
RIGID SECONDARY CHARACTERISTIC CLASSES

STEVEN HURDER

Abstract. We construct families of non-trivial universal rigid secondary classes for foliations,

and then discuss their application to prove that foliations are not homotopic. An observation of
Lawson about the non-triviality of the normal Pontrjagin classes of foliations is extended, and then

used to construct new families of examples of foliations with non-trivial rigid secondary classes.

Examples are given of (abstractly constructed) foliations of compact manifolds with homotopic
tangent bundles, but which are not homotopic as foliations.

1. Introduction

A basic problem in foliation theory is whether a given smooth manifold M has at least one foliation
of codimension q. The survey of foliation theory by Lawson [26] discusses this problem at length.
An alternate formulation of this problem is to introduce the space Fq(M) of foliations of M with
codimension q, with the topology induced from the Grassmannian space of subbundles of TM of
codimension q, and consider whether the set Fq(M) is non-empty, and if so, what are the topological
properties of this space.

Lawson discusses various notions of equivalence between foliations of a manifold M in [26, Section 5],
and in particular that of homotopic foliations. Given foliations F0,F1 ∈ Fq(M) we say they lie in
the same smooth path component of Fq(M) if there exists a smooth path Ft ∈ Fq(M) of foliations
between them. That is, the collection {Ft | 0 ≤ t ≤ 1} defines a smooth foliation of codimension
q + 1 on M × [0, 1]. We then say that F0 and F1 are smoothly homotopic.

PROBLEM 1.1. Determine the set π∞
0 (Fq(M)) of smooth path components of Fq(M).

When M has dimension m and q = (m − 1), so the leaves of F are 1-dimensional, then the set
π∞
0 (Fq(M)) equals the set of homotopy classes of 1-dimensional subbundles of TM . On the other

hand, when 1 ≤ q < m−1, the space Fq(M) is far more mysterious, and there is no direct approach
to understanding its set of smooth path components. Also, in the definition of homotopy it becomes
important whether the induced foliation on M × [0, 1] is smooth, or just continuous, as discussed by
Rosenberg and Thurston [32]. In any case, if F0 and F1 are homotopic foliations, then their tangent
and normal bundles are homotopic as subbundles of TM , and Lawson proposed:

PROBLEM 1.2. [26, Problem 3] Show there foliations of a smooth manifold M of codimension q
which have homotopic tangential distributions, but are not foliated homotopic.

In this work, we use the non-trivial rigid secondary classes to distinguish classes in π∞
0 (Fq(M)) for

a variety of compact manifolds M , and give examples of solutions to Problem 1.2.

Recall that the secondary characteristic classes of smooth foliations (see Section 3) distinguish foli-
ations up to some notion of equivalence, such as diffeomorphism or foliated concordance. Examples
of Thurston [33] show that the Godbillon-Vey class for codimension-one foliations can vary non-
trivially along a smooth path of foliations. The examples of Heitsch [13] show that the generalized
Godbillon-Vey classes for codimension q > 1 also vary along smooth paths of foliations. The works of
Heitsch in [11, 12] and Gel’fand, Fĕıgin, and Fuks in [7], showed that this variation can be expressed
in terms of a foliated cohomology space associated to F .
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In contrast, there are a subset of the secondary classes, called rigid classes, that depend only on the
smooth homotopy class of the foliation. These classes are best understood in terms of the classifying
spaces of foliations. Let BΓq denote Haefliger’s classifying space of smooth foliations of codimension
q, as introduced in [9, 10]; see also Lawson [27]. A smooth foliation F on M induces a classifying
map ν̃F : M → BΓq. If F0 and F1 are foliations of M and their classifying maps ν̃F0

and ν̃F1
are

homotopic, then there is a Γq-structure on M × [0, 1] which restricts to the foliations F0 on M ×{0}
and F1 on M × {1}.

Now suppose that {Ft | 0 ≤ t ≤ 1} is a smooth homotopy between F0 and F1, then there is an
induced classifying map ν̃Ft : M × [0, 1] → BΓq+1. Let ×R : BΓq → BΓq+1 be the map defined by
taking the product of a codimension-q foliated manifold with R, where the factor R is considered
to be transverse to the leaves. The classifying map ν̃Ft

is a homotopy between the compositions
×R ◦ ν̃F0

: M → BΓq+1 and ×R ◦ ν̃F1
: M → BΓq+1. The image of ×∗

R : H
∗(BΓq+1;R) → H∗(BΓq;R)

yields invariants of the smooth homotopy class of a foliation.

Let Q be the normal bundle to a foliation F on M , then there is a classifying map νF : M → BO(q),
such that Q is the pull-back via νF of the universal Rq-bundle over BO(q). There is also a classifying
map ν : BΓq → BO(q) for the normal bundle to the Γq-structure on BΓq. Let BΓq denote the

homotopy fiber of the map ν : BΓq → BO(q), then the space BΓq classifies the smooth foliations of

codimension q with framed normal bundles. There is a natural map ×R : BΓq → BΓq+1, where a
framing of the normal bundle to F is extended by the tangent vector ∂/∂t to the R-factor.

Suppose there is a smooth homotopy {Ft | 0 ≤ t ≤ 1} between F0 and F1, and s0 is a framing
of the normal bundle to F0 then parallel transport along the second factor in M × [0, 1] induces a
framing s1 for the normal bundle to F1. Let ν̃siFi

: M → BΓq denote the classifying map for the
foliation (Fi, si) with framed normal bundle, for i = 0, 1. Then as before, there is a homotopy
between the compositions ×R ◦ ν̃s0F0

: M → BΓq+1 and ×R ◦ ν̃s1F1
: M → BΓq+1. It follows that classes

in the image of ×∗
R : H

∗(BΓq+1;R) → H∗(BΓq;R) are invariants of the smooth homotopy class of a
framed foliation (F , s). Introduce the subspaces

Rq = Image{×∗
R : H

∗(BΓq+1;R) → H∗(BΓq;R)}(1)

Rq = Image{×∗
R : H

∗(BΓq+1;R) → H∗(BΓq;R)} .(2)

The discussion above then yields:

THEOREM 1.3. The classes in Rq are invariants of the smooth homotopy class of a foliation;

those in Rq are invariants of the smooth homotopy class of a foliation with framed normal bundle.

