group chains G and G′.

DEFINITION 3.12. Let G = {Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · } and G′ = {Γ′ = Γ′0 ⊃ Γ′1 ⊃ Γ′2 ⊃ · · · }
be group chains. We say that their typesets T [G] and T [G′] are commensurable if there exists finite
index subgroups Γ1 ⊂ H ⊂ Γ and Γ′1 ⊂ H ′ ⊂ Γ′ such that TH [G] = TH′ [G′].

4. Invariance of types

In this section, we give the proof of Theorem 1.5, and begin the proof of Theorem 1.9. We first
reduce the study of equivalence of solenoidal manifolds to the study of Cantor actions defined by
their monodromy actions. We then investigate the invariance of the types for Cantor actions.

4.1. Monodromy actions. Let P = { q` : M` → M`−1 | ` ≥ 1} be a presentation, and recall from
Section 1.1 that we have

(23) SP ≡ lim
←−
{q` : M` →M`−1} ⊂

∏
`≥0

M` .

For each ` ≥ 0, there is a fibration q̂` : SP → M`, given by projection onto the `-th factor in (23).
Also, there is a covering map denoted by q` = q` ◦ q`−1 ◦ · · · ◦ q1 : M` →M0, such that q̂0 = q` ◦ q̂`.
Choose a basepoint x0 ∈ M0 and basepoint x ∈ X = q̂−1

0 (x0), the fiber over x0. Then for each
` > 0, this defines the basepoint x` = q̂`(x) ∈ M`. Let Γ` = (q`)#(Γ0) denote the image Γ` of the
fundamental group π1(M`, x`) in Γ = π1(M0, x0).
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The fiber q−1
` (x0) ⊂M` is identified with the quotient set X` = Γ/Γ` which is a left Γ-space. In this

way, the subspace X = q̂−1
0 (x0) of the inverse limit in (23) is identified with the Γ-space X∞ in (10).

The covering degree m` of q` : M` →M`−1 equals the index of the subgroup [Γ`−1 : Γ`], and so the
covering degree of q` : M` →M0 is given by

(24) deg(q`) = m` ·m`−1 · · ·m1 = [Γ : Γ`].

By Definition 1.3 and (16) we have

(25) ξ(P) = lcm{m1m2 · · ·m` | ` > 0} = lcm{[Γ : Γ`] | ` > 0} = ξ(X∞,Γ,Φ) .

Given a second presentation P ′ with solenoidal manifold SP′ , we similarly obtain subgroups Γ′` and
covering indices m′`, with

(26) ξ(P ′) = lcm{m′1m′2 · · ·m′` | ` > 0} = lcm{[Γ′ : Γ′`] | ` > 0} = ξ(X ′∞,Γ
′,Φ′) .

Let h : SP → SP′ be a homeomorphism. The homeomorphism h cannot be assumed to be fiber-
preserving, that is to satisfy h(X) = X′, and it need not even be continuously deformable into a
fiber-preserving map [13]. However, we can assume that on a sufficiently small transversal, the map
h sends a clopen subset of a fiber to a clopen subset of a fiber. This suffices to imply that the
homeomorphism induces a Morita equivalence between the pseudogroups defined by the foliations
FP and FP′ , as discussed in [12, 13, 26]. Then we have:

THEOREM 4.1. Let SP and SP′ be homeomorphic solenoidal manifolds. Then the corresponding
monodromy Cantor actions Φ: Γ×X∞ → X∞ and Φ′ : Γ′ ×X ′∞ → X ′∞ are return equivalent.

To prove Theorem 1.5, we must show that if two solenoidal manifolds SP and S ′P′ are homeomorphic,
then the Steinitz orders ξ(P) and ξ(P ′) of the presentations P and P ′ belong to the same asymptotic
equivalence class and so have equal types, τ [P] = τ [P ′], defined by Definition 1.3. By Theorem 4.1
this reduces to showing that the Steinitz orders ξ(X∞,Γ,Φ) and ξ(X ′∞,Γ

′,Φ′), associated to return
equivalent actions (X∞,Γ,Φ) and (X ′∞,Γ

′,Φ′) are asymptotically equivalent.

To prepare for the proof of part (1) of Theorem 1.9, that is, that the Steinitz order ξ(X,Γ,Φ)
is well-defined, recall one other fact about representing a Cantor action by an algebraic model.
Given a minimal equicontinuous Cantor action (X,Γ,Φ), the choice of an adapted neighborhood
basis U determines a subgroup chain GU as in Corollary 2.4, and so a Cantor action (X∞,Γ,Φ) as
in Section 2.3. The choice of another adapted basis U ′ yields an associated group chain GU ′ and
associated Cantor action (X ′∞,Γ,Φ

′). The following result follows from Theorem 1.4 in [19].

THEOREM 4.2. Let (X,Γ,Φ) be a minimal equicontinuous Cantor action, and assume that GU
and GU ′ are adapted neighborhood bases for the action. Then the corresponding algebraic models of
the action, (X∞,Γ,Φ) and (X ′∞,Γ,Φ

′), are isomorphic in the sense of Definition 2.5 with Θ: Γ→ Γ
the identity map.

Thus the proof of part (1) of Theorem 1.9 proceeds similarly to the proof of Theorem 1.5, except
the assumption that Cantor actions (X∞,Γ,Φ) and (X ′∞,Γ

′,Φ′) are return equivalent is replaced by
the assumption that the actions are isomorphic. The proof of part (3a) of Theorem 1.9 is analogous
to that of Theorem 1.5, after the application of Theorem 4.1.

