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2 STEVEN HURDER

1. Introduction

These are preliminary notes, based on a series of five lectures, given May 3–7, 2010, at the Centre
de Recerca Matemàtica, Barcelona. The goal of the lectures was to present aspects of the theory of
foliation dynamics which have particular importance for the classification of foliations of compact
manifolds. The lectures emphasized intuitive concepts and informal discussion, as can be seen from
the slides [67]. In these notes, we fill in more of the text and discussion; complete details will appear
in the final version of these notes [68]. We begin with the most basic question:

What is the subject of “foliation dynamical systems”?

Here are some partial answers to this very broad question; or more precisely, the following are some
of the topics we address in these notes:

(1) The asymptotic properties of leaves of F
• How do the leaves accumulate onto the minimal sets?
• What are the topological types of minimal sets? Are they “manifold-like”?
• Invariant measures: can you quantify the rates of recurrence of leaves?

(2) Directions of “stability” and “instability” of leaves
• Exponents: are there directions of exponential divergence?
• Stable manifolds: show the existence of dynamically defined transverse invariant man-

ifolds, and how do they influence the global behavior of leaves?
(3) Quantifying chaos

• Define a measure of transverse chaos – foliation entropy
• Estimate the entropy using linear approximations

(4) The shape of minimal sets
• Hyperbolic exotic minimal sets
• Parabolic exceptional minimal sets

The subject of foliation dynamics is very broad, and includes many other topics to study, such
as rigidity of the dynamical system defined by the leaves, the behavior of random walks on leaves
and properties of harmonic measures, and the Hausdorff dimension of minimal sets, to name a few
additional topics not treated here.

Also, the subject of foliations tends to be quite abstract, as it is difficult to illustrate many of
the concepts in higher dimensions. One is typically presented with a few “standard examples”
in dimensions two and three, that hopefully yield intuitive insight from which to gain a deeper
understanding of the more general cases. For example, many talks with “foliations” in the title start
with the following example, the 2-torus T2 foliated by lines of irrational slope:

Figure 1. Linear foliation with all leaves dense

Never trust a talk which starts with this example! It is just too simple, in that the leaves are parallel
and contractible, hence the foliation has no germinal holonomy. Also, every leaf of F is uniformly
dense in T2 so the topological nature of the minimal sets for F is trivial to determine. The key
dynamical information about this example is in the rates of returns to open subsets, which is more
analytical that topological information.
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At the other extreme of examples of foliations defined by flows are those with a compact leaf as the
unique minimal set, such as this:

Figure 2. Flow with one attracting leaf

Every orbit limits to the circle, which is the forward (and backward) limit set for all leaves.

One other canonical example is that of the Reeb foliation of the solid 3-torus as pictured below,
which has a similar dynamical description:

Figure 3. Reeb foliation of solid torus

This example illustrates several concepts: the limit sets of leaves, the existence of attracting ho-
lonomy for the compact toral leaf, and also the existence of multiple hyperbolic measures for the
foliation geodesic flow, as to be discussed later.

We will introduce further examples in the text to follow, which illustrate more advanced dynam-
ical properties of foliations. Although, as mentioned above, it becomes more difficult to illustrate
concepts that only arise for foliations of manifolds of more complicated 3-manifolds, or in higher
dimensions. The interested reader should view the illustrations in the beautiful article by Étienne
Ghys and Jos Ley for flows on 3-manifolds [46] to get a feeling for the complexity that are “normal”
for foliation dynamics in higher dimensions.

Many of the illustrations in the following text were drawn by Lawrence Conlon, circa 1994. Our
thanks for his permission to use them.
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2. Derivatives

We fix the following conventions. M is a compact Riemannian manifold without boundary, and F is
a codimension q-foliation, transversally Cr for r ∈ [1,∞). This means that the transition functions
for the foliation charts ϕi : Ui → [−1, 1]n × Ti are C∞ leafwise, and vary Cr with the transverse
parameter. The transverse model spaces Ti are usually considered to be open subsets of Rq, although
in some cases we allow the Ti to be open subsets of a fixed Polish space.

We recall next the holonomy pseudogroup for a foliation. The point of view we adopt is best
illustrated by starting with the classical case of flows.. Recall for a non-singular flow ϕt : M → M
the orbits define a 1-dimensional foliation F , whose leaves are the orbits of points.

Choose a cross-section T ⊂ M which is transversal to the orbits, and intersects each orbit (so T
need not be connected.) Then for each x ∈ T there is some least τx > 0 so that ϕτx(x) ∈ T . The
positive constant τx is called the return time for x. See the illustration Figure 4 below.

Figure 4. Cross-section to a flow

The induced map f(x) = ϕτx
(x) is a Borel map f : T → T , called the holonomy of the flow. The

choice of a cross-section for a flow reduces the study of its dynamical properties to that of the discrete
dynamical system f : T → T .

The holonomy for foliations is defined similarly, as local homeomorphisms associated to paths along
leaves, starting and ending at a fixed transversal, except that there is a fundamental difference. For
the orbit of a flow Lw through a point w, there exists two choices of trajectory along a unit speed
path, either forward and backward. However, for a leaf Lw of a foliation F of dimension at least
two, there is no such concept as “forward” or “backward”, and all directions yield paths along which
one may discover dynamical properties of the foliation.

Choose z ∈ Lw and a smooth path τw,z : [0, 1] → Lw. Cover path τw,z by foliation charts and slide
open subset Uw of transverse disk Sw along path to open subset Wz of transverse disk Sz.

Figure 5. Holonomy along a leafwise path

This defines the local homeomorphism hτw,z
: Uw → Wz of open subsets of Rq. This most basic

concept of foliation theory is developed in detail in the standard texts [17, 18, 48, 53].
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The map hτw,z depends on the choice of the transversal sections Uw and Wz to the foliation. This
ambiguity is removed (in part) by fixing a complete transversal T = T1∪· · ·∪Tk ⊂M . For example,
choose a finite covering of M by foliation charts, {ϕi : Ui → [−1, 1]n × Ti | 1 ≤ i ≤ k}, and define
transversal sections Ti = ϕ−1

i ({0} × Ti) ⊂ Ui. Then we obtain the holonomy pseudogroup GF for F
modeled on T , which is compactly generated in sense of Haefliger [51].

Given w ∈ T , z ∈ Lw ∩ T and leafwise path τw,z : [0, 1] → Lw from w to z, we associate to it the
germ at w of the local homeomorphism hτw,z

: Uw →Wz which is denoted by γ = [hτw,z
]w. Here are

some key points:

PROPOSITION 2.1. Let F be a foliation of a manifold M . Then

(1) γ depends only on the leafwise homotopy class of the path, relative endpoints
(2) the maximal sizes of the domain Uw and range Wz representing an equivalence class γ

depends on the path τw,z;
(3) the collection of all such {hτw,z

: Uw →Wz | w ∈ T , z ∈ Lw ∩ T } generates GF
(4) the collection of all such germs {γ = [hτw,z

]w | w ∈ T , z ∈ Lw ∩ T } generates the holonomy
groupoid, denoted by ΓF .

Assume that F is a C1-foliation of a compact Riemannian manifold, with smoothly immersed leaves.
Then for each leaf Lw of F the induced Riemannian metric on Lw is complete.

COROLLARY 2.2. For each leafwise path τw,z : [0, 1] → Lw let σw,z : [0, 1] → Lw be the leafwise
geodesic segment which is homotopic relative endpoints to τw,z. Then [hτw,z

]w = [hσw,z
]w.