The only known non-trivial elements of Rq are given by the Pontrjagin classes to the normal bundles

of foliations. The fiber BΓq is (q+1)-connected [34], so the map ν∗ : H4k(BO(q);R) → H4k(BΓq;R)
is injective for 4k ≤ (q+2), and the Bott Vanishing Theorem [4, 5] states that ν∗ vanishes for 4k > 2q.
Define the subspaces of Rq

P−
q = Image{ν∗ : H∗(BO(q);R) → H∗(BΓq;R) | 4 ≤ ∗ ≤ q + 2}(3)

P+
q = Image{ν∗ : H∗(BO(q);R) → H∗(BΓq;R) | q + 2 < ∗ ≤ 2q} .(4)

Thus, we have P−
q

∼= {H4k(BO(q);R) | 4 ≤ 4k ≤ q + 2}. The non-triviality of classes in Pq is

discussed in Section 2, and only partial results are known. In either case, the classes in P−
q and

P+
q depend only on the homotopy class of the normal bundle to a foliation, so are not useful for

the study of Problem 1.2. On the other hand, non-trivial classes in Rq can be used to construct
solutions to Problem 1.2.

Our first result is the construction of families of linearly independent secondary classes in Rq which
is done using a recursive procedure, and described in detail in Section 3.

THEOREM 1.4. For q = 2k with k ≥ 2, the subspace Rq is non-trivial, and its dimension dim(Rq)
tends to infinity quadratically in k, as k tends to infinity.

The conclusions of Theorem 1.4 are of interest with regards the study of the cohomology of clas-
sifying spaces for foliations, but for applications these results are not particularly useful, as one is
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interested in the set of homotopy classes [M,BΓq] of maps of a connected manifold M into BΓq.
For applications, the following notion plays a fundamental role.

DEFINITION 1.5. Let Y be a connected space. The degree n spherical cohomology of Y is:

(5) Hn
s (Y ;R) = {ω ∈ Hn(Y ;R) | ∃ z ∈ πn(Y ) such that ⟨ω, h(z)⟩ ≠ 0} ,

where h : πn(Y ) → Hn(Y ;Z) is the Hurewicz homomorphism.

In Section 4 we give a collection of techniques for showing that a large subset Rs

q ⊂ Rq, as defined
in (33) and (34), of the linearly independent classes in Theorem 1.4 are linearly independent when
restricted to the image of the Hurewicz map. The main conclusion of this section is then:

THEOREM 1.6. For all even q ≥ 4, the collection ∆(Rs

q) ⊂ H∗
s (BΓq;R) is a non-empty, linearly

independent set of spherically supported rigid secondary classes.

Finally, in Section 5 we give applications of Theorem 1.6 to construct infinite families of foliations
on compact manifolds which are non-homotopic, but have homotopic tangent bundles, thus are
solutions to Problem 1.2.

There is an alternate approach to showing there are non-trivial solutions to Problem 1.2, which uses
the dual homotopy invariants for foliations constructed in [14]. This is the content of [15, Theorem 1]
and [16, Corollary 4.8]. The purpose of this paper is to explain these results, and state them more
precisely, using more elementary arguments without requiring the use of minimal model theory.

2. Pontrjagin classes

Let BΓ+
q denote the classifying space for smooth foliations of codimension q with orientable normal

bundles. There is a classifying map νq : BΓ+
q → BSO(q) of the normal bundle to the universal Γ+

q -

structure on BΓ+
q . In this section, we analyze the induced map ν∗q : H

∗(BSO(q);Q) → H∗(BΓ+
q ;Q).

Recall from the definition of the homotopy fiber BΓq that there is a sequence of fibrations,

(6) SO(q) ∼= ΩBSO(q)
β−→ BΓq

ι−→ BΓ+
q

νq−→ BSO(q) .

Some facts are known about each of these maps β, ι, νq, but in general their study presents many
open problems. The seminal observation was made by Bott around 1970. The cohomology ring
H∗(BO(q);R) ∼= R[p1, . . . , pk] where 2k ≤ q, and pj has graded degree 4j.

THEOREM 2.1. [4] Let F be a codimension-q, C2-foliation, and νQ : M → BO(q) the classifying
map for the normal bundle Q. Then ν∗Q : Hℓ(BO(q);Q) → Hℓ(M ;Q) is the trivial map for ℓ > 2q.

Thurston showed in [34] that the homotopy fiber BΓq of νq is (q+1)-connected. Thus, the universal
map ν∗q : H

ℓ(BO(q);Q) → Hℓ(BΓ+
q ;Q) is injective for degrees up to (q + 2).

The group SO(q) acts on BΓq by twisting the framing of the universal normal bundle to the Γq-

structure on BΓq. This action was studied in the author’s works [15, 16, 18].

First, recall some elementary facts about SO(q) and BSO(q) (see [29, Chapter 15]). The key point

is there is a fibration SO(q) → SO(q + 1)
π−→ Sq for all q ≥ 1. Let χq ∈ Hq(Sq;R) be the integral

class which generates the space.

For q = 1 we have SO(1) is a point, so π : SO(2) → S1 is a homeomorphism. For q = 2 we obtain the
Hopf fibration SO(2) → SO(3) → S2 so that SO(3) ∼= S3, and H3(SO(3);R) is generated by the class
Tχ2 ∧ π∗(χ2). For even q > 2, we have H2q−1(SO(q+1);R) is generated by Tχq ∧ π∗χq. Moreover,
Tχq ∧π∗χq is non-zero on the image of the Hurewicz map h : Z ∼= π2q−1(SO(q)) → H2q−1(SO(q);Z).
For odd q ≥ 3, we have π∗(χq) ∈ Hq(SO(q);R) is non-zero, and is non-zero on the image of the
Hurewicz map h : Z ∼= πq(SO(q)) → Hq(SO(q);Z).
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By the homotopy equivalence ΩBSO(q) ∼= SO(q) we conclude that for n > 1:

• for q = 2n, H∗(BSO(q);Q) ∼= Q[p1, . . . , pn−1, eq]
• for q = 2n+ 1, H∗(BSO(q);Q) ∼= Q[p1, . . . , pn].

Here, pi denotes the Pontrjagin class of degree 4i, and eq is the Euler class of degree q. Each class pi
pairs non-trivially with a class in the image of the Hurewicz map h : π4i(BSO(q)) → H4i(BSO(q);Z).