4.2. Invariance of type. The proofs of Theorem 1.5, and of parts (1) and (3a) of Theorem 1.9
start similarly, as below.

Suppose that (X∞,Γ,Φ) and (X ′∞,Γ
′,Φ′) are return equivalent. Then there exists adapted sets

U ⊂ X∞ and U ′ ⊂ X ′∞ and a homeomorphism h : U → U ′ so that the induced homomorphism
h∗ : Homeo(U)→ Homeo(U ′) restricts to an isomorphism between the image HU = Φ(ΓU ) with the
image H′U ′ = Φ′(Γ′U ′).
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Recall a standard construction of a diagram of maps between adapted sets [22], [19, Theorem 3.3]:

X∞ ⊃ U

h

��

⊃ γ1 · U`1

h

��

⊃ h−1(γ′1 · U ′`′1)

h

��

⊃ γ2 · U`2

h

��

⊃ h−1(γ′2 · U ′`′2)

h

��

⊃ · · ·

X ′∞ ⊃ U ′ ⊃ h(γ1 · U`1) ⊃ γ′1 · U ′`′1 ⊃ h(γ2 · U`2) ⊃ γ′2 · U ′`′2 ⊃ · · ·

(27)

The sets U` are defined in (11), and adapted to the action of Γ, and similarly for the sets U ′`′ which
are adapted to the action of Γ′. The subscripts and intermediate adapted sets are defined iteratively
in the following. We adopt the “·” notation for the actions, as it is clear from the context which
action is being applied. Recall that the action of ΓU on U is minimal, as is the action of Γ′U ′ on U ′.
Denote e∞ = (eΓ`) ∈ X∞, and e′∞ = (eΓ′`′) ∈ X ′∞, where Γ` is the isotropy subgroup of U` and Γ′`
is the isotropy subgroup of U ′`′ , for each ` ≥ 0 and each `′ ≥ 0.

We define the maps and indices in Diagram (27) recursively.

The set U is clopen, so there exists γ1 ∈ Γ such that γ1 · e∞ ∈ U .
Choose `1 > 0 such that γ1 · U`1 ⊂ U .

The image h(γ1 · U`1) ⊂ U ′ is clopen, so choose γ′1 ∈ Γ′ such that γ′1 · e′∞ ∈ h(γ1 · U`1).
Choose `′1 > 0 such that γ′1 · U ′`′1 ⊂ h(γ1 · U`1).

The image h−1(γ′1·U ′`′1) ⊂ γ1·U`1 is clopen, so choose γ2 ∈ Γ such that γ2·e∞ ∈ h−1(γ′1·U ′`′1) ⊂ γ1·U`1 .

Choose `2 > `1 such that γ2 · U`2 ⊂ h−1(γ′1 · U ′`′1).

The image h(γ2 · U`2) ⊂ γ′1 · U ′`′1 is clopen, , so choose γ′2 ∈ Γ′ such that γ′2 · e′∞ ∈ h(γ2 · U`2).

Choose `′2 > `′1 such that γ′2 · U ′`′2 ⊂ h(γ2 · U`2).

Continue this procedure recursively to obtain Diagram (27) where we have:

• increasing sequences 0 < `1 < `2 < `3 < · · · and 0 < `′1 < `′2 < `′3 < · · · ,
• a sequence {γ1, γ2, γ3, . . .} ⊂ Γ,
• a sequence {γ′1, γ′2, γ′3, . . .} ⊂ Γ′ .

Observe that by choice we have γi+1 · U`i+1
⊂ γi · U`i and thus γ−1

`i
γ`i+1

∈ Γ`i for all i ≥ 1. This

recursion relation implies that the sequence {γi | i ≥ 0} converges in the profinite topology on Γ
induced by the subgroup chain {Γ` | ` ≥ 0}, and similarly for {γ′i | i ≥ 0} in the profinite topology

on Γ′. If we denote the respective limits by {γi} ∈ Γ and {γ′i} ∈ Γ
′
, then we have

{γi} · e∞ = h−1({γ′i} · e
′
∞), and {γ′i} · e

′
∞ = h({γi} · e∞).

All of the sets appearing in Diagram (27) are adapted for their respective actions, so the set inclusions
induce corresponding subgroup chains of their isotropy groups, and these chains are interlaced:

Γ ⊃ H = ΓU

h∗

��

⊃ γ1Γ`1γ
−1
1

h∗

��

⊃ Γh−1(γ′1·U ′`′1
)

h∗

��

⊃ γ2Γ`2γ
−1
2

h∗

��

⊃ Γh−1(γ′2·U ′`′2
)

h∗

��

⊃ · · ·

Γ′ ⊃ H ′ = Γ′U ′ ⊃ Γ′h(γ1·U`1 ) ⊃ γ′1Γ′`′1
(γ′1)−1 ⊃ Γ′h(γ2·U`2 ) ⊃ γ′2Γ′`′2

(γ′2)−1 ⊃ · · ·

(28)

Conjugation does not change the index of a subgroup, so [Γ : Γ`j ] = [Γ : γjΓ`jγ
−1
j ] for all j ≥ 1, and

likewise we have [Γ′ : Γ′`′j
] = [Γ′ : γ′jΓ

′
`′j

(γ′j)
−1]. It then follows that

(29) [Γ : Γ`j ] = [Γ : Γ`1 ][Γ`1 : Γ`j ] = [Γ : Γ`1 ][γ1Γ`1γ
−1
1 : γjΓ`jγ

−1
j ] ,

(30) [Γ′ : Γ′`′j ] = [Γ′ : Γ′`′1 ][Γ′`′1 : Γ′`′j ] = [Γ′ : Γ′`1 ][γ′1Γ′`′1(γ′1)−1 : γ′jΓ
′
`′j

(γ′j)
−1] .

We now show the key fact for the proof of Theorem 1.5.
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LEMMA 4.3. For all j > i > 0,

(31) [Γ`i : Γ`j ] = [Γ′h(γi·U`i )
: Γ′h(γj ·U`j )].

Proof. The isotropy group Γ`i acts minimally on the clopen set U`i , and its action translates the
clopen subset U`j ⊂ U`i to give a partition of this set. The index [Γ`i : Γ`j ] equals the number of

clopen subsets in this partition. It follows that the action of γiΓ`iγ
−1
i on γi · U`i partitions this set

into [Γ`i : Γ`j ] translates of the clopen subset γj · U`j .

The homeomorphism h : U → U ′ restricts to a homeomorphism h : γi · U`i → h(γi · U`i) which
induces a conjugacy of the action of Γγi·U`i with the action of Γ′h(γi·U`i )

on h(γi · U`i) ⊂ U ′. Thus,

the translates of the clopen subset h(γj ·U`j ) partition h(γi ·U`i) into [Γ`i : Γ`j ] clopen subsets, and
so the identity (31) follows. �

Proof of Theorem 1.5 and part (3a) of Theorem 1.9. Recall that

(32) ξ(P) = lcm{[Γ : Γ`] | ` > 0}] = lcm{[Γ : Γ`j ] | j > 0} ,

(33) ξ(P ′) = lcm{[Γ′ : Γ′`] | ` > 0}] = lcm{[Γ′ : Γ′`′j ] | j > 0} .