While the germ γ of the holonomy along a leafwise path τw,z is well-defined, up to conjugation, the
size of the domain of a representative map hτw,z

∈ GF need not be. It is a strong assumption on the
dynamics of GF or the topology of M to assume that a uniform estimate on the sizes of the domains
exists. This is a very delicate technical point that arises in many proofs about the dynamics of a
foliation. This issue is suppressed in these notes for the purpose of simplicity of exposition.

Next we introduce the transverse differentials for the holonomy groupoid.

Consider first the case of a foliation F defined by a smooth flow ϕ : R × M → M defined by a
non-vanishing vector field ~X. Then TF = 〈 ~X〉 ⊂ TM .

For w = ϕt(w), consider the Jacobian matrix Dϕt : TwM → TzM . The flow satisfies the group
law ϕs ◦ ϕt = ϕs+t, which implies the identity Dϕs( ~Xw) = ~Xz by the chain rule for derivatives.

Introduce the normal bundle to the flow Q = TM/TF . For each w ∈M , we identify Qw = TwF⊥.
Thus, Q can be considered as a subbundle of TM , and thereby the Riemannian metric on TM
induces metrics on each fiber Qw ⊂ TwM . The derivative transformation preserves the normal
bundle Q→M , so defines the normal derivative cocycle,

Dϕt : Qw −→ Qz , t ∈ R
We can then define the norms of the normal derivative maps,

‖Dϕt‖ = ‖Dϕt : Qw −→ Qz‖
It is also useful to introduce the symmetric norm

‖Dϕt |w ‖± = max
{
‖Dϕt : Qw −→ Qz‖, ‖Dϕ−1

t : Qz −→ Qw‖
}

For M compact, the norms ‖Dϕt |w ‖± are uniformly bounded for w ∈M .

The maps Dϕt‖ = ‖Dϕt : Qw −→ Qz can be thought of as “non-autonomous approximations” to
the transverse behavior of the flow ϕt. The actual values of these derivatives is only well-defined up
to a global choice of framing of the normal bundle Q, so extracting useful dynamical information
from these derivatives presents a challenge. This problem was solved by seminal work in the 1970’s.
“Pesin Theory” is a collection of results about the dynamical properties of flows, based on defining
non-autonomous linear approximations of the normal behavior to the flow. Excellent discussions



6 STEVEN HURDER

and references for this theory are in these references [85, 75, 7]. We use only a small amount of the
full Pesin theory in the discussion in these notes.

First, let us recall a basic fact for the dynamics induced by a linear map. Given a matrix A ∈
GL(q,R), let LA : Rn → Rn be the linear map defined by multiplication by A. We say the action is
hyperbolic (or more precisely, partially hyperbolic) if A has an eigenvalue of norm not equal to 1. In
this case, there is an eigen-space for A which is defined dynamically as the direction of maximum
rate of expansion (or minimum contraction) for the action of A. If A is conjugate to an orthogonal
matrix, then we say that A is elliptic. In this case, the action of LA preserves ellipses in Rn and all
orbits of LA and its inverse are bounded. Finally, if all eigenvalues of A have norm 1, but A is not
elliptic, then we say that A is parabolic. In this case, A is conjugate to an upper triangular matrix
with all diagonal entries of norm 1. The dynamics in this case is distal, which is also dynamically
defined property. One idea of Pesin theory is that the hyperbolic property is well-defined also for
non-autonomous linear approximations to smooth dynamical systems, so we look for this behavior
on the level of derivative cocycles. This is the provided by the following concept.

DEFINITION 2.3. w ∈M is a hyperbolic point of the flow if

eϕ(w) ≡ lim
T→∞

sup
s≥T

{
1
s
· log

{
‖(Dϕs : Qw → Qz)‖±

}}
> 0

LEMMA 2.4. The set of hyperbolic points H(ϕ) = {w ∈M | eϕ(w) > 0} is flow-invariant.

One of the first basic results if that if the set of hyperbolic points is non-empty, then the flow itself
has hyperbolic behavior on special subsets where the “lim sup” is replaced by a limit:

PROPOSITION 2.5. Let ϕ be a C1flow. Then the closure H(ϕ) ⊂ M contains an invariant
ergodic probability measure µ∗ for ϕ, for which there exists λ > 0 such that for µ∗-a.e. w,

eϕ(w) = lim
s→∞
{1
s
· log{‖Dϕs : Qw → Qz‖} = λ

Proof. This follows from the continuity of the derivative and its cocycle property, the definition of
the asymptotic Schwartzman cycle associated to a flow [94], plus the usual subadditive techniques
of Oseledets Theory [85, 86, 7]. �

We want to apply the ideas behind Proposition 2.5 to the derivatives of the maps in the holonomy
pseudogroup GF . The difficulty is that the orbits of the pseudogroup are not necessarily ordered
into a single direction along which the leaf hyperbolicity is to be found, and hence along which the
integrals are defined in obtaining the Schwartzman asymptotic cycle as in the above. The first issue
is that we need a method to associate to a foliation F a flow which captures the dynamics of F .
Fortunately, such a flow exists, and has been already suggested.

Let w ∈ M and consider Lw as a complete Riemannian manifold. For ~v ∈ TwF = TwLw with
‖~v‖w = 1, there is unique geodesic τw,~v(t) starting at w with τ ′w,~v(0) = ~v.

Define the flow ϕw,~v : R→M by ϕw,~v(w) = τw,~v(t). Let M̂ = T 1F denote the unit tangent bundle
to the leaves, then the maps ϕw,~v define the foliation geodesic flow

ϕFt : R× M̂ → M̂

Let F̂ denote the foliation on M̂ whose leaves are the unit tangent bundles to leaves of F .

LEMMA 2.6. ϕFt preserves the leaves of the foliation F̂ on M̂ , and hence DϕFt preserves the
normal bundle Q̂→ M̂ for F̂ .

Lemma 2.6 permits the direct extension of Definition 2.3 to the case of the normal derivative cocycle
for the foliation geodesic flow as follows. We now we consider three possible cases for the asymptotic
behavior of the norms of the normal derivative cocycle over the flow.
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DEFINITION 2.7. Let ϕFt be the foliation geodesic flow for a C1-foliation F . Then ŵ ∈ M̂ is:

H: hyperbolic if

eF (ŵ) ≡ lim
T→∞

sup
s≥T

{
1
s
· log

{
‖(DϕFs : Q̂ bw → Q̂bz)‖±}} > 0

E: elliptic if eF (ŵ) = 0, and there exists κ(ŵ) such that

‖(DϕFt : Q̂ bw → Qbz)‖± ≤ κ(ŵ) for all t ∈ R

P: parabolic if eF (ŵ) = 0, and ŵ is not elliptic.

It turns out that there is a fundamental variation on this definition which is much more useful.
The variation takes into account the fact that for foliation dynamics, one does not necessarily
have a preferred direction for the foliation geodesic flow. Thus, we consider all possible directions
simultaneously in the generalization of Definition 2.3.

In the definition below, we let ‖γ‖ denote the minimum length of a geodesic σ whose holonomy hσw,z

defines the germ γ ∈ ΓF . We let Dwγ = Dwhσw,z
denote the derivative at w, for any map hσw,z

whose germ at w represents γ.

DEFINITION 2.8. The transverse expansion rate function for GF at w is

(1) e(GF , d, w) = max
‖γ‖≤d

{
ln (max{‖Dwγ‖±})

d

}
Note that e(GF , d, w) is a Borel function of w ∈ T , as each norm function ‖Dw′hσw,z

‖ is continuous
for w′ ∈ D(hσw,z

) and the maximum of Borel functions is Borel.