Let ξ → X be a real vector bundle of dimension q over a space X, and let fξ : X → BSO(q) be the
classifying map for ξ, which is unique up to homotopy. Then pi(ξ) = f∗

ξ (pi) ∈ H4i(X;Q) is the ith

rational Pontrjagin class of ξ, and the total Pontrjagin class of a bundle ξ is given by

(7) p(ξ) = 1 + p1(ξ) + · · ·+ pk(ξ)

where k = ⌊q/2⌋ is the largest integer less than or equal to q/2. Given real vector bundles ξ → X
and η → X, their total rational Pontrjagin classes satisfy the multiplicative formula

(8) p(ξ ⊕ η) = p(ξ) p(η) ∈ H∗(X;Q) .

In particular, for each k ≥ 1 we have the formula

(9) pk(ξ ⊕ η) =
∑

i+j=k

pi(ξ) · pj(η) ,

Next, let X(q) denote the (q + 2)-subcomplex of the standard CW decomposition of BSO(q). The
fiber BΓq of the map νq is (q + 1)-connected, so there exists a section ιq : X(q) → BΓ+

q of νq.

The cohomology ring H∗(X(q);Q) is isomorphic to the polynomial ring H∗(BSO(q);Q) truncated in
degrees greater than q+2. For example, X(2) is just the complex projective space CP2 of dimension
2 whose cohomology ring is H∗(X(2);R) ∼= R[e2]/e32, and H∗(X(3);Q) ∼= Q[p1]/p

2
1. More generally,

for k ≥ 1 we have:

H∗(X(4k);Q) ∼= Q[p1, . . . , pk, e4k]/{∗ > 4k + 2}
H∗(X(4k + 1);Q) ∼= Q[p1, . . . , pk]/{∗ > 4k + 3}
H∗(X(4k + 2);Q) ∼= Q[p1, . . . , pk+1, e4k+2]/{∗ > 4k + 4}
H∗(X(4k + 3);Q) ∼= Q[p1, . . . , pk+1]/{∗ > 4k + 5} .

We now apply these observations to show the non-triviality of ν∗q : H
∗(BSO(q);Q) → H∗(BΓ+

q ;Q)
for the range of degrees q + 2 < ∗ ≤ 2q.

It was remarked by Lawson [26, page 397] that the Bott Vanishing Theorem is optimal, in that the
powers of the first Pontrjagin class pk1 ∈ H4k(BΓ2k;R) are non-vanishing for all k ≥ 1. This follows
from a simple observation. Let q = q1 + · · ·+ qℓ be a partition of q, where each qi ≥ 1. Then there
is a commutative diagram:

BΓ+
q1 × · · · ×BΓ+

qℓ

νq1
×···×νqℓ

��

// BΓ+
q

νq

��
X(q1)× · · · ×X(qℓ) //

ιq1×···×ιqℓ
44iiiiiiiiiiiiiiii

BSO(q1)× · · · ×BSO(qℓ) // BSO(q)

(10)

For q = 2k and each qi = 2, then on the bottom left side we get the product CP2 × · · · × CP2 of k
copies of CP2. By the product formula (8), the pull-back of p1 ∈ H4(BSO(q);Q) is given by

(11) p1(ξ1)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗⊗p1(ξk) ∈ H∗(CP2;Q)⊗ · · · ⊗H∗(CP2;Q) .

In particular, the pull-back of pk1 is non-zero in H4k(CP2×· · ·×CP2;Q), and so by the commutativity
of the diagram (10) we obtain that ν∗q (p

k
1) ∈ H4k(BΓ+

2k;Q) is non-zero.
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The diagram (10) has another useful consequence that we note. Given q1 > 1 let q2 = q3 = · · · =
qℓ+1 = 1, then for q = q1 + ℓ, we obtain the commuting square

BΓ+
q1

νq1

��

// BΓ+
q1+ℓ

νq1+ℓ

��
BSO(q1) // BSO(q1 + ℓ)

(12)

so that injectivity results for the map ν∗q1 imply injectivity for ν∗q1+ℓ for classes in the image of the

restriction map H∗(BSO(q1 + ℓ);Q) → H∗(BSO(q1);Q). In the following we abuse notation and
identify the Pontrjagin classes in the latter space with those in the former space when appropriate.

We now give an extension of the observation by Lawson. Recall that for each 1 < 2i < q, the
class pi ∈ H4i(BSO(q);Q) is supported by a spherical class in the image of the Hurewicz map
h : π4i(BSO(q)) → H4i(BSO(q);Q). In particular, for i ≥ 2 and q = 4i − 2, there exists a map
fi : S4i → X(q) → BΓ+

q such that f∗
i (ν

∗
q pi) ̸= 0, and f∗

i (ν
∗
q pj) = 0 for 0 < j < i.

Given a collection of non-negative integers n⃗ = {n1, . . . , nk} set

p(n⃗) = pn1
1 · · · pnk

k ∈ Hq+2|n⃗|(BSO(q(n⃗));Q)

where q(n⃗) = (4− 2)n1 + · · ·+ (4k − 2)nk and |n⃗| = n1 + · · ·+ nk. Note that q(n⃗) + 2|n⃗| ≤ 2q(n⃗).

Here is the main result of this section.

THEOREM 2.2. For q ≥ 2, define

(13) V(q) = {p(n⃗) | k > 0, q(n⃗) ≤ q} ⊂ H∗(BSO(q);Q) .

Then ν∗qV(q) ⊂ H∗(BΓ+
q ;Q) consists of linearly independent vectors.

Proof. Suppose there exists a non-trivial relation between the elements of ν∗qV(q), then there is some
degree 2 ≤ n ≤ 2q and a non-trivial relation of the form

(14) 0 =

µ∑
i=1

ai · ν∗q (p(n⃗i)) ∈ Hn(BΓ+
q ;Q) , 0 ̸= ai ∈ Q ,

where each n⃗i = {ni,1, . . . , ni,ki
} with q(n⃗i) ≤ q and the degree q(n⃗i) + 2|n⃗i| = n for all 1 ≤ i ≤ µ.

We can assume the indices n⃗i are ordered so that i < j implies ki ≤ kj , and if ki = kj then
ni,ki

≤ nj,kj
. The proof is by induction on the lexicographical ordering on the vectors n⃗i appearing

in the sum (14). Define the maximal index kmax = max{ki | 1 ≤ i ≤ µ}.