Then by (31), for j > 1 we have

(34) [Γ : Γ`j ] = [Γ : Γ`1 ] [Γ`1 : Γ`j ] = [Γ : Γ`1 ] [Γ′h(γ1·U`1 ) : Γ′h(γj ·U`j )] .

Then calculate, recalling the inclusions U ′ ⊃ h(γ1 ·U`1) ⊃ γ′1 ·U ′`1 ⊃ h(γj ·U`j ) ⊃ γ′j ·U ′`′j from (27):

[Γ′ : Γ′`′j ] = [Γ′ : γ′1Γ′`′1(γ′1)−1](35)

= [Γ′ : Γ′h(γ1·U`1 )] [Γ′h(γ1·U`1 ) : Γ′γ′1·U ′`′1
] [Γ′γ′1·U ′`′1

: Γ′h(γj ·U`j )] [Γ′h(γj ·U`j ) : Γ′γ′j ·U ′`′
j

]

= [Γ′ : Γ′h(γ1·U`1 )] [Γ′h(γ1·U`1 ) : Γ′h(γj ·U`j )] [Γ′h(γj ·U`j ) : Γ′γ′j ·U ′`′
j

].

Then by (34), the last line of (35) yields

(36) [Γ : Γ`1 ] [Γ′ : Γ′`′j ] = [Γ′ : Γ′h(γ1·U`1 )] [Γ : Γ`j ] [Γ′h(γj ·U`j ) : Γ′γ′j ·U ′`′
j

].

Thus, the index [Γ : Γ`j ] divides [Γ : Γ`1 ] [Γ′ : Γ′`′j
] for all j > 1. In particular, [Γ : Γ`j ] divides

[Γ : Γ`1 ] ξ(P ′) for all j > 1, and so ξ(P) divides [Γ : Γ`1 ] ξ(P ′), hence τ [P] ≤ τ [P ′].

Next, repeat these calculations for j > 1, starting with

(37) [Γ : Γ`j+1 ] = [Γ : Γh−1(γ′1·U`′1 )] [Γh−1(γ′1·U`′1 ) : Γh−1(γ′j ·U ′`′
j
)] [Γh−1(γ′j ·U ′`′

j
) : Γγj+1·U`j+1

] .

Lemma 4.3 can be applied to the inverse map h−1 : U ′ → U as well, to obtain that for all j > i > 0,

(38) [Γ′`′i : Γ′`′j ] = [Γh−1(γ′i·U`′i )
: Γh−1(γ′j ·U ′`′

j
)]

and so

(39) [Γ : Γ`j+1 ] = [Γ : Γh−1(γ′1·U`′1 )] [Γ′`′1 : Γ′`′j ] [Γh−1(γ′j ·U ′`′
j
) : Γγj+1·U`j+1

] .

Thus, the index [Γ′`′1
: Γ′`′j

] divides [Γ : Γ`j+1
] for all j > 1 and so [Γ′`′1

: Γ′`′j
] divides ξ(P). It follows

that ξ(P ′) divides ξ(P), hence τ [P ′] ≤ τ [P]. Thus, τ [P] = τ [P ′]. This completes the proof of
Theorem 1.5 and part (3a) of Theorem 1.9. �

Proof of part (1) of Theorem 1.9. Note that Γ = Γ′, but the group chains may be different, giving
rise to the inverse limit spaces X∞ and X ′∞. In the above calculations, take U = X∞ and U ′ = X ′∞,
γ1 = e ∈ Γ with `1 = 0, and γ′1 = e′ ∈ Γ′ with `′1 = 0. Then the terms [Γ : Γ`1 ] = 1 and [Γ′ : Γ′`′1

] = 1.

Then by (36) we have [Γ : Γ`j ] divides [Γ′ : Γ′`′j
], and by (39) we have [Γ′ : Γ′`′j

] divides [Γ : Γ`j+1 ].
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It follows that ξ(G) = ξ(G′). That is, the Steinitz order is independent of the choice of the group
chain defining the action. This completes the proof of part (1) of Theorem 1.9. �

The proof of part (2) and (3b) of Theorem 1.9 will follow from the calculations in the next section,
for U = X∞ and U ′ = X ′∞ as in the proof of (1) above.

5. Invariance of typesets

In this section, we complete the proof of Theorem 1.9. The proofs of Corollary 1.10 and Theorem 1.11
are given in Section 5.3.

5.1. Standard form. We first reduce to a standard form, which is then analyzed. Let (X,Γ,Φ)
and (X′,Γ′,Φ′) be a minimal equicontinuous Cantor actions, and assume the actions are return
equivalent. Then there exists adapted sets U ⊂ X and U ′ ⊂ X′ and a homeomorphism h : U → U ′

that induces an isomorphism between the actions (U,HU ,ΦU ) and (U ′,H′U ′ ,Φ′U ′). Recall that HU =
Φ(ΓU ) ⊂ Homeo(U) and H′U ′ = Φ′(Γ′U ′) ⊂ Homeo(U ′). In particular, h induces an isomorphism
between the groups HU and H′U ′ .

Next, choose basepoints x ∈ U and x′ ∈ U ′. Choose an adapted neighborhood basis U = {U` ⊂ X |
` > 0} at x for the action Φ as in Definition 2.2, and an adapted neighborhood basis U ′ = {U ′` ⊂
X′ | ` > 0} at x′ for the action Φ′. We can assume that U1 ⊂ U and U ′1 ⊂ U ′.

Form the group chain G = {Γ0 ⊃ Γ1 ⊃ · · · }, where Γ` = ΓU` with Γ0 = Γ, and the group chain
G′ = {Γ′0 ⊃ Γ′1 ⊃ · · · }, where Γ′` = Γ′U ′`

with Γ′0 = Γ′.

Set H = ΓU and H ′ = Γ′U ′ . We will show that the H-restricted typeset TH [X∞,Γ,Φ] and the
H ′-restricted typeset TH′ [X ′∞,Γ′,Φ′] are equal.

Given γ ∈ Γ, for any positive integer m > 0 the group 〈γm〉 is a subgroup of finite index in 〈γ〉.
Thus ξH(γ) = mξH(γm). Thus, τ [ξH(γ)] = τ [ξH(γm)]. Since H has finite index in Γ, for any γ ∈ Γ
there exists m > 0 such that γm ∈ H. Thus we have TH [G] = TH [{H ∩ Γ` | ` ≥ 0}], so it suffices to
consider γ ∈ H, and likewise for γ′ ∈ H ′.