DEFINITION 2.9. The asymptotic transverse expansion rate at w ∈ T is

(2) eF (w) = e(GF , w) = lim sup
d→∞

e(GF , d, w) ≥ 0

The limit of Borel functions is Borel, and each e(GF , d, w) is a Borel function of w, hence e(GF , w) is
Borel. The value eF (w) can be thought of as the “maximal Lyapunov exponent” for the holonomy
groupoid at w.

LEMMA 2.10. eF (z) = eF (w) for all z ∈ Lw ∩T . Hence, the expansion function e(w) is constant
along leaves of F .

Proof. Follows from the chain rule and the definition of eF (w). �

This trichotomy for the expansion behavior along orbits of the foliation geodesic flow in Definition 2.7
also applies to the expansion rate function e(GF , d, w) in Definition 2.8, and this is the basis for a
decomposition of the manifold M into leaves which satisfy one of the three types of asymptotic
behavior for the normal derivative cocycle. We then have the following decomposition:

THEOREM 2.11 (Dynamical decomposition of foliations). Let F be a C1-foliation on a compact
manifold M . Then M has a decomposition into disjoint saturated Borel subsets, M = EF∪PF∪HF ,
which are the leaf saturations of the sets defined by:

(1) Elliptic: EF = {w ∈ T | ∀ d ≥ 0, e(GF , d, w) ≤ κ(w)}
(2) Parabolic: PF = {w ∈ T \EF | e(GF , w) = 0}
(3) Hyperbolic: HF = {w ∈ T | e(GF , w) > 0}

Note that w ∈ EF means that the holonomy homomorphism Dwγ has bounded image in GL(q,R).
The constant κ(w) = sup{‖Dwγ‖ | γ ∈ GwF}, where GwF denotes the germs of holonomy transport
along paths starting at w.
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The nomenclature in Theorem 2.11 reflects the trichotonomy for the dynamics of a matrix A ∈
GL(q,R) acting via the associated linear transformation LA : Rq → Rq: The elliptic points are the
regions where the infinitesimal holonomy transport “preserves ellipses up to bounded distortion”.
The parabolic points are where the infinitesimal holonomy acts similarly to that of a parabolic
subgroup of GL(q,R); for example, the action is “infinitesimally distal”. The hyperbolic points
are where the the infinitesimal holonomy has some degree of exponential expansion. Perhaps more
properly, the set HF should be called “non-uniform, partially hyperbolic leaves”, and the study of
the dynamical properties of these leaves then parallels (in part) the ideas of [12].

Transversally hyperbolic measures

The decomposition in Theorem 2.11 has many applications to the study of foliation dynamics and
classification results. These are discussed in depth, for example, in the author’s survey [66]. The
interested reader can also consult the papers [57, 59, 63]. In these talks, we illustrate some of these
applications with examples and selected results. Here is one important concept:

DEFINITION 2.12. An invariant probability measure µ∗ for the foliation geodesic flow on M̂ is
said to be transversally hyperbolic if eF (ŵ) = λ > 0 for µ∗-a.e. ŵ.

Note that the support of µ∗ is contained in the unit tangent bundle M̂ , and not M itself. This is
because it is specifying both a point in a leaf, and the direction along which to follow a geodesic to
find infinitesimal normal hyperbolic behavior.

THEOREM 2.13. Let F be a C1-foliation of a compact manifold. If HF 6= ∅, then the foliation
geodesic flow has at least one transversally hyperbolic ergodic measure, which is contained in the
closure of unit tangent bundle over HF .

Proof. The proof is technical, but basically follows from calculus techniques applied to the foliation
pseudogroup, as in Oseledets Theory. The key point is that if Lw ⊂ HF then there is a sequence of
geodesic segments of lengths going to infinity on the leaf Lw, along which the transverse infinitesimal
expansion grows at an exponential rate. Hence, by continuity of the normal derivative cocycle and
the cocycle law, these geodesic segments converge to a transversally hyperbolic invariant probability
measure µ for the foliation geodesic flow. The existence of an ergodic component µ∗ for this measure
with positive exponent then follows from the properties of the ergodic decomposition of µ. �

This result has a very useful corollary.

COROLLARY 2.14. Let F be a C1-foliation of a compact manifold with HF 6= ∅. Then there
exists w ∈ HF and a unit vector ~v ∈ TwF such that the forward orbit of the geodesic flow through
(w,~v) has a transverse direction which is uniformly exponentially contracting.

Let us return to the examples introduced earlier, and consider what the trichotomy decomposition
means in each case. For the linear foliation of the 2-torus in Figure 1, every point is elliptic, as the
foliation is Riemannian. However, if F is a C1-foliation which is topologically semi-conjugate to a
linear foliation, so is a generalized Denjoy example, then MP is not empty! Shigenori Matsumato
has given a new construction of Denjoy-type C1-foliations on the 2-torus for which the exceptional
minimal set consists of elliptic points, and the points in the wandering set are all parabolic [80].

Consider next the Reeb foliation of the solid torus, as in Figure 3. Pick w ∈ M on an interior
parabolic leaf, and a direction ~v ∈ TwLw. Follow the geodesic σw,~v(t) starting from w. It is
asymptotic to the boundary torus, so defines a limiting Schwartzman cycle on the boundary torus
for some flow. Thus, it limits on either a circle, or a lamination. This will be a hyperbolic measure
if the holonomy of the compact leaf is hyperbolic. Note that the exponent of the invariant measure
for the foliation geodesic flow depends on the direction of the geodesic used to define it!

One of the basic problems about the foliation geodesic flow is to understand the support of its
transversally hyperbolic invariant measures, and if the leaves intersecting the supports of these
measures have “chaotic” behavior.
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3. Counting

In first lecture, we introduced the decomposition of the foliated manifold M = EF ∪ PF ∪HF in
terms of the asymptotic properties of the normal “derivative cocycle” D : GF → GL(n,R). One of
the features of this decomposition is that it allows for the transverse expansion to “develop in all
directions” when the leaves are higher dimensional.

A basic question is then, how do you tell whether one of the Borel, F-saturated components, such
as the hyperbolic set HF , is non-empty? Moreover, it is natural to speculate whether the “geometry
of the leaves” influences the existence hyperbolic leaves. Let us first consider some examples with
more complicated leaf geometry than seen above.

Consider the following three examples of complete 2 manifolds, all of which are realized as leaves
of foliations of 3-manifolds by “standard constructions”. The first manifold is called the “Infinite
Jungle Gym” in the foliation literature [87, 18].

Figure 6. The Infinite Jungle Gym

It can be realized as a leaf of a circle bundle over a surface of genus three, where the holonomy
consists of three commuting linearly independent rotations of the circle. Thus, even though this is
a surface of infinite genus, the transverse holonomy is just a generalization of that for the Denjoy
example, in that it consists of a group of isometries with dense orbits for the circle S1.

The next manifold L1 doesn’t have a cute name, but has an interesting property:

Figure 7. A leaf of “Level 2”

The space of ends E(L1) for this manifold has the property that its second derived set is empty.
This can be realized as a leaf which is asymptotic to a compact surface of genus two.

As with almost all of the illustrations we are using, the picture credits go to Lawrence Conlon, circa
1992. For details of the construction of the foliation in which this occurs, see their textbook [18].

The dynamics of this foliation give an example of a proper leaf with finite depth [19, 20, 54, 99, 101].
As with the Reeb foliation, the hyperbolic invariant measures for the flow are concentrated on the
limiting leaf, so the dynamics, while exhibiting some “hyperbolic” behavior, are still not chaotic.
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The next example has endset E(L2) which is a Cantor set, and so equal to its own derived set.

Figure 8. A leaf with Cantor endset

This example can be realized in various manners. We present in more detail one particular construc-
tion, called the Hirsch foliation”, as it illustrates a basic theme of the lectures. The construction is
based on a short paper of Morris Hirsch [56]. Generalizations of this construction are given in [10].