Let kmax = 1, then by assumption that (14) is a homogeneous sum, it reduces to a1 · ν∗q (p
n1
1 ) = 0

where 4n1 ≤ 2q. Recall that ι2 : CP2 → BΓ+
2 satisfies 0 ̸= ι∗2(p1) ∈ H4(BΓ+

2 ;Q) so then by (11) we
have ×n1ι2 : ×n1 CP → BΓ+

q satisfies (×n1ι2)
∗(ν∗q p

nk
1 ) ̸= 0 hence a1 = 0, a contradiction.

Now we prove the inductive step. Assume that for k0 > 1 there are no non-trivial relations of the
form (14) for kmax < k0, and if kmax = k0 then there are no non-trivial relations for indices with
ni,k0

< nµ,k0
.

Consider a relation (14) with kmax = k0. Let µ0 ≤ µ be such that ki = k0 for µ0 ≤ i ≤ µ and
ki < k0 for i < µ0. Divide the sum in (14) into three terms:

P1 =

µ0−1∑
i=1

ai · p
ni,1

i · · · pni,ki

ki
, where ki < k0

P2 =

µ1∑
i=µ0

ai · p
ni,1

1 · · · pni,k0

k0
, where ni,k0

< nµ1,k0

P3 =

µ∑
i=µ1

ai · p
ni,1

1 · · · pni,k0−1

k0−1 , where ni,k0
= nµ,k0

for µ1 ≤ i ≤ µ .
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(15) 0 = ν∗q

(
µ∑

i=1

ai · p(n⃗i)

)
= ν∗qP1 + ν∗qP2 + ν∗q

(
P3 · p

nµ,k0

k0

)
We now construct a “test cycle” which we evaluate the expression (15) against.

Let X = Y × {S4k0 × · · · × S4k0} with nµ,k0
factors, and where

(16) Y = {CP2 × · · · × CP2} × {S8 × · · · × S8} × · · · × {S4(k0−1) × · · · × S4(k0−1)}

and the number of factors in (16) of CP2 is nµ,1 and the number of factors of S4kj is nµ,j for 2 ≤ j ≤
k0 − 1. Then by the choice of the indices in n⃗µ there exists a product of the map ι2 : CP2 → BΓ+

2

and the maps {fi : S4i → BΓ+
4i−2 | 1 | 2 ≤ i ≤ µ} giving a product map FY × Fµ : Y × S4k0 → BΓq

such that F ∗(ν∗qP1) = 0 as the pull-backs of the Pontrjagin classes in the factor S4k0 vanish, and the
restriction to the factor Y vanishes for degree reasons. Also, F ∗(ν∗qP2) = 0 as the pull-backs of the
Pontrjagin classes to the restriction to the factor Y vanishes for degree reasons. Then calculate

F ∗(ν∗q
(
P3 · p

nµ,k0

k0

)
) = F ∗

Y (ν
∗
qP3) F

∗
µ(ν

∗
q (p

nµ,k0

k0
)) .

The term F ∗
µ(ν

∗
q (p

nµ,k0

k0
)) ̸= 0 by the choice of the map Fµ. Thus, when we evaluate the class in (15)

against the cycle defined by FY × Fµ we obtain 0 = F ∗
Y (ν

∗
qP3). But by the induction hypothesis,

this implies the coefficients in P3 must vanish, contrary to assumption. □

3. Rigid Secondary classes

The survey by Lawson [27] gives a nice overview of the multiple approaches in the literature to
defining the secondary classes of smooth foliations, by Bernshtein and Rozenfeld [2, 3], Bott and
Haefliger [6], and Kamber and Tondeur [23, 24]. The author’s survey [19] discusses the various
approaches to showing that these invariants are non-trivial for various constructions of foliations. In
this section, we give the construction of examples of foliated manifolds with non-trivial secondary
classes, especially the rigid secondary classes mentioned in Section 1, using the results on the non-
triviality of the Pontrjagin classes in Section 2.

The normal bundle Q to a smooth-foliation F , when restricted to a leaf Lx of F , has a natural
flat connection ∇Lx defined by the leafwise parallel transport on Q restricted to Lx. An adapted
connection ∇F on Q → M is a connection whose restrictions to leaves equals this natural flat
connection. An adapted connection need not be flat over M . The connection data provided by ∇F

can be thought of as a “linearization” of the normal structure to F along the leaves. Thus, ∇F

captures aspects of the data provided by the Haefliger groupoid Γr
F of F ; it is a “partial linearization”

of the nonlinear data which defines the homotopy type of BΓF .

Denote by I(gl(q,R)) the graded ring of adjoint-invariant polynomials on the Lie algebra gl(q,R)
of the real general linear group GL(q,R). As a ring, I(gl(q,R)) ∼= R[c1, c2, . . . , cq] is a polynomial
algebra on q generators, where the ith-Chern polynomial ci has graded degree 2i. Associate to each
generator ci the closed 2i-form ci(Ω(∇F )) ∈ Ω2i

deR(M), so that one obtains the Chern homomorphism
∆F : R[c1, c2, . . . , cq] → Ωev

deR(M). The Bott Vanishing Theorem holds at the level of the differential
forms representing the characteristic classes of the normal bundle to a C2-foliation, which is the
basis for the construction of the secondary characteristic classes for C2-foliations.

THEOREM 3.1 (Strong Bott Vanishing [6]). Let F be a codimension-q, C2-foliation, and ∇F an
adapted connected on the normal bundle Q. Then for any polynomial cJ ∈ R[c1, c2, . . . , cq] of graded
degree deg(cJ) > 2q, the Chern form cJ(Ω(∇F )) is identically zero.

Thus, there is an induced map of DGA’s (differential graded algebras):

(17) ∆F : R[c1, c2, . . . , cq]2q −→ Ωev
deR(M) ,

where R[c1, c2, . . . , cq]2q denotes the polynomial ring truncated in degrees greater than 2q.

Now assume that the normal bundle to the foliation F on M is trivial. The choice of a framing
of Q, denoted by s, induces an isomorphism Q ∼= M × Rq. Let ∇s denoted the connection for the
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trivial bundle, then the curvature forms of ∇s vanish identically. It follows that the transgression
form yi = Tci(∇F ,∇s) ∈ Ω2i−1

deR (M) of ci satisfies the equation dyi = ci(Ω(∇F )). Consider the DGA

(18) Wq = Λ(y1, y2, . . . , yq)⊗ R[c1, c2, . . . , cq]2q ,

where the differential is defined by d(yi ⊗ 1) = 1⊗ ci.