5.2. Invariance of typesets. We next show that typesets for (X∞,Γ,Φ) and (X ′∞,Γ
′,Φ′) are

invariant under isomorphism, and under return equivalence up to the commensurable relation in
Definition 3.12, which yields the proofs of parts (2) and (3b) of Theorem 1.9. The proofs of both
parts start similarly.

Assume that (X∞,Γ,Φ) and (X ′∞,Γ
′,Φ′) are return equivalent, so there exists adapted sets U ⊂ X∞

and U ′ ⊂ X ′∞ and a homeomorphism h : U → U ′ conjugating the action Φ of H on U , with the
action Φ′ of H ′ on U ′. Let sequences {γi | i ≥ 1}, {γ′i | i ≥ 1}, {`i | i ≥ 1} and {`′i | i ≥ 1}
be chosen as in Section 4.2, resulting in the diagram (27) of adapted sets, and the diagram (28) of
group inclusions. Note that as we assume e∞ ∈ U we can choose γ1 to be the identity, and likewise
as e′∞ ∈ U ′ we choose γ′1 to be the identity. By choice we have γi+1 · U`i+1

⊂ γi · U`i and thus

γ−1
`i
γ`i+1

∈ Γ`i for all i ≥ 1. In particular, this implies that γi ∈ H for all i ≥ 1. The analogous

conclusion holds, that γ′i ∈ H ′ for all i ≥ 1.

For notational convenience, set Hi = Γγi·U`i = γiΓ`iγ
−1
i and H ′i = Γ′h(γi·U`i )

for i > 0. Then

Hj ⊂ Hi ⊂ H = ΓU and H ′j ⊂ H ′i ⊂ H ′ = Γ′U ′ for j > i > 0.

Set m = #(Γ/H)! which is the order of the group of permutations on the set {X∞ : U} = Γ/H.
Then for γ ∈ Γ the action of γm on the set {X∞ : U} is the identity. This implies that γm ∈ CΓ

H

the core of H. We have ξH(γm) = mξH(γ) and thus τ [ξH(γm)] = τ [ξH(γ)]. So without loss of
generality it suffices to consider γ ∈ CΓ

H ⊂ H.

The homeomorphism h : U → U ′ induces an isomorphism h∗ : HU → H′U ′ . Thus there exists γ′ ∈ H ′
whose action Φ′U ′(γ

′) on U ′ equals the image φ′γ = h∗(ΦU (γ)). We show that the H ′-restricted type
of γ′ equals the H-restricted type of γ.
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Let V ⊂ W ⊂ X∞ be adapted subsets. The restricted action of ΓW on W is minimal, hence the
translates of V define a clopen partition of W . Let {W : V } denote the set of elements in this
partition, and let |W : V | = #{W : V } denote the cardinality of the set of translates.

The action Φ induces a map ΦWV : ΓW → Aut({W : V }) into the permutations of the set {W : V }.
The kernel of the map ΦWV is denoted by CWV ⊂ ΓV and equals the normal core of ΓV as a subgroup
of ΓW . Thus the index [ΓW : ΓV ] = |W : V |, and [ΓW : CWV ] = #Image(ΦWV (ΓW )).

Now apply this observation to the action of H = ΓU on U . For each j ≥ 1, the action Φ induces a

map Φ̂UU`j
: H → Aut({U : γj · U`j}) which permutes the elements of this partition. The kernel of

the action map Φ̂UU`j
is the subgroup

(40) CHj =
⋂
δ∈H

δΓγj ·U`j δ
−1 =

⋂
δ∈H

(δγj)Γ`j (δγj)
−1 =

⋂
δ∈H

δΓ`jδ
−1 .

Set CHγ,j = 〈γ〉∩CHj , then the subgroup 〈γ〉/CHγ,j ⊂ H/CHj is mapped injectively into Aut({U : U`j}).
Thus, #(〈γ〉/CHγ,j) = #Image(ΦUU`j

(〈γ〉)), and so we have

(41) ξH(γ) = lcm{#(〈γ〉/CHγ,j) | j > 0} = lcm{#Image(Φ̂UU`j
(〈γ〉)) | j > 0} .

We next use the conjugation by h to relate the order of a subgroup of Aut({U : V }) with the order of
a subgroup of Aut({U ′ : V ′}) for appropriate choices of adapted subsets V and V ′. This is analogous
to the idea behind the proof of Lemma 4.3.

From (27), for j ≥ 1 we have

(42) U ′ ⊃ h(γ1 · U`1) ⊃ γ′1 · U ′`′1 ⊃ · · · ⊃ h(γj · U`j ) ⊃ γ′j · U ′`′j ⊃ · · · .

Using that γ′j · U ′`′j ⊂ h(γj · U`j ) we have

(43) γ′jΓ
′
`j (γ

′
j)
−1 = Γ′γ′j ·U ′`′

j

⊂ Γ′h(U`j ) = H ′j ⊂ H ′ ,

and so CH
′

j = CH
′

γ′jΓ
′
`j

(γ′j)
−1 ⊂ CH

′

H′j
. Then

(44) 〈γ′〉 ⊃
(
〈γ′〉 ∩ CH

′

H′j

)
⊃
(
〈γ′〉 ∩ CH

′

j

)
= CH

′

γ′,j .

The action of Φ′U ′(γ
′) on U ′ translates the clopen set h(γj · U`j ) within the clopen set U ′, thus

(45) #(〈γ〉/CHγ,j) = #Image(Φ̂UU`j
(〈γ〉)) = #Image(Φ̂U

′

h(U`j )(〈γ
′〉)) = #(〈γ′〉/(〈γ′〉 ∩ CH

′

H′j
)) .

Using that γ′j · U ′`′j ⊂ h(γj · U`j ) we have

(46) γ′jΓ
′
`j (γ

′
j)
−1 = Γ′γ′j ·U ′`′

j

⊂ Γ′h(U`j ) = H ′j ⊂ H ′ ,

and so CH
′

j = CH
′

γ′jΓ
′
`j

(γ′j)
−1 ⊂ CH

′

H′j
. We then have, using (44),

#(〈γ′〉/CH
′

γ′,j) = #(〈γ′〉/(〈γ′〉 ∩ CH
′

H′j
)) ·#((〈γ′〉 ∩ CH

′

H′j
)/CH

′

γ′,j)(47)

= #(〈γ〉/CHγ,j) ·#((〈γ′〉 ∩ CH
′

H′j
)/(〈γ′〉 ∩ CH

′

j )) .