Step 1: Choose an analytic embedding of S1 in the solid torus D2 × S1 so that its image is twice
a generator of the fundamental group of the solid torus. Remove an open tubular neighborhood of
the embedded S1.

Figure 9. Solid torus with tube drilled in it

Step 2: What remains is a three dimensional manifold N1 whose boundary is two disjoint copies of
T2. D2× S1 fibers over S1 with fibers the 2-disc. This fibration – restricted to N1 – foliates N1 with
leaves consisting of 2-disks with two open subdisks removed.

Identify the two components of the boundary of N1 by a diffeomorphism which covers the map
h(z) = z2 of S1 to obtain the manifold N . Endow N with a Riemannian metric; then the punctured
2-disks foliating N1 can now be viewed as pairs of pants. (See Figure 10 below.)

Step 3: The foliation of N1 is transverse to the boundary, so the punctured 2-disks assemble to
yield a foliation of foliation F on N , where the leaves without holonomy (corresponding to irrational
points for the chosen doubling map of S1) are infinitely branching surfaces, decomposable into
pairs-of-pants which correspond to the punctured disks in N1.

A basic point is that this works for any covering map f : T2 → T2 homotopic to the doubling map
h(z) along a meridian. In particular, as Hirsch remarked in his paper, the proper choice of such a
“bonding map” results in a codimension-one, real analytic foliation, such that all leaves accumulate
on a unique exceptional minimal set.
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Figure 10. “Pair of pants”

The Hirsch foliation always has a leaf Lw as follows, corresponding to a forward periodic orbit of
the doubling map g : S1 → S1:

Figure 11. Leaf for eventually periodic orbit

Consider the behavior of the geodesic flow, starting at a “bottom point” w ∈ Lw. For a each radius
R� 0, the terminating points of the geodesic rays of length at most R will “jump” between the µR

ends of this compact subset of the leaf, for some µ > 1. Thus, for these examples, a small variation
of the initial vector ~v will result in a large variation of the terminal end of the geodesic σw,~v.

The constant µ appearing in the above example seems to be an “interesting” property of the foliation
dynamics, and a key point is that it can be obtained by “counting” to complexity of the leaf at
infinity, following a scheme introduced by Joseph Plante for leaves of foliations [88], generalizing a
fundamental idea of [82].

Recall the holonomy pseudogroup GF constructed in Lecture 1, modeled on a complete transversal
T = T1 ∪ · · · ∪ Tk associated to a finite covering of M by foliations charts. Given w ∈ T and
z ∈ Lw ∩ T and a leafwise path τw,z joining them, we obtain an element hτw,z ∈ GF .

The orbit of w ∈ T under GF is

O(w) = Lw ∩ T = {z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g)}

The second description allows us to decompose the orbit into “periods”. For this, introduce the
word norm on elements of GF . Given open sets Ui ∩ Uj 6= ∅ in the fixed covering of M by foliation
charts, they define an element hi,j ∈ GF . By the definition of holonomy along a path, for each
τw,z : [0, 1]→ Lw there is a sequence of indices {i0, i1, . . . , i`} so that

[hτw,z ]w = [hi`−1,i` ◦ · · · ◦ hi1,i0 ]w
That is, the germ of the holonomy map hτw,z

at w can be expressed as the composition of ` germs
of the basic maps hi,j . We then say that γ = [hτw,z

]w has word length at most `. Let ‖γ‖ denote
the least such ` for which this is possible. The norm of the identity germ is defined to be 0.

Define the “orbit of w of radius ` in the groupoid word norm” to be:

O`(w) = {z ∈ T | g(w) = z, g ∈ GF , w ∈ Dom(g), ‖[g]w‖ ≤ `}

DEFINITION 3.1. The growth function of an orbit is defined as Gr(w, `) = #O`(w).
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Of course, the growth function for w depends upon almost all choices. However, its “growth type
function” is independent of choices, as observed by Plante. This follows from one of the basic facts
of the theory, that the word norm on GF is quasi-isometric to the length of geodesic paths.

PROPOSITION 3.2. [82, 88] Let F be a C1-foliation of a compact manifold M . Then there
exists a constant Cm > 0 such that for all w ∈ T and z ∈ Lw ∩ T , if σw,z : [0, 1]→ Lw is a leafwise
geodesic segment from w to z of length ‖σw,z‖, then

C−1 · ‖σw,z‖ ≤ ‖[hσw,z
]w‖ ≤ Cm · ‖σw,z‖

In order to obtain a well-defined invariant of growth of an orbit, one introduces the notion the growth
type of a function. That which we use (there are many - see [52, 36, 6]) is essentially the weakest one.
Given given functions f1, f2 : [0,∞)→ [0,∞) say that f1 . f2 if there exists constants A,B,C > 0
such that for all r ≥ 0, we have that f2(r) ≤ A · f1(B · r) + C. Say that f1 ∼ f2 if both f1 . f2

and f2 . f1 hold. This defines equivalence relation on functions, which defines their growth class.

One can consider a variety of special classes of growth types. For example, note that if f1 is the
constant function and f2 ∼ f1 then f2 is constant also.

We say that f has exponential growth type if f(r) ∼ exp(r). Note that exp(λ · r) ∼ exp(r) for any
λ > 0, so there is only one growth class of “exponential type”.

A function has subexponential growth type if f . exp(r), but the converse does not hold. That is, f
has subexponential growth type if for any λ > 0 there exists A,C > 0 so that f(r) ≤ A·exp(λ·r)+C.

Finally, f has polynomial growth type if there exists d ≥ 0 such that f . rd. The growth type is
exactly polynomial of degree d if f ∼ rd.

DEFINITION 3.3. The growth type of an orbit O(w) is the growth type of Gr(w, `) = #O`(w).

A basic result of Plante is that

PROPOSITION 3.4. Let M be a compact manifold. Then for all w ∈ T , Gr(z, `) . exp(`).
Moreover, for z ∈ Lw ∩ T , then Gr(z, `) ∼ Gr(w, `). Thus, the growth type of a leaf Lw is well-
defined, and we say that Lw has the growth type of the function Gr(w, `).

We can thus speak of a leaf Lw of F having exponential growth type, and so forth. For example, the
Infinite Jungle Gym manifold (in Figure 6) has growth type exactly polynomial of degree 3, while
the leaves of the Hirsch foliations (in Figures 8 and 11) have exponential growth type.

Before continuing with the discussion of the growth types of leaves, we note the correspondence
between these ideas and a basic problem in geometric group theory. Growth functions for finitely
generated groups are a basic object of study in geometric group theory in recent years.

Let Γ = 〈γ0 = 1, γ1, . . . , γk〉 be a finitely generated group. Then γ ∈ Γ has word norm ‖γ‖ ≤ ` if we
can express γ as a product of at most ` generators, γ = γ±i1 · · · γ

±
id

. Define the ball of radius ` about
the identity of Γ by

Γ` ≡ {γ ∈ Γ | ‖γ‖ ≤ `}
The growth function Gr(Γ, `) = #Γ` depends upon the choice of generating set for Γ, but its growth
type does not. The following is a celebrated theorem of Gromov:

THEOREM 3.5. [49] Suppose Γ has polynomial growth type for some generating set. Then there
exists a subgroup of finite index Γ′ ⊂ Γ such that Γ′ is a nilpotent group.