The data (F , s,∇F ) determine a map ∆F,s : Wq → Ω∗(M) of DGA’s. The induced map in coho-

mology, ∆F,s : H∗(Wq) → H∗(M), depends only on the homotopy class of the framing s and the
framed concordance class of F , and moreover, this construction is functorial.

THEOREM 3.2. There is a well-defined universal characteristic map

(19) ∆: H∗(Wq) → H∗(BΓq;R)

Given a codimension-q foliation F with framing s, the classifying map ∆F,s : H∗(Wq) → H∗(M ;R)
factors through the universal map:

H∗(BΓq;R)

?�
�
�3

h∗
F

∆

∆F,s

H∗(Wq) - H∗(M ;R)

We recall the Vey basis for H∗(Wq), as first described in [8]:

PROPOSITION 3.3. The following set of monomials in Wq form a basis for H∗(Wq):

yIcJ such that I = (i1, . . . , is) with 1 ≤ i1 < · · · < is ≤ q(20)

J = (j1, . . . , jℓ) with j1 ≤ · · · ≤ jℓ , j1 + · · · jℓ ≤ q

i1 + j1 + · · · jℓ ≥ q + 1 , i1 ≤ j1 .

We also briefly recall the construction of the secondary classes for a smooth foliation F of a manifold
M , with no assumption that its normal bundle is trivial. In place of the flat connection∇s associated
to a framing of Q, let ∇g be the connection on Q associated to a Riemannian metric on Q. Then the
closed forms c2i(Ω(∇g)) ∈ Ω4i

deR(M) need not vanish, and in fact their cohomology classes define the

Pontrjagin forms for the normal bundle. On the other hand, the forms c2i+1(Ω(∇g)) ∈ Ω4i+2
deR (M)

vanish by the skew-symmetry of the curvature matrix Ω(∇g). Thus, we can repeat the above
construction of a characteristic map for the subcomplex Wq of Wq defined by

(21) WOq = Λ(y1, y3, . . . , yq′)⊗ R[c1, c2, . . . , cq]2q ,

where q′ ≤ q is the largest odd integer with q′ ≤ q.

The data (F ,∇g) determine a map ∆F : WOq → Ω∗(M) of DGA’s. The induced map in cohomology,

∆F : H∗(WOq) → H∗(M), depends only on the framed concordance class of F , but not on the choice
of the Riemannian metric on Q. It follows that there is a well-defined universal characteristic map
∆: H∗(WOq) → H∗(BΓq;R).

The secondary characteristic classes of foliations are defined as those in the image of the maps ∆
for degree at least 2q + 1, in either the framed or unframed cases.

DEFINITION 3.4. The rigid secondary classes for foliations with framed normal bundles are
those in the image of the restriction map H∗(Wq+1) → H∗(Wq). In terms of the Vey basis, the class
hI ∧ cJ is said to be rigid if i1 + j1 + · · · jℓ ≥ q + 2.

We next give the construction of examples with non-trivial rigid secondary classes. Let X be a
compact manifold and fQ : X → BSO(q) classify a bundle Q → X. Suppose there exists a lifting
of fQ to νf : X → BΓ+

q , then νQ determines a Γ+
q -structure on X with normal bundle Q. Let

M = Fr(Q) → X denote the SO(q)-bundle of orthogonal frames for Q, so that we obtain a fibration
SO(q) → M → X. The lift of the Γ+

q -structure on X to M then has a canonical framing s, so
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is classified by a map νsf : M → BΓq. Then there is a commutative diagram, where each vertical

sequence is a principal SO(q)-fibration:

SO(q)

ι

��

id // SO(q)

ι

��

id // SO(q)

ι

��
M

π

��

fs
Q // BΓq

��

ν̃ // ESO(q)

π

��
X

fQ // BΓ+
q

ν // BSO(q)

.(22)

For q = 2k + 1, the Chern-Weil model for the cohomology of the acyclic space ESO(q) is given by

(23) Λ(p̂1, . . . , p̂k)⊗ R[p1, . . . , pk] , d(p̂i ⊗ 1) = 1⊗ pi ,

For q even, one modifies this complex by adding the Euler class eq and its transgression class êq
with d(êq⊗1) = 1⊗eq. By the naturality of the Chern-Weil construction, the pull-back of the DGA
model in (23) to the middle fibration is the DGA subalgebra of the DGA model in (18),

(24) Λ(y2, . . . , y2k)⊗ R[c2, . . . , c2k]2q ⊂ Λ(y1, y2, . . . , yq)⊗ R[c1, c2, . . . , cq]2q = Wq .

Finally, the pull-back of the forms p̂i to the left hand fibration gives the forms ∆F,s(y2i) ∈ Ω4i−1(M),
and the pul-back of the forms pi gives ν∗f (pi) ∈ Ω4i(M). We use this to calculate the image of the

characteristic map ∆F,s : H∗(Wq) → H∗(M ;R) for various choices of spaces X and lifted maps fs
Q.

The first construction of examples with non-trivial rigid secondary classes is for even codimension
q = 2k ≥ 4. Let CP∞ denote the infinite projective space, which serves as a model for BSO(2), and
let ξ → CP∞ be the canonical R2-bundle. The Euler class e(ξ) ∈ H2(BSO(2);Z) is a generator of
the ring H∗(BSO(2);Z), and the first Pontrjagin class p1(ξ) = e(ξ)2 is a generator of H4(CP2;Z).
The 4-skeleton of a CW decomposition of CP∞ is the complex projective space CP2, and we also
denote by ξ → CP2 the restriction of the canonical bundle.

Let Xk = CP2 × · · · × CP2 the k-fold product, and let fQ : Xk → BSO(2k) be the product of the
inclusions followed by the map BSO(2)× · · · ×BSO(2) ⊂ BSO(2k). That is, fQ classifies the direct
sum Ξk = ξ1 ⊕ · · · ⊕ ξk, where ξi → Xk denotes the canonical bundle over the i-th factor in Xk.
Then the product formula for the rational Pontrjagin classes yields

pℓ(Ξk) =
∑

pi1(ξ1) · · · pin(ξk)

=
∑

i1<···<iℓ

p1(ξi1) · · · p1(ξiℓ) ∈ H4ℓ(Xk;Q)(25)

where we use that all products of Pontrjagin classes in H∗(Xk;Q) vanish. In particular, (25) implies
that for ℓ > 1 the class pℓ(Ξk) is a rational multiple of p1(Ξk)

ℓ.