Thus we have that #(〈γ〉/CHγ,`j ) divides #(〈γ′〉/CH′γ′,j) for all j ≥ 1. It follows that τH [γ] =

τ [ξH(γ)] ≤ τ [ξH
′
(γ′)] = τH′ [γ

′]. Then by reversing these calculations, starting with γ′ chosen
as above, we obtain τH′ [γ

′] ≤ τH [γ] and hence τH [γ] = τH′ [γ
′].

We have thus shown that for each γ ∈ Γ there exists γ′ ∈ Γ′ with the same restricted type. Reversing
this process, we deduce that TH [X∞,Γ,Φ] = TH′ [X ′∞,Γ′,Φ′].
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Proof of part (2) of Theorem 1.9. We must show that for γ ∈ Γ, there is a well-defined Steinitz
order ξ(γ) which is independent of the choice of an adapted basis U for the action. Given two
adapted bases U and U ′ for the action (X,Γ,Φ), then by Theorem 2.7 the algebraic models they
define, (X∞,Γ,Φ) and (X ′∞,Γ,Φ

′), are isomorphic. Thus, in the above we can take U = X∞ and
U ′ = X ′∞ and so H = ΓU = Γ and H ′ = Γ′U ′ = Γ′. Then observe that for ` > 0 the normal

subgroups CH` = C` and CH
′

` = C ′`. It follows that for γ ∈ Γ and γ′ chosen as in the proof of part

(3b) we have ξH(γ) = ξ(γ) and ξH
′
(γ′) = ξ(γ′), and the proof shows that ξ(γ) = ξ(γ′). It follows

that the set of orders {ξ(γ) | γ ∈ Γ} is independent of the choice of an algebraic model for the action,
and so is an invariant of the isomorphism class of the action (X,Γ,Φ). �

Proof of part (3b) of Theorem 1.9. We conclude that the sets TH [X∞,Γ,Φ] and TH′ [X ′∞,Γ′,Φ′] are
independent of the choice of adapted bases, and so have the equality TH [X∞,Γ,Φ] = TH′ [X ′∞,Γ′,Φ′].
This completes the proof of part (3b) of Theorem 1.9. �

5.3. Invariance for special cases. We next deduce Corollary 1.10 and Theorem 1.11.

Proof of Corollary 1.10. Suppose that (X,Γ,Φ) and (X′,Γ′,Φ′) are minimal equicontinuous Cantor
actions, where both Γ and Γ′ are abelian, and the actions are return equivalent. Then every group
Γ` in a subgroup chain GU in Γ is normal. Then for any subgroup H ⊂ Γ, the normal cores satisfy
CH` = C` = Γ`. Thus, in (41), the restricted type ξH(γ) = ξ(γ). Similarly, we have ξH

′
(γ′) = ξ(γ′)

for γ′ ∈ Γ′. Thus, the above proof shows in this case that the typesets T [X,Γ,Φ] and T [X′,Γ′,Φ′]
are equal, which is the claim of Corollary 1.10. �

It is surprising perhaps, that the conclusion of Corollary 1.10 need not hold if one of the groups is
virtually abelian, but not abelian, as illustrated in Example 6.3. The idea of Example 6.3 is that we
add to an abelian group a single element that normalizes it, does not commute with it, andt destroys
the equality CH` = C`. Then the types of elements are no longer equal to their H-restricted types.

Recall that Theorem 1.11 concerns Cantor actions defined by a self-embedding ϕ : Γ→ Γ.

Proof of Theorem 1.11. Recall from [32] that the embedding ϕ defines a group chain Gϕ by setting
Γ0 = Γ and then inductively defining Γ`+1 = ϕ(Γ`) ⊂ Γ` for ` ≥ 0. Then with H = Γk for k > 0
and ` > k,

(48) CH` =
⋂
δ∈H

δ−1Γ`δ =
⋂

δ∈ϕk(Γ)

δ−1ϕ`(Γ)δ = ϕk

(⋂
δ∈Γ

δ−1ϕ`−k(Γ)δ

)
= ϕk(C`−k) ,

and so Γ`/C
H
` = ϕk(Γ`−k/C`−k). Then for γ ∈ H = Γk set γ = ϕ−k(γ), then have

(49) ξH(γ) = lcm{#(〈γ〉/CHγ,`) | ` > k} = lcm{#(〈γ〉/Cγ,`−k) | `− k > 0} = ξ(γ) .

Then as Γ = ϕ−k(H), we have TH [Xϕ,Γ,Φϕ] = T [Xϕ,Γ,Φϕ].

Let (Xϕ,Γ,Φϕ) and (Xϕ′ ,Γ
′,Φϕ′) be Cantor actions associated to renormalizations ϕ : Γ → Γ and

ϕ′ : Γ′ → Γ′. Assume the Cantor actions are return equivalent by a homeomorphism h : U → U ′.
Then choose δ ∈ Γ with δ · e∞ ∈ U and δ′ ∈ Γ′ with δ′ · e′∞ ∈ U ′. Then ϕδ = Φ(δ) ◦ ϕ ◦ Φ(δ−1) is a
renormalization of Γ with group chain Γδ` = δΓ`δ

−1. The group Γδ` stabilizes the translate δ ·U`. As
δ · e∞ ∈ U , there exists k > 0 such that δ · Uk ⊂ U . Repeat this argument for the renormalization
ϕ′ to obtain a δ′ ∈ Γ′ and k′ > 0 such that δ′ · U ′k′ ⊂ U ′.

Then proceed as in the proof in Section 4.2 with H = δΓkδ
−1 and H ′ = δ′Γ′k′(δ

′)−1 to obtain that

T [Xϕ,Γ,Φϕ] = TH [Xϕ,Γ,Φϕ] = TH′ [X ′ϕ′ ,Γ′,Φϕ′ ] = T [X ′ϕ′ ,Γ
′,Φϕ′ ],

as claimed in Theorem 1.11. In particular, this implies that the typeset T [Xϕ,Γ,Φϕ] is an invariant
of the isomorphism class of the renormalizable Cantor action (Xϕ,Γ,Φϕ). �
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6. Basic Examples

6.1. Virtually abelian actions. A group Γ is virtually abelian if it admits a finite-index subgroup
A ⊂ Γ which is abelian. It is straightforward to construct Cantor actions of virtually abelian groups,
and yet they illustrate several basic properties of the type and typeset invariants.