This seminal result was the basis for the general question of intense study, to what extent does the
growth type of a group determine its algebraic structure? Questions of a similar nature can be asked
about leaves of foliations, especially, to what extent does the growth function of leaves determine
their “dynamics”? However, there is a fundamental difference between this problem for groups and
for leaves.
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The homogeneity of groups implies that the growth rate is uniformly the same for balls in the word
metric about any point γ0 ∈ Γ. That is, one can choose the constants A,B,C > 0 in the definition
of growth type which are independent of the center γ0. For foliation pseudogroups, there is a basic
question about the uniformity of the growth function as the basepoint within an orbit varies:

QUESTION 3.6. How does the function w 7→ Gr(w, d) behave, as a Borel function of w ∈ T ?

Examples of Ana Rechtman [89] show that even for smooth foliations of compact manifolds, this
function is not uniform as function of w ∈ T . Thus, to formulate an analog for foliation pseudogroups
of the classification program for finitely generated groups, it is necessary to require uniformity of
the growth function ` 7→ Gr(w, `), as a function of w ∈ T .

Recall that the equivalence relation on T defined by F is the Borel subset

RF ≡ {(w, z) | w ∈ T , z ∈ Lw ∩ T } ⊂ T × T
Two foliations F1,F2 with complete transversals T1 and T2, respectively, are said to be Borel orbit
equivalent if there exists a Borel map h : T1 → T2 which induces a Borel isomorphism RF1

∼= RF2 .
The foliations are said to be measurably orbit equivalent if there exists a Borel measurable map
h : T1 → T2 which induces a Borel equivalence, up to sets of Lebesgue measure zero. See the papers
by Jacob Feldman and Calvin Moore [37, 83] for more background on this topic.

Note that if two foliations are diffeomorphic, then they are Borel orbit equivalence, so this is a weaker
equivalence notion of equivalence than being differentiably conjugate. Moreover, measurable orbit
equivalence is an even weaker notion of equivalence, although of great importance in the measurable
classification of dynamical systems defined by a single transformation or flow.

For example, a foliation is said to be (measurably) hyperfinite if it is measurably orbit equivalent to
an action of the integers Z on the interval [0, 1]. The celebrated result of Dye [34, 35, 71] implies:

THEOREM 3.7 (Dye 1957). A foliation defined by a non-singular flow is always hyperfinite.

Uniform polynomial growth estimates were used by Carolyn Series [95] to obtain a “measurable
classification” of the equivalence relation on T defined by the action of GF .

THEOREM 3.8 (Series 1977). Let F be a C1-foliation of a compact manifold M . If the growth
type of all functions Gr(w, `) are uniformly of polynomial type, then the equivalence relation on T
defined by GF is hyperfinite.

The most general form of such results is a celebrated result of Alain Connes, Jack Feldman and
Benjamin Weiss [29], which implies:

THEOREM 3.9 (Connes-Feldman-Weiss 1981). Let F be a C1-foliation of a compact manifold M .
If the growth type of all functions Gr(w, `) are uniformly of subexponential type, then the equivalence
relation on T it defines is hyperfinite.

The extension of these results to Borel orbit equivalence is a much more difficult problem - see [4].
The problem seems of fundamental importance to the study of foliations. While the topological
classification of foliations is surely an unsolvable problem, in any sense of the word “unsolvable”,
the Borel problem might be approachable when restricted to special subclasses, such as for foliations
with uniformly polynomial growth.

In the late 1970’s and early 1980’s, Cantwell & Conlon, Hector, Nishimori, Tsuchiya in particular [19,
20, 54, 99, 101], studied the case of codimension-one C2-foliations with all leaves of polynomial growth
type. For real analytic foliations, their results are very satisfying, essentially giving a “classification
theory” in terms of levels.

Their results for the general case of codimension-one C2-foliations constitute part of the much more
general “theory of levels” for foliations, a form of a generalized Poincaré-Bendixson Theory for leaves.
However, without the assumption of polynomial growth type, or that the elements of the holonomy
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pseudogroup act via local real analytic maps, the classification becomes much more complicated, as
there are numerous counter-examples which have been constructed to show that the conclusions in
the analytic case do not extend so easily.

The classification problem is even more problematic for C1-foliations of codimension-one, for exam-
ple. This is one reason for the focus in these notes on using other invariants to at least characterize
classes of foliations based on their transverse hyperbolicity, the complexity of the orbit growth func-
tions, and topological dynamics. This theme is discussed much more extensively in the paper [66].

One approach to classification if to impose restrictions on their “topological dynamics”. We introduce
three basic concepts, dating from 1930’s, and extensively studied for topological group actions in
1950’s and 1960’s. First, we have the dichotomy:

DEFINITION 3.10. A pseudogroup GF acting on T is

• proximal if there exists δ > 0 such that for all w,w′ ∈ T with dT (w,w′) < δ, then for all
ε > 0 there exists hτw,z ∈ GF with w,w′ ∈ Dom(hτw,z) and dT (hτw,z(w), hτw,z(w′)) < ε

• distal if it is not proximal.

DEFINITION 3.11. A pseudogroup GF acting on T is equicontinuous if there exists a metric d′T
on T equivalent to the Riemannian distance function, such that for all w,w′ ∈ T and hτw,z ∈ GF
with w,w′ ∈ Dom(hτw,z),

d′T (hτw,z(w), hτw,z(w′)) = d′T (w,w′)

Let us consider this notion for the case of exceptional minimal sets, which are transversally zero-
dimensional. In the case of flows, exceptional minimal sets have been called “matchbox manifolds”
in the topological dynamics literature [1, 38]. The author, in the works with Alex Clark and Olga
Lukina [27, 28], use the nomenclature matchbox manifolds for foliated spaces which are transversally
zero-dimensional, as it is very descriptive.

Minimal matchbox manifolds appear to be an excellent test case for the study of classification
problems, as the transverse Cantor structure implies the difference between continuous, Borel and
measurable equivalence is manageable in many cases. For example, here is a recent result:

THEOREM 3.12 (Clark-Hurder 2009). If M ⊂ M is an exceptional minimal set for a foliation,
and the dynamics of F restricted to M are equicontinuous, then M is homeomorphic as a foliated
space to a generalized (McCord) solenoid.

Recall that an n-dimensional solenoid is an inverse limit space

S = lim
←
{p`+1 : L`+1 → L`}

where for ` ≥ 0, L` is a closed, oriented, n-dimensional manifold, and p`+1 : L`+1 → L` are smooth,
orientation-preserving proper covering maps. These were introduced by McCord [81], and are classi-
fied up to foliated homeomorphism by the algebraic structure of the inverse limit of the fundamental
groups of the spaces appearing in their definition.

The results of the paper [27] and the techniques developed to prove them suggest the following:

PROBLEM 3.13. Give an algebraic classification for minimal matchbox manifolds.

Miguel Bermudez and Gilbert Hector study two-dimensional Borel laminations in [9], and obtain
partial classification results up to Borel equivalence.
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4. Exponential Complexity

Lecture 1 introduced exponential growth criteria for the normal derivative cocycle of the pseudogroup
GF acting on the transverse space T , and Lecture 2 discussed the growth types for the orbits of
the groupoid. In both cases, exponential behavior represents a type of exponential complexity for
the dynamics of GF which are part of a larger theme, that when studying classification problems,
Complexity is Simplicity. In this third lecture, we develop this theme further. First, we give an
aside, presenting a well-known phenomenon for map germs.

Recall a simple example from advanced calculus. Let f(x) = x/2, and let g : (−ε, ε) → R be a
smooth map with g(0) = 0, g′(0) = 1/2. Then g ∼ f near x = 0. That is, for δ > 0 sufficiently
small, there is a smooth map h : (−ε, ε)→ R such that h−1 ◦ g ◦ h = f(x) for all |x| < δ.