The fiber BΓ2 is 3-connected, so there is a lifting ι̃ : CP2 → BΓ+
2 of the inclusion map CP2 ⊂ BSO(2).

Let f̃Q : Xk → BΓ+
2k be lifting of the map fQ obtained by taking products of the map ι̃.

Form the pull-back bundle SO(2k) → Mk → Xk as in the diagram (22), then the canonical framing

of the pull-back of Q to Mk determines classifying map f̃s
Q : Mk → BΓ2k. We calculate the image of

the classifying map ∆f̃s
Q : H∗(W2k) → H∗(Mk;R) using the functoriality of Chern-Weil construction.

Let {x1, . . . , xk} ⊂ H2(Xk,R) be the generators corresponding to the factors of Xk, then in notation
as above we have p1(ξi) = x2

i , so f∗
Q(p1) = x2

1 + · · ·+ x2
k.

Consider then the E2-term of the spectral sequence for the fibration SO(2k) → Mk → Xk,

(26) Er,s
2 = Hr(Xk;H

s(SO(2k);R)) ∼= Hr(Xk;R)⊗Hs(SO(2k);R) .

By diagram (22) and the functoriality of the construction of the spectral sequence, the map on

E2-terms induced by ∆f̃s
Q is the identity on the fiber cohomology, and induced by f∗

Q on the base
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cohomology. That is, ui = ∆f̃s
Q(y2i) is the primitive generator H4i−1(SO(2k);R), and so the E2-

differential satisfies d2(1⊗ ui) = f∗
Q(pi)⊗ 1. A straightforward calculation using (25) then yields:

PROPOSITION 3.5. For I = (2 = 2i1 < 2i2 < · · · 2iℓ) the cohomology classes

(27) ∆f̃s
Q(yI ∧ ck2) = f∗

Q(p1)
k ⊗ ui1 ∧ · · ·uiℓ ∈ H∗(Mk;R)

are linearly independent.

The second construction of examples with non-trivial rigid secondary classes is for even codimension
q = 4k − 2 ≥ 6. These classes are independent of the classes in Proposition 3.5.

It was noted in the previous section that for 1 ≤ i < q/2, the Pontrjagin class pi pairs non-
trivially with a class in the image of the Hurewicz map h : π4i(BSO(q)) → H4i(BSO(q);Z). Let
gQ : S4k → BSO(q) be such that g∗Q(pk) ̸= 0. Note that g∗Q(pi) = 0 for i ̸= k, and in particular

g∗Q(p1) = 0.

The fiberBΓq is (q+1)-connected, so there is a lifting g̃Q : S4k → BΓ+
q of the map gQ : S4k → BSO(q).

Let SO(q) → Nk → S4k be the pull-back of the principle SO(q)-bundle over BSO(q), then g̃Q
determines a Γ+

q -structure on Nk with a canonical framing of its normal bundle, hence is classified

by a map g̃sQ : Nk → BΓq that is a lift of g̃Q.

Again, calculate the image of the classifying map ∆g̃s
Q : H∗(Wq) → H∗(Nk;R) using the functoriality

of Chern-Weil construction. Let χ4k ∈ H4k(S4k;Z) be a generator, then g̃∗Q(pk) = ck · χ4k for some

constant ck ̸= 0. For the E2-term of the spectral sequence for the fibration SO(q) → Nk → S4k,

(28) Er,s
2 = Hr(S4k;Hs(SO(q);R)) ∼= Hr(S4k;R)⊗Hs(SO(q);R) ,

By diagram (22) and the functoriality of the construction of the spectral sequence, the map on

E2-terms induced by ∆g̃s
Q is the identity on the fiber cohomology, and induced by g∗Q on the base

cohomology. That is, ui = ∆g̃s
Q(y2i) is the primitive generator H4i−1(SO(q);R), and so the E2-

differential satisfies d2(1⊗ ui) = g∗Q(pi)⊗ 1. A straightforward calculation using (25) then yields:

PROPOSITION 3.6. For q = 4k − 2 ≥ 6 and I = (2k = 2i1 < 2i2 < · · · 2iℓ) the classes

(29) ∆g̃s
Q(yI ∧ c2k) = g∗Q(pk)⊗ ui1 ∧ · · ·uiℓ ∈ H∗(Nk;R)

are linearly independent.

It follows that the classes ∆(yI ∧ c2k) ∈ H∗(BΓq;R) are linearly independent. Also, g∗Q(p1) = 0

implies that ∆g̃s
Q(y2 ∧ c2k−1

2 ) = 0, so these classes are also independent of ∆(y2 ∧ c2k−1
2 ).

The third construction is based on the permanence principle, as it was called by Lazarov in [28] and
extended by the author in [15]. In this construction, we use the SO(q)-action fiberwise on BΓq to

extend the non-triviality of one secondary class, to a family of non-trivial classes for BΓq. We recall
a simple version of this construction.

Let fI,J : Sn → BΓq be a map such that f∗
I,J(yIcJ) ∈ Hn(Sn;R) is non-vanishing, where yIcJ is an

element of the Vey basis for H∗(Wq).

The normal bundle f !
I,JQ to the induced Γq-structure on Sn has a framing sI,J , which induces a

framing sP on the pull-back bundle QP → P , for the product space P = SO(q)×Sn. Let s′P denote
the framing of QP obtained by twisting sP over the factor SO(q) using the canonical action on
frames. Then by [15, Theorem 3.3] we have:

PROPOSITION 3.7. For I = (i1 < i2 < . . . < iℓ), K = (2k1 < 2k2 < · · · < 2kµ) with iℓ < 2k1,
the cohomology classes

(30) ∆f
s′P
I,J (yI ∧ yK ∧ cJ) ∈ H∗(P ;R)

are linearly independent.
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4. Spherical classes

Given a foliation F of codimension q on a paracompact manifold M , there is a classifying map
νF : M → BΓq whose homotopy class is uniquely defined by F . Conversely, a map f : M → BΓq

determines a Γq-structure on M , which is a foliated microbundle over M (see [9, 27]). This motivates
the interest in the set [M,BΓq] of homotopy classes of maps from M to BΓq, and similarly for the

set [M,BΓq] which classifies Γq-structures on M with framed normal bundles. The following result

from [15, proof of Theorem 4.5] is useful for the study of [M,BΓq].