EXAMPLE 6.1. Consider the case n = 1. Choose two disjoint sets of distinct primes,

πf = {q1, q2, . . .} , π∞ = {p1, p2, . . .}
where πf and π∞ can be chosen to be finite or infinite sets, and either πf is infinite, or π∞ is
non-empty. Choose multiplicities n(qi) ≥ 1 for the primes in πf . For each ` > 0, define a subgroup
of Γ = Z by

(50) Γ` = {qn(q1)
1 q

n(q2)
2 · · · qn(q`)

` · p`1p`2 · · · p`` · n | n ∈ Z} .
If π∞ is a finite set, then we use the convention that p` = 1 in (50) when p` is not defined by the listing

of π∞. The completion Γ̂ of Z with respect to this group chain admits a product decomposition into
its Sylow p-subgroups

(51) Γ̂ ∼=
∞∏
i=1

Z/qn(qi)
i Z ·

∏
p∈π∞

Ẑ(p) ,

where Ẑ(p) denotes the p-adic completion of Z. Thus π(ξ(Γ̂)) = πf ∪ π∞. As Z is abelian, X∞ = Γ̂.
By Theorem 1.4, the type of this action classifies it up to return equivalence.

EXAMPLE 6.2. The diagonal actions of Zn for n ≥ 2 are direct extensions of Example 6.1. Make
n choices of prime spectra as in Example 6.1, then take the product action on the individual factors.
The type of the action no longer determines the isomorphism class of the Cantor actions obtained.
The typeset is an invariant under return equivalence by Corollary 1.10, but only in special cases
does the typeset determine the isomorphism class of the action. The interested reader can consult
the works [3, 4, 10, 23, 37].

EXAMPLE 6.3. We next give an example that illustrates that the commensurable relation on
typesets is optimal. We construct the simplest example which shows this, and it is clear that many
more similar constructions are possible.

Let Γ = Z2 o Z2 be the semi-direct product of Z2 with the order 2 group Z2 = Z/2Z, where the
generator σ ∈ Z2 acts on Z2 by permuting the summands. The group Γ′ = Z2 is abelian.

Chose distinct primes p, q > 1. Define the subgroup chain in Γ and Γ′ as follows

(52) Γ` = Γ′` = {(p`k, q`m, id) | (h,m) ∈ Z2} , Γ′` = {(p`k, q`m) | (k,m) ∈ Z2} .

Note that the resulting actions (X∞,Γ,Φ) and (X ′∞,Γ
′,Φ′) are return equivalent.

Observe that C ′` = Γ′`, while Γ` is not normal in Γ, and we have

(53) C` = {((pq)`k, (pq)`m, id) | (h,m) ∈ Z2} ⊂ Γ` .

The actions of Γ and Γ′ have the same type, with characteristic functions χ(p) = χ(q) =∞, and all
other values are zero. However, we have the typesets

(54) T [X∞,Γ,Φ] = {[(pq)∞]} and T [X ′∞,Γ
′,Φ′] = {[p∞], [q∞], [(pq)∞]} ,

so the typeset is not invariant under return equivalence.

This example easily generalizes, where we take Γ′ = Z ⊕ · · · ⊕ Z to be the direct sum of n copies
of Z, and replace Z2 with any non-trivial subgroup ∆ ⊂ Perm(n) of the permutation group on n
elements. Let Γ = Γ′o∆ be the semi-direct product of Γ′ with ∆. Choose the subgroup chain {Γ′`′}
in Γ′ as in Example 6.2 and use the chain {Γ` = Γ′`× id} in Γ. Then the resulting actions are return
equivalent, and one can obtain a wide variety of finite typesets T [X ′∞,Γ

′,Φ′] for the abelian action.
If the action of ∆ is transitive, then we have that T [X∞,Γ,Φ] consists of a single element. When
∆ does not act transitively, there is even more variation on the typesets of the two actions.
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6.2. Nilpotent Cantor actions. The next examples use the actions associated to a renormalization
of a finitely generated group Γ. Many finitely generated nilpotent groups admit a renormalization
[14, 17, 18, 21, 33, 40], which yield many examples of Cantor actions with well-defined typesets by
Theorem 1.11.

The integer Heisenberg group is simplest non-abelian nilpotent group, and is represented as the
upper triangular matrices in GL(n,Z). That is,

(55) Γ =


 1 a c

0 1 b
0 0 1

 | a, b, c ∈ Z

 .

We denote a 3× 3 matrix in Γ by the coordinates as (a, b, c).

EXAMPLE 6.4. For a prime p ≥ 2, define the self-embedding ϕp : Γ → Γ by ϕ(a, b, c) =
(pa, pb, p2c). Then define a group chain in Γ by setting

Γ` = ϕ`p(Γ) = {(p`a, p`b, p2`c) | a, b, c ∈ Z} ,
⋂
`>0

Γ` = {e} .

For ` > 0, the normal core for Γ` is given by C` = core(Γ`) = {(p2`a, p2`b, p2`c) | a, b, c ∈ Z}, and so

the quotient group Q` = Γ/C` ∼= {(a, b, c) | a, b, c ∈ Z/p2`Z}. The profinite group Γ̂∞ is the inverse

limit of the quotient groups Q` so we have Γ̂∞ = {(â, b̂, ĉ) | â, b̂, ĉ ∈ Ẑp2}. Thus, every non-trivial
γ ∈ Γ has type τ [γ] = τ [p∞].

EXAMPLE 6.5. For distinct primes p, q ≥ 2, define the self-embedding ϕp,q : Γ→ Γ by ϕ(a, b, c) =
(pa, qb, pqc). Then define a group chain in Γ by setting

Γ` = ϕ`p,q(Γ) = {(p`a, q`b, (pq)`c) | a, b, c ∈ Z} ,
⋂
`>0

Γ` = {e} .

For ` > 0, the normal core for Γ` is given by C` = core(Γ`) = {((pq)`a, (pq)`b, (pq)`c) | a, b, c ∈ Z},
and so we obtain the quotient group Q` = Γ/C` ∼= {(a, b, c) | a, b, c ∈ Z/(pq)`Z}. The profinite

group Γ̂∞ is the inverse limit of the quotient groups Q` so we have Γ̂∞ = {(â, b̂, ĉ) | â, b̂, ĉ ∈ Ẑpq}.
Thus, every non-trivial γ ∈ Γ̂∞ has type τ [γ] = τ [(pq)∞].