This illustrates the principle that exponentially contracting maps, or more generally hyperbolic maps
in higher dimensions, the derivative is a complete invariant for their germinal conjugacy class at the
fixed-point. For maps which are “completely flat” at the origin, where g(0) = 0, g′(0) = 1, gk(0) = 0
for all k > 1, no such classification exists; their “classification” is much more difficult.

Analogously, for foliation dynamics, and the related problem of studying the dynamics of a finitely
generated group acting smoothly on a compact manifold, exponential complexity in the dynamics
often gives rise to hyperbolic behavior for the holonomy pseudogroup. Hyperbolic maps can be
put into a standard form, and so one obtains a fundamental tool for studying the dynamics of the
pseudogroup. The problem is thus, how does one pass from exponential complexity to hyperbolicity?

The rate of growth of the function ` 7→ Gr(w, `) is one measure of the complexity of the leaf Lw.
We saw previously that if the action of GF on T has uniformly subexponential growth functions,
then Theorem 3.9 of Connes, Feldman and Weiss implies the equivalence relation it defines on the
transversal space T is hyperfinite, and the classification stops, as no general further results are
known. In this case, we say that subexponential complexity often leads to ambiguity. Of course, this
is just an intuitive statement, but is indicative of the state of our understanding of the classification
problem for such foliations.

One issue with the “counting argument” for the growth of leaves, as seen in for example in the
example of the Hirsch foliations, is that just counting the growth rate of an orbit ignores fundamental
information about the dynamics. The orbit growth rate counts the number of times the leaf crosses
a transversal T in fixed distance within the leaf, but does not take into account whether these
crossings are “nearby” or “far apart”.

As an example of this, there are Riemannian foliations with all leaves of exponential growth type.
Ken Richardson discusses constructions of such examples in [90], for example. Thus, exponential
orbit growth rate does not imply (exponential) transversally hyperbolic behavior. On the other
hand, in the Hirsch examples, the handles at the end of each ball of radius ` in a leaf appear to be
widely separated transversally, so somehow this is different. The holonomy pseudogroup GF of the
Hirsch example is topologically semi-conjugate to the pseudogroup generated by the doubling map
z 7→ z2 on S1. After `-iterations, the inverse map to h(z) = z2`

has derivative of norm 2`, and so
for a Hirsch foliation modeled on this map, every leaf is transversally hyperbolic.

We next discuss a measure of the exponential complexity for pseudogroup C1-actions, their (local)
geometric entropy, following Bowen [14] and Ghys, Langevin & Walczak [45]. These invariants
provide a bridge between the two types of complexity introduced previously, and have found many
applications in the study of foliation dynamical systems. One example of this is the surprising role
of these invariants in the question of whether the secondary classes of C2-foliations are non-trivial
in cohomology, or not [22, 58, 57, 64].

We begin with the basic notion of ε-separated sets, due to Bowen [14] for diffeomorphisms, and
extended to groupoids in [45]. Let ε > 0 and ` > 0. A subset E ⊂ T is said to be (ε, `)-separated
if for all w,w′ ∈ E ∩ Ti there exists g ∈ GF with w,w′ ∈ Dom(g) ⊂ Ti, and ‖g‖w ≤ ` so that
dT (g(w), g(w′)) ≥ ε. If w ∈ Ti and w′ ∈ Tj for i 6= j then they are (ε, `)-separated by default.
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The “expansion growth function” counts the maximum of this quantity:

h(GF , ε, `) = max{#E | E ⊂ T is (ε, `)-separated}

If the pseudogroup GF consists of isometries, for example, then applying elements of GF does not
increase the separation between points, so the growth functions h(GF , ε, `) have polynomial growth
of degree equal the dimension of T , as functions of `. Thus, if the functions h(GF , ε, `) have greater
than polynomial growth type, then the action of the pseudogroup cannot be elliptic, for example.

Introduce the measure of the exponential growth type of the expansion growth function:

h(GF , ε) = lim sup
d→∞

ln {max{#E | E is (ε, d)-separated}}
d

(3)

h(GF ) = lim
ε→0

h(GF , ε)(4)

Then we have the fundamental result of Ghys, Langevin & Walczak [45]:

THEOREM 4.1. Let F be a C1-foliation of a compact manifold M . Then h(GF ) is finite.

Moreover, the property h(GF ) > 0 is independent of all choices.

For example, if F is defined by a C1-flow φt : M → M , then h(GF ) > 0 if and only if htop(φ1) > 0.
Note that h(GF ) is defined using the word growth function for orbits, while the topological entropy
of the map φ1 is defined using the geodesic length function (the time parameter) along leaves. These
two notions of “distance along orbits” are comparable, which can be used to give estimates, but not
necessarily any more precise relations. This point is discussed in detail in [45].

In any case, the essential information contained in the invariant h(GF ) is simply whether the foliation
F exhibits exponential complexity for its orbit dynamics, or not. Exploiting further the information
contained in this basic invariant of C1-foliations has been one of the fundamental problems in the
study of foliation dynamics since the introduction of the concept of geometric entropy in 1988.

One aspect of the geometric entropy h(GF ) is that it is a “global invariant”, which does not indicate
“where” the chaotic dynamics is happening. The author introduced a variant of h(GF ) in [66],
the local geometric entropy h(GF , w) of GF which is a refinement of the global entropy. The local
geometric entropy is analogous to the local measure-theoretic entropy for maps introduced by Brin
and Katok [16]. The concept of local entropy, as adapted to pseudogroups, is very useful for the
study of foliation dynamics.

In the definition of (ε, `)-separated sets above, the separated points can be restricted to a given
subset X ⊂ T , where the set X is not assumed to be saturated. Introduce the relative expansion
growth function:

h(GF , X, ε, `) = max{#E | E ⊂ X is (ε, `)-separated}
Form the corresponding limits as in (3) and (4), to obtain the relative geometric entropy h(GF , X).

Now, fix w ∈ T and let X = B(w, δ) ⊂ T be the open δ–ball about w ∈ T . Perform the same
double limit process as used to define h(GF ) for the sets B(w, δ), but then also let the radius of the
balls tend to zero, to obtain:

DEFINITION 4.2. The local geometric entropy of GF at w is

(5) hloc(GF , w) = lim
δ→0

{
lim
ε→0

{
lim sup
`→∞

ln{h(GF , B(w, δ), `, ε)}
`

}}
The quantity hloc(GF , w) measures of the amount of “expansion” by the pseudogroup in an open
neighborhood of w. The local entropy has some very useful properties, which are elementary to
show. Here is one:

PROPOSITION 4.3 (Hurder, [66]). Let GF a C1-pseudogroup. Then hloc(GF , w) is a Borel
function of w ∈ T , and hloc(GF , w) = hloc(GF , z) for z ∈ Lw ∩ T . Moreover,

(6) h(GF ) = sup
w∈T

hloc(GF , w)
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It follows that there is a disjoint Borel decomposition of T into GF -saturated subsets T = ZF ∩CF ,
where CF = {w ∈ T | h(GF , w) > 0} consists of the “chaotic” points for the groupoid action, and
ZF = {w ∈ T | h(GF , w) = 0} are the “tame” points. Here is a corollary of Proposition 4.3:

COROLLARY 4.4. h(GF ) > 0 if and only if CF 6= ∅.

We will discuss in the next section, the relationship between local entropy h(GF , w) > 0 and the
transverse Lyapunov spectrum of ergodic invariant measures for the leafwise geodesic flow on the
closure Lw.

Next, we consider some examples where h(GF ) > 0.

PROPOSITION 4.5. The Hirsch foliations always have positive geometric entropy.

Proof. The idea of the proof is as follows. The holonomy pseudogroup GF of the Hirsch examples is
topologically semi-conjugate to the pseudogroup generated by the doubling map z 7→ z2 on S1.