PROPOSITION 4.1. Let M be a compact oriented n-manifold. Then there is an exact sequence
of sets

(31) [ΣM ′, BΓq]
β′

−→ πn(BΓq)
ρ′

−→ [M,BΓq] ,

where the image of β′ is contained in the torsion subgroup of πn(BΓq).

Here, the space M ′ is the (n-1)-skeleton for a CW decomposition of M , ρ : M → M/M ′ ∼= Sn is the
map collapsing M ′ to a point, ρ′ is the induced map, and β′ is the map induced by the connecting
map β : Sn → ΣM ′ for the Barratt-Puppe sequence of the attaching map α : Sn−1 → M ′. See the
details of the proof of [15, Theorem 4.5] for further details. Observe that a real valued invariant for
πn(BΓq) must vanish on the image of β′, hence any element of πn(BΓq) which is non-trivial for the

invariant determines a non-trivial Γq-structure on M .

The Rational Hurewicz Theorem is the basic result for the study of spherical cohomology:

THEOREM 4.2 (see [25]). Let Y be a simply connected space with πk(Y )⊗Q = 0 for 0 ≤ k ≤ r.
Then the Hurewicz map induces an isomorphism

(32) h⊗Q : πk(Y )⊗Q −→ Hk(Y ;Q)

for 1 ≤ k ≤ 2r, and a surjection for k = 2r + 1.

We next use Theorem 4.2 to show that Hn
s (BΓq;R) is non-trivial for many degrees n > 2q.

Let q = 2k ≥ 4 andMk be the space constructed in the proof of Proposition 3.5, and f̃s
Q : Mk → BΓ2k

the classifying map. Then the rigid class ∆f̃s
Q(y2 ∧ ck2) ∈ H2+3(Mk;R) is non-trivial. Now let Mk

denote the quotient space of Mk by its (q+1)-skeleton, for some CW decomposition of Mk. As BΓq

is (q+1)-connected, the map f̃s
Q descends to a map f

s

Q : Mk → BΓq such that 0 ̸= ∆f
s
Q(y2 ∧ ck2) ∈

H2q+3(Mk;R). The map h : π4k+3(Mk) ⊗ Q −→ H4k+3(Mk;Q) is onto by Theorem 4.2, so there

exists a map ξk : S4k+3 → Mk such that ⟨∆f
s
Q(y2 ∧ ck2), h[ξk]⟩ ≠ 0. Thus the class ∆(y2 ∧ ck2) ∈

Hq+3(BΓq;R) pairs non-trivially with the spherical cycle h[f
s

Q ◦ ξk] ∈ Hq+3(BΓq;Z).

Next, let q = 4k − 2 ≥ 6 and let Nk be the space constructed in the proof of Proposition 3.6,
and g̃sQ : Nk → BΓq the classifying map. Then the rigid class ∆g̃s

Q(y2k ∧ c2k) ∈ H2q+3(Mk;R) is

non-trivial. Now proceed as for the case q = 2k above. Let Nk denote the quotient space of Nk

by its (q+1)-skeleton, for some CW decomposition of Nk. As BΓq is (q+1)-connected, the map

g̃sQ descends to a map gsQ : Nk → BΓq such that 0 ̸= ∆gs
Q(y2k ∧ c2k) ∈ H2q+3(Nk;R). The map

h : π4k+3(Nk)⊗Q −→ H4k+3(Nk;Q) is onto by Theorem 4.2, so there exists a map ηk : S4k+3 → Nk

such that ⟨∆gs
Q(y2k∧c2k), h[ηk]⟩ ≠ 0. Thus the class ∆(y2k∧c2k) ∈ Hq+3(BΓq;R) pairs non-trivially

with the spherical cycle h[gsQ ◦ ηk] ∈ Hq+3(BΓq;Z).

Finally, we give a form of the permanence principle for spherically supported secondary classes.
Suppose there is map f : Sn → BΓq such that f∗(∆(yIcJ)) ̸= 0 for yIcJ an element of the Vey

basis of H∗(Wq), where I = (i1 < · · · < iℓ). Apply Theorem 3.7 for f : Sn → BΓq to obtain the

SO(q)-twisted classifying map τ : P = SO(q)× Sn → BΓq. Then for r with iℓ < 2r ≤ q + 2,

0 ̸= τ∗(∆(yI ∧ y2r ∧ cJ)) ∈ H∗(P ;R) ,
by Proposition 3.7 in [15]. Moreover, the proof shows that for the isomorphism H∗(P ;R) ∼=
H∗(SO(q);R) ⊗ H∗(Sn;R), we have τ∗(∆(yI ∧ y2r ∧ cJ)) = ±Tpr ⊗ f∗(∆(yIcJ)). Choose a map
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gr : S4r−1 → SO(q) such that g∗r (Tpr) ̸= 0. Then for the composition

S4r−1 × Sn gr×id−→ SO(q)× Sn τ−→ BΓq

we have {(gr × id) ◦ τ}∗(∆(yI ∧ y2r ∧ cJ)) ̸= 0. The assumption that 2r ≤ q + 2 implies that the
image of (gr × id) ◦ ρ(S4r−1 × pt) ⊂ BΓq is contractible. Let

Y = (S4r−1 × Sn)/(S4r−1 × pt) ∼= Sn+4r−1 ∨ Sn ,

then (gr × id) ◦ τ descends to a map ξ : Y → BΓq such that ξ∗(∆(yI ∧ y2r ∧ cJ)) ̸= 0. As this class

must be supported on the first term Sn+4r−1, we have that ∆(yI ∧ y2r ∧ cJ) ∈ Hn+4r−1
s (BΓq;R).

Introduce the following collections of secondary classes:

q = 4k ≥ 4, Rs

q = {y2 ∧ yK ∧ ck2 | K = (2k1 < · · · < 2kℓ), 1 < k1, kℓ ≤ k}(33)

q = 4k − 2 ≥ 6, Rs

q = {y2k ∧ c2k, y2 ∧ yK ∧ ck2 | K = (2k1 < · · · < 2kℓ), 1 < k1, kℓ ≤ k} .(34)

Apply the above procedure iteratively to the class [f
s

Q◦ξk] ∈ πq+3(BΓq) constructed above to obtain
the proof of Theorem 1.6.

Proposition 4.1 can also can be applied for the dual homotopy invariants of foliations defined in [14],
to obtain “rigid homotopy classes” in π∗(BΓq) for degrees tending to infinity, as was shown in [16].