Note that the typeset for the Cantor action defined by the ϕp,q-renormalization equals the typeset
for the abelian action in Example 6.3, but the two actions are clearly not return equivalent.

A second source of examples for Cantor actions of nilpotent groups uses the decomposition of a
profinite nilpotent group into its prime localizations, a technique that is especially adapted to real-
izing a given collection of primes as the spectrum of such an action. Moreover, these actions can be
constructed to have special dynamical properties, as in [29]. The construction is necessarily more
complex than for renormalizable actions, as there must be an infinite sequence of choices to make.
These ideas were developed in [26, Section 9] for actions of SL(n,Z), and the work [30] discusses
this construction for nilpotent groups.

7. Examples: d-regular actions

It is well-known that every minimal equicontinuous action (X,Γ,Φ) can be faithfully represented
as an action of Γ on the boundary of a rooted tree. The study of actions on trees, especially the
actions on d-ary (or d-regular) trees satisfying an additional condition of self-similarity, is an active
topic in Geometric Group Theory, see [39, 25] for surveys. The tree models for Cantor actions are
especially useful for constructing actions which are not topologically free, and thus for illustrating
the commensurable relationship between types. In this section, we study the typesets for Cantor
actions on boundaries of d-regular rooted trees.
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7.1. Actions on trees. A tree T is an infinite graph with the set of vertices V =
⊔
`≥0 V` and the

set of edges E. Each V`, ` ≥ 0 is a finite set, called the set of vertices at level `. Edges in E join
pairs of vertices in consecutive level sets V`+1 and V`, ` ≥ 0, so that a vertex in V`+1 is connected
to a single vertex in V` by a single edge. A tree is rooted if |V0| = 1.

DEFINITION 7.1. A tree T is spherically homogeneous if there is a sequence n = (n1, n2, . . .),
called the spherical index of T , such that for every ` ≥ 1 a vertex in V`−1 is joined by edges to precisely
n` vertices in V`. In addition, T is d-ary, or d-regular, if its spherical index n = (n1, n2, . . .) is
constant, that is, n` = d for some positive integer d.

We assume that n` ≥ 2 for ` ≥ 1. If d = 2, then a 2-ary tree T is also called a binary tree.

Let (X,Γ,Φ) be a minimal equicontinuous action, and let U = {U` ⊂ X | ` > 0} be a choice of an
adapted neighborhood basis. By Corollary 2.4 there is a group chain GU = {Γ` = ΓU` | ` ≥ 0} such
that, associated to GU is a Cantor action (X∞,Γ,Φ) which is isomorphic to (X,Γ,Φ). Here X∞ is
the inverse limit space of finite sets X` = Γ/Γ`, given by (10), see Section 2.3 for details.

We now build a tree model for the action (X,Γ,Φ), using the group chain GU . For ` ≥ 0, let V` = X`,
and join v` ∈ V` and v`+1 ∈ V`+1 by an edge if and only if v`+1 ⊂ v` as cosets. The obtained tree is
spherically homogeneous, with spherical index entries n` = |Γ`−1 : Γ`|, for ` ≥ 1. The boundary ∂T
of T is the collection of all infinite paths in T , that is,

∂T = {(v`)`≥0 ⊂
∏
`≥0

V` | v`+1 and v` are joined by an edge} ∼= X∞,

and the induced action of Γ on ∂T , which we also denote by (X∞,Γ,Φ).

DEFINITION 7.2. A minimal equicontinuous action Cantor action (X,Γ,Φ) is d-regular, or just
regular, if there exists d ≥ 2 such that (X,Γ,Φ) is conjugate to an action of Γ on a rooted d-ary tree.

REMARK 7.3. A Cantor action (X,Γ,Φ) is d-regular if the group chain GU above can be chosen
so that each subgroup index |Γ` : Γ`−1| = d, for some d ≥ 2 and all ` ≥ 0. Nilpotent actions given
by a self-embedding ϕp : Γ→ Γ in Example 6.4 are d-regular with d = p4, and those in Example 6.5
are d-regular with d = p2q2.

7.2. Typesets of regular actions. We show that the typeset of a d-regular action is always finite.

THEOREM 7.4. A minimal equicontinuous Cantor actions (X,Γ,Φ) which is d-regular has finite
typeset T [X∞,Γ,Φ]. More precisely, suppose (X,Γ,Φ) is isomorphic to an action on a d-ary rooted
tree, for some d ≥ 2. Let Pd be the set of distinct prime divisors of the elements in the collection
lcm{2, . . . , d}, and let Nd = |Pd| . Then

|T [X∞,Γ,Φ]| ≤
Nd∑
k=0

(
Nd
k

)
=

Nd∑
k=0

Nd!

(Nd − k)!k!
.(56)

Moreover, each equivalence class τ ∈ T [X∞,Γ,Φ] is represented by a Steinitz number ξ with empty
finite prime spectrum, πf (ξ) = ∅, and so π(ξ) = π∞(ξ).

Proof. Let Nd and Pd be as in the statement of the theorem, and let Ld = lcm{Pd}.

LEMMA 7.5. Let (X∞,Γ,Φ) be an action on a rooted tree. Let γ ∈ Γ, let ξ(γ) be the Steinitz
order of γ defined in Definition 3.7, and let p be such that χξ(p) 6= 0. Then p divides Ld.

Proof. If χξ(p) 6= 0, then there exists the smallest ` ≥ 1 such that p divides the order of the group
〈γ〉/〈γ〉`. The group 〈γ〉/〈γ〉` = 〈γ〉/〈γ〉 ∩ C` is isomorphic to a subgroup of Γ/C`, where C` is the
normal core of Γ`, and acts on the coset space X` by permutations. Let λγ,` be the permutation of
X` induced by γ. Then the order of 〈γ〉/〈γ〉` is equal to the order of λγ,`, and so equal to the least
common multiple of the length of the cycles in λγ,`.



20 STEVEN HURDER AND OLGA LUKINA

Similarly, the order of 〈γ〉/〈γ〉`−1 is equal to the least common multiple of the length of the cycles in
the permutation λγ,`−1 of X`−1 induced by the action of γ. By the choice of ` the order of 〈γ〉/〈γ〉`−1

is not divisible by p. Therefore, for any cycle c`−1 in λγ,`−1, the length |c`−1| is not divisible by p.