After `-iterations, the inverse map to z 7→ z2`

has derivative of norm 2` so we have a rough estimate
h(GF , ε, `) ∼ (2π/ε) · 2`. Thus, h(GF ) ∼ ln 2. �

For these examples, the relationship between “orbit growth type” and expansion growth type is
transparent. Observe that in the Hirsch example, as we wander out the tree-like leaf, the exponential
growth of the ends of the typical leaf yield an exponential growth for the number of ε-separated
points, as we are also wandering around the transversal space T , as represented by a core circle.
This is suggested by comparing the two illustrations below:

Figure 12. Comparing orbit with endset

It is natural to ask whether there are other classes of foliations for which this phenomenon occurs,
that exponential growth type of the leaves is equivalent to positive foliation geometric entropy? It
turns out that for the weak stable foliations of Anosov flows, this is also the case in general. First,
let us recall a result of Anthony Manning [76]:

THEOREM 4.6. Let B be a compact manifold of negative curvature, let M = T 1B denote the
unit tangent bundle to B, and let φt : M → M denote the geodesic flow of B. Then htop(φ) =
Gr(π1(B, b0)). That is, the entropy for the geodesic flow of B equals the growth rate of the volume
of balls in the universal covering of B.

Proof. The idea of proof for this result is conveyed by the illustration Figure 13, representing the
fundamental domains for the universal covering. The assumption that B has non-positive curvature
implies that its universal covering B̃ is a disk, and we can “tile” it with fundamental domains.
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Figure 13. Tiling by fundamental domains for hyperbolic manifold cover

From the center basepoint, there is a unique geodesic segment to the corresponding basepoint in each
translate. The number of such in a given radius is precisely the growth function for the fundamental
group π1(B, b0). On the other hand, the negative curvature hypothesis implies that these geodesics
separate points for the geodesic flow as well. �

We include this example, because it is actually a result about foliation entropy! The assumption
that B has uniformly negative sectional curvatures implies that the geodesic flow φt : M → M
defines a foliation on M , its weak-stable foliation. Then by a result of Pugh and Shub, the weak-
stable manifolds Lw form the leaves of a C1-foliation of M , called the weak-stable foliation for φt.
Moreover, the orbits of the geodesic flow φt(w) are contained in the leaves of F . Then again one
has h(GF ) ∼ htop(φ1) which equals the growth type of the leaves.

Besides special cases such as for the Hirsch foliations and their generalizations in [10] where there
is uniformly expanding holonomy groups, and the weak stable foliations for Anosov flows, how does
one determine when a foliation F has positive entropy?

There is a third case where h(GF ) > 0 can be concluded, as noted in [45], when the dynamics of
GF admits a “ping-pong game”. The notation “ping-pong game” is adopted from the paper [31]
which gives a more geometric proof of Tits Theorem [98] for the dichotomy of the growth types of
countable subgroups of linear groups. To say that the dynamics of GF admits a ping-pong game,
means that there are disjoint open sets U0, U1 ⊂ V ⊂ T and maps g0, g1 ∈ GF such that for i = 0, 1:

• the closure V ⊂ Dom(gi) for i = 0, 1
• gi(V ) ⊂ Ui

It follows that for each w ∈ V the forward orbit

O+
g0,gi

(w) = {gI(w) | I = (i1, . . . , ik) , i` ∈ {0, 1} , gI = gik ◦ · ◦ gi1}
consists of distinct points, and so the full orbit O(w) has exponential growth type. Moreover, if
ε > 0 is less than the distance between the disjoint closed subsets g0(V ) and g1(V ), then the points
in O+

g0,gi
(w) are all (ε, `)-separated for appropriate ` > 0, and hence h(GF ,K) > 0.

For codimension-one foliations, the existence of ping-pong game dynamics for its pseudogroup is
equivalent to the existence of a “resilient leaf”, which in turn is analogous to the existence of
homoclinic orbits for a diffeomorphism. It is a well-known principle that the existence of homoclinic
orbits for a diffeomorphism implies positive topological entropy.

We conclude with a general question:

QUESTION 4.7. Are there other canonical classes of C1-foliations where positive entropy is to be
“expected”? For example, if F has leaves of exponential growth, when does there exist a C1-close
perturbation of F with positive entropy?
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5. Entropy and Exponent

In the first three lectures, we introduced aspects of “exponential complexity” for foliation dynamics:
Lyapunov spectrum for the foliation geodesic flow, exponential growth of orbits, and transverse
exponential expansion and geometric entropy. In Lecture 4, we discuss the known relationships
between these invariants. The theme is summarized by:

Positive Entropy ↔ Chaotic Dynamics ↔ ??

Here are three questions that we address in part here. As always, we assume that F is a Cr-foliation
of a compact manifold M , for r ≥ 1.

PROBLEM 5.1. If h(GF ) > 0, what conclusions can we reach about the dynamics of F?

PROBLEM 5.2. What hypotheses on the dynamics of F are sufficient to imply that h(GF ) > 0?

PROBLEM 5.3. Are there cohomology hypotheses on F which would “improve” our understanding
of its dynamics? How does leafwise cohomology H∗(F) influence dynamics? How are the secondary
cohomology invariants for F related to entropy?

The difficulty with addressing these questions, is that there are only limited sets of techniques
applicable to foliation dynamics, relating transverse expansion growth with the transverse Lyapunov
spectrum of the foliation geodesic flow. The principle difficulty, as noted previously, is that there is
no good groupoid replacement for the notion of “uniform recurrence” in the support of an invariant
measure, which we have for flows. Thus, given asymptotic data about either the transverse derivative
cocycle, or the transverse expansion growth function, one has to develop new techniques to extract
from this data dynamical conclusions.

We begin by recalling a result of Ghys, Langevin and Walczak [45] which gives a straightforward
conclusion valid in all codimension, and which is especially potent for codimension one foliations
(see Corollary 5.5 below.)

THEOREM 5.4 (G-L-W 1988). Let M be compact with a C1-foliation F of codimension q ≥ 1,
and X ⊂ T a closed subset. If h(GF , X) = 0, then the restricted action of GF on X admits an
invariant probability measure.

The idea of the proof is to interpret the condition h(GF ) = 0 as a type of equidistribution result, and
then form averaging sequences over the orbits, which consequently yield GF -invariant probability
measures on X.

COROLLARY 5.5. Let M be compact with a C1-foliation F of codimension one, and suppose
that M ⊂ M is a minimal set for which the local entropy h(GF ,M) = 0. Then the dynamics of GF
on X = T ∩M is semi-conjugate to the pseudogroup of an isometric dense action on S1. If F is
C2, and M is connected, then M = M and the action is conjugate to a rotation group.

Proof. By Theorem 5.4, there exists an invariant probability measure for the action of GF on X.
The conclusions then follow from Sacksteder [91]. �

In the remainder of this section, we discuss three more recent results of the author concerning
geometric entropy.

THEOREM 5.6. [63] Let M be compact with a Cr-foliation F of codimension-q. If q = 1 and
r ≥ 1, or q ≥ 2 and r > 1, then

GF distal =⇒ h(GF ) = 0

THEOREM 5.7. [63] Let M be compact with a codimension one, C1-foliation F . Then

h(GF ) > 0 =⇒ F has a resilient leaf
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THEOREM 5.8. [64] Let M be compact with a codimension one, C2-foliation F . Then

0 6= GV (F) ∈ H3(M,R) =⇒ h(GF ) > 0

where GV (F) ∈ H3(M,R) is the Godbillon-Vey class of F .