5. Applications

In this section, we apply the conclusions of Theorem 1.6 to construct solutions of Problem 1.2.
The results of Theorem 1.6 are also applied in [21] to show that the homotopy groups π∗(BΓq)
contain divisible subgroups, and applied in [20] to construct group actions with non-trivial secondary
invariants that are invariant under deformations of the group actions.

Let M be a compact n-manifold without boundary. Suppose that the tangent bundle admits a
decomposition TM = F ⊕Q classified by a map (τF , νQ) : M → BO(n−q)×BO(q). Given a lifting
ν̃Q : M → BΓq of the map νQ, Thurston proved in [35] that there is a codimension q foliation F of
M whose normal bundle is homotopic with Q, and its classifying map is homotopic with ν̃Q. We
call this the “Thurston Realization Theorem”. An alternate proof of it was given by Mǐsačev and
Èliašberg in [30, 31]. Both approaches to the proof are “non-constructive”, in that the foliation is
shown to exist, but there is no information obtained about the geometric properties of the foliation.

We apply the Thurston Realization Theorem for the case when Q is a trivial bundle, so the classifying
map restricts to a map ν̃Q : M → BΓq. There are two cases to consider, when q = 2k ≥ 4 and
q = 4k − 2 ≥ 6. We illustrate the construction in the lowest codimension for each case.

Let q = 4 = 2k, then Rs

4 = {y2c22} contains one class of degree n = 2q+3 = 11. Let M be a compact
orientable 11-manifold without boundary. We assume in addition that TM contains a trivial rank-4
bundle ϵ4 ⊂ TM . For example, let M = M0 × T4 where T4 is the 4-torus, and M0 is any compact
oriented 7-manifold. Another interesting example is M = S10×S1, which is a parallelizable manifold
and in particular contains a trivial rank-4 subbundle.

Let M2 be the space constructed in the proof of Proposition 3.5, and f̃s
Q : M2 → BΓ4 the classifying

map. Let f
s

Q : M2 → BΓ4 such that 0 ̸= ∆f
s
Q(y2∧ c22) ∈ H11(M2;R) be the map constructed above,

and ξ2 : S11 → M2 the map such that the class ∆(y2 ∧ c22) ∈ H11(BΓ4;R) pairs non-trivially with

the spherical cycle h[f
s

Q ◦ ξ2] ∈ H11(BΓ4;Z).

Let M be the given manifold, and ρ′ : π11(BΓ4) → [M,BΓ4] the map constructed in Proposition 4.1,
which was defined using the map β : M → S11 obtained by collapsing onto the top cell ofM . For each
integer ℓ ∈ Z, let fℓ : S11 → BΓ4 be a map representing the homotopy class ℓ · [fs

Q ◦ ξ2] ∈ π11(BΓ4).
Then the values

(35) ⟨(fℓ ◦ β)∗(∆(y2 ∧ c22)), [M ]⟩ = ℓ · ⟨∆(y2 ∧ c22), h[f
s

Q ◦ ξ2]⟩ ≠ 0
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are distinct for all ℓ, and so for ℓ ̸= ℓ′ the classifying maps fℓ ◦ β : M → BΓ4 are pairwise non-
homotopic. Let Fℓ be a codimension 4 foliation on M constructed using the Thurston Realization
Theorem, then Fℓ and Fℓ′ are not homotopic foliations for ℓ ̸= ℓ′. On the other hand, the foliations
Fℓ on the fixed manifold M have homotopic normal bundles, and so homotopic tangent bundles.

Next consider the case when q = 6 = 4k − 2, then Rs

6 = {y2c32, y4c4, y2y4c32} where the first two
classes have degree n = 2q + 3 = 15, and the third has degree n = 2q + 10 = 22. First, let M
be a compact orientable 15-manifold without boundary, such that TM contains a trivial rank-6
bundle. In this particular case, we can take M = S15 which by the results of James [22] contains
a trivial subbundle of rank 8, hence a trivial rank 6 subbundle. On the other hand, the celebrated
work of Adams [1] shows that this is the unique case for which our results apply. Alternately, let
M = S14 × S1 for example, which is a parallelizable manifold. There are many further possibilities.

By the results of Section 4, there exists f = f
s

Q ◦ ξ2 : S15 → BΓ6 and g = gsQ ◦ η2 : S15 → BΓ6 with

(36) ⟨f∗(y2c
3
2), [M ]⟩ ≠ 0; ⟨g∗(y2c32), [M ]⟩ = 0; ⟨g∗(y4c4), [M ]⟩ ≠ 0 ,

so in particular their homotopy classes {[f ], [g]} ⊂ π15(BΓ6)⊗ R are linearly independent.

For each pair of integers (ℓ1, ℓ2) ∈ Z2, let fℓ1,ℓ2 : S15 → BΓ6 be a map representing the homotopy

class ℓ1 · [f ] + ℓ2 · [g] ∈ π15(BΓ6). Let M be the given manifold of dimension 15 with a trivial
subbundle ϵ6 ⊂ TM , and let β : M → S15 be the map obtained by collapsing onto the top cell of M .
Then the classifying maps fℓ1,ℓ2 ◦ β : M → BΓ6 are pairwise non-homotopic, as they have distinct
rigid secondary classes. Let Fℓ1,ℓ2 be a codimension 6 foliation on M constructed using the Thurston
Realization Theorem, then Fℓ1,ℓ2 and Fℓ′1,ℓ

′
2
are not homotopic foliations for (ℓ1, ℓ2) ̸= (ℓ12

′, ℓ′2). On
the other hand, the foliations Fℓ1,ℓ2 on the fixed manifold M have homotopic normal bundles, and
so have homotopic tangent bundles.

Again, for codimension q = 6, the class ∆(y2y4c
3
2) ∈ H22(BΓ6;R) is spherically supported, so we can

repeat the procedure as above to obtain an infinite family {Fℓ | ℓ ∈ Z} of codimension 6 foliations
on a manifold M of dimension 22, which are pairwise non-homotopic, but have homotopic tangent
bundles.

For all even codimensions q ≥ 8, we can repeat the above methods to obtain infinite families of
foliations on compact manifolds M of dimensions n = 2q + 3, 2q + 10, . . . according to the degrees
of the elements in Rs

q, such that the foliations are pairwise non-homotopic, but have homotopic
tangent bundles.
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