Consider the preimage Sc`−1
of the set of elements in c`−1 under the inclusion of cosets X` → X`−1.

Then |Sc`−1
| = d|c`−1|, and γ permutes the elements in Sc`−1

. Let c` be a cycle in the permutation
µc`−1

of Sc`−1
induced by γ. Since the action of γ commutes with coset inclusions, |c`| = α|c`−1| for

some 1 ≤ α ≤ d. Then p must divide such an α for one of the cycles in µc`−1
, for some cycle c`−1 in

λγ,`−1. It follows that p divides Ld. �

Let ξ(γ) be the Steinitz order of γ. Since every p for which 0 < χξ(p) < ∞, divides Ld by Lemma

7.5, then the finite prime spectrum π(ξ(γ)) is finite, and the type τ(γ) has a representative ξ̂, such
that if χξ̂(p) 6= 0 then χξ̂(p) =∞. It follows that two types τ(γ) and τ(γ′) with respective Steinitz

orders ξ and ξ′ are distinct if and only if there exists a prime p such that χξ(p) = 0 and χξ′(p) 6= 0.
The bound in (56), which is the number of distinct collections of prime divisors of Ld, follows.

�

EXAMPLE 7.6. Let d = 2, then L2 = 2 and N2 = 1, and the upper bound on the cardinality of
the typeset for 2-regular actions is 2, with possible types {[1], [2∞]}, where 1 denotes the type of the
identity element.

Let d = 3, then L3 = 6 and N3 = 2. Then the upper bound on the cardinality of the typeset for
3-regular actions is 4, with possible types {[1], [2∞], [3∞], [(2 ∗ 3)∞]}.

Let d = 4, then P4 = {2, 3}, L4 = 6 and N4 = 2. Then the upper bound on the cardinality of the
typeset for 4-regular actions is 4, with possible types {[1], [2∞], [3∞], [(2 ∗ 3)∞]}.

EXAMPLE 7.7. Let p be an odd prime. The Gupta-Sidki p-group GS(p) [39, Section 1.8.1] is a
group acting on the rooted p-ary tree. The group is generated by a cyclic permutation of the set of
p elements σ = (0, 1, . . . , p− 1), and the recursively defined map

τ = (σ, σ−1, 1, . . . , τ).

Every element in the Gupta-Sidki group p-group has finite order, and so T [X∞, GS(p),Φ] = {[1]},
where [1] is the trivial type, i.e. the type of the identity element.

EXAMPLE 7.8. Let d = 2, and let (X∞,Γ,Φ) be a 2-regular Cantor action. Then |T [X∞,Γ,Φ]| ≤
2, and either T [X∞,Γ,Φ] = {[1]}, or T [X∞,Γ,Φ] = {[1], [2∞]}.

An example of an action where the typeset T [X∞,Γ,Φ] = {[1]}, is the action of the Grigorchuk
group, see for instance [25]. This group is an example of a Burnside group, which is an infinite group
where every element has finite order, and so it has trivial type.

For the case T [X∞,Γ,Φ] = {[1], [2∞]} we have two classes of examples. First, the examples of
actions where τ(γ) = [2∞] for any non-trivial γ ∈ Γ, are the actions of iterated monodromy groups
of quadratic polynomials for which the orbit of the critical point is periodic. Such groups are torsion-
free, see [7], and so they do not have any finite order element except the identity in Γ. Such actions
include, but are not limited to, the action of the odometer on the binary tree, and the Basilica group.

Second, the action may have non-trivial element which have trivial type, and also non-trivial elements
with type {[2∞]}. These are given by the actions of the iterated monodromy groups of quadratic
polynomials with strictly pre-periodic orbits of the critical point, see [7] for details.

7.3. Typeset under the commensuration relation. We now show that H-restricted types of a
group element and of its conjugate need not coincide.

Given a tree T and a vertex v ∈ V , denote by Tv the subtree of T with root v.

DEFINITION 7.9. [25] Let T be a spherically homogeneous tree, and let Γ ⊂ Aut(T ). The action
of Γ on ∂T is weakly branch if the following conditions hold:
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(1) The restriction of the action of Γ to each vertex level set Vn, n ≥ 1, is transitive.
(2) For every ` ≥ 1 and every v ∈ V`, there exists g ∈ Γ such that g · v = v, the restriction of

the action of g on the subtree Tv is non-trivial, and the restriction of g to the complement
∂T − ∂Tv is the identity map.

EXAMPLE 7.10. Let T be a spherically homogeneous tree and let Γ ⊂ Aut(T ) be so that the
action of Γ on ∂T is weakly branch. Choose a sequence (v`) of vertices in T , and let Γ` be the
isotropy group (equivalently, the stabilizer) of v` ∈ V`. Then Γ` fixes v` while permuting other
vertices in V`.

Choose n ≥ 1. The normal core Cn of Γn consists of elements of Γn which fix every vertex in Vn.
Let g ∈ Γn be an element given by Definition 7.9 of a weakly branch group, namely, the restriction
of g to Tvn is non-trivial, and g is trivial on the complement of ∂Tvn in ∂T . In particular, this means
that g ∈ Cn. However, since g acts non-trivially on ∂Tvn , then there exists ` > n such that g /∈ C`,
and then the Steinitz order ξ(g) is non-trivial.

Now let δ ∈ Γ be such that δ · vn 6= vn. Then the restriction of δgδ−1 to ∂Tvn is the identity map.
Since the Steinitz order is invariant under conjugation, ξ(δgδ−1) is non-trivial.

Now consider the Γn-restricted Steinitz orders of g and of δgδ−1. The subgroup CΓn
` is the normal

core of Γ` in Γn, so it fixes every vertex in the set V` ∩ Tvn , and it may permute the vertices of

V` which are not in Tvn . In particular, for all ` ≥ n we have δgδ−1 ∈ CΓn
` , and the Γn-restricted

Steinitz order ξΓn(δgδ−1) is trivial. At the same time, ξΓn(g) is non-trivial, since the action of g
permutes the vertices in V` ∩ Tvn for some ` ≥ n. Depending on the group Γ, ξΓn(g) may have the
trivial or non-trivial type; it is straightforward to construct examples of both situations.
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