The proofs of all three results are based on the existence of stable transverse manifolds for hyperbolic
measures for the foliation geodesic flow. The first step is the following:

PROPOSITION 5.9. Let M be compact with a C1-foliation F , and suppose that M ⊂ M is a
minimal set for which the relative entropy h(GF ,M) > 0. Then there exists a transversally hyper-
bolic invariant probability measure µ∗ for the foliation geodesic flow, with support the support of µ∗
contained in the unit leafwise tangent bundle to M.

Proof. We give a sketch of the proof. Let X = T ∩ M. The assumption λ = h(GF , X) > 0
implies there exists ε > 0 so that λε = h(GF , X, ε) > 3

4λ > 0. Thus, there exists a sequence
of subsets {E` ⊂ X | ` → ∞} such that E` is (ε`, r`)-separated, where ε` → 0 and r` ≥ `, and
#E` ≥ exp{3r`λ/4}.

We can assume without loss that E` is contained in the transversal for a single coordinate chart, say
E` ⊂ T1 as the number of charts is fixed. As T1 has bounded diameter, this implies there exists pairs
{x`, y`} ⊂ E` so that

dT (x`, y`) . exp{−3r`λ/4} · diam(T1)
and leafwise geodesic segments σ` : [0, 1]→ Lx`

with ‖σ`‖ ≤ r` such that dT (hσ`
(x`), hσ`

(y`)) ≥ ε.

It follows by the Mean Value Theorem that there exists z` ∈ BT (x`, exp{−3r`λ/4} · diam(T1)) such
that ‖Dz`

hσ`
‖ & exp{3r`λ/4}.

Noting that ε` → 0 and choosing appropriate subsequences, the resulting geodesic segments σ`
define an invariant probability measure µ∗ for the geodesic flow, with support in M. Moreover, by
the cocycle equation and continuity of the derivative, the measure µ∗ will be hyperbolic. In fact,
with careful choices above, the exponent can be made arbitrarily close to h(GF , X), modulo the
adjustment for the relation between geodesic and word lengths. See [63] for details. �

The construction sketched in the proof of Proposition 5.9 is very “lossy” - at each stage, information
about the transverse expansion due to the assumption that h(GF , X) > 0 gets discarded, especially
in that for each n we only consider a pair of points (x`, y`) to obtain a geodesic segment σ` along
which the transverse derivative has exponentially increasing norm. We will return to this point later.

The next step in the construction of stable manifolds, is to assume we are given a transversally
hyperbolic invariant probability measure µ∗ for the foliation geodesic flow. Then for a typical point
x̂ = (x,~v) ∈ M̂ in the support of µ∗ the geodesic ray at (x,~v) has an exponentially expanding norm
of its transverse derivative, and hence its Lyapunov spectrum acting as a flow on M̂ contains a
non-trivial expanding eigenspace. By reversing the time flow (via the inversion ~v 7→ −~v of M̂) we
obtain an invariant probability measure µ−∗ for the foliation geodesic flow for which the Lyapunov
spectrum of the flow contains a non-trivial contracting eigenspace.

If we assume that the flow is C1+α for some Hölder exponent α > 0, then there exists non-trivial
stable manifolds in M̂ for almost every (x,~v) in the support of µ−∗ . Denote this stable manifold
by S(x,~v) and note that its tangent space projects non-trivially onto Q̂. Moreover, for points
ŷ, ẑ ∈ S(x,~v) the distance d(ϕt(ŷ), ϕt(ẑ)) converges to 0 exponentially fast, as t → ∞. Thus, the
images y, z ∈M of these points converge exponentially fast together under the holonomy of F .

Combining these results we obtain

THEOREM 5.10. Let F be C1+α and suppose that h(GF ) > 0. Then there exists a transversally
hyperbolic invariant probability measure µ∗ for the foliation geodesic flow. Moreover, for a typical
point x̂ = (x,~v) in the support of µ−∗ there is a transverse stable manifold S(x,~v) for the geodesic
ray starting at x̂.
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If the codimension of F is one, then the differentiability is just required to be C1, as the stable
manifold for ϕt consists simply of the full transversal to F̂ .

Observe that Theorem 5.10 implies Theorem 5.6.

The assumption that h(GF ) > 0 has much stronger implications that simply implying that the
dynamics of GF is not distal, but obtaining these results requires much more care. We sketch next
some ideas for analyzing these dynamics in the case of codimension-one foliations.

In the proof of Proposition 5.9, instead of choosing only a single pair of points (x`, y`) at each stage,
one can also use the Pigeon Hole Principle to choose a subset E ′` ⊂ E contained in a fixed ball
BT (w, δ`) where #E ′` grows exponentially fast as a function of `, and the diameter δ` of the ball
decreases exponentially fast, although at a rates less that λε. This leads to the following notion.

DEFINITION 5.11. An (ε`, δ`, `)-quiver is a subset Q` = {(xi, ~vi) | 1 ≤ i ≤ k`} ⊂ M̂ such that
xj ∈ BT (xi, δ`) for all 1 ≤ j ≤ k`, and for the unit-speed geodesic segment σi : [0, si]→ Lxi

of length
si ≤ d, we have

dT (hσi
(xi), hσi

(xj)) ≥ ε , for all j 6= i

An exponential quiver is a collection of quivers {Q` | ` = 1, 2, . . .} such that the function ` 7→ #Q`
has exponential growth rate.

The idea is that one has a collection of points {xi | 1 ≤ i ≤ k`} contained in a ball of radius δ` and a
geodesic segment based at each point, along whose flows the transverse holonomy separates points.
The nomenclature “quiver” is based on the intuitive notion that the collection of geodesic segments
emanating from the δ`-clustered set of basepoints {xi} is like a collection of arrows in a quiver. It
is immediate that h(GF , ε, d) ≥ #Q`.

PROPOSITION 5.12. If F admits an exponential quiver, then h(GF ) > 0.

For codimension-one foliations, the results of [59] and [73] yields the converse estimate:

PROPOSITION 5.13. Let F be a C1-foliation of codimension-one on a compact manifold M . If
h(GF ) > 0 then there exists an exponential quiver.

It is an unresolved question whether a similar result holds for higher codimension. The point is that
if so, then h(GF ) is estimated by the entropy of the foliation geodesic flow, and most of the problems
we address here can be resolved using a form of Pesin Theory for flows relative to the foliation F .
(See [59] for further discussion of this point.)

The existence of an exponential quiver for a codimension-one foliation of a compact manifold M has
strong implications for its dynamics. The basic idea is that the basepoints of the geodesic rays in
the quiver are tightly clustered, and because the ranges of the endpoints of the geodesic rays are lie
in a compact set, one can pass to a subsequence for which the endpoints are also tightly clustered.
From this observation, one can show:

THEOREM 5.14. [63] Let F be a C1-foliation with codimension-one foliation of a compact mani-
fold M . If h(GF ) > 0, then GF acting on T admits a “ping-pong game”, which implies the existence
of a resilient leaf for F .

This result is a C1-version of one of the main results concerning the dynamical meaning of positive
entropy given in [45]. In their paper, the authors require the foliations be C2 as they invoke the
Poincaré-Bendixson Theory for codimension-one foliations which is only valid for C2-pseudogroups.

There is another approach to obtaining exponential quivers for a foliation F , which is based on
cohomology assumptions about F . For a C1-foliation F , there exists a leafwise closed, continuous
1-form η on M whose cohomology class [η] ∈ H1(M,F) in the leafwise foliated cohomology group is
well-defined. The form η has the property that its integral along a leafwise path gives the logarithmic
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infinitesimal expansion of the determinant of the linear holonomy defined by the path. Thus, for
codimension-one foliations, this integral is the expansion exponent of the holonomy.

For a C2-foliation F of codimension-q the form η can be chosen to be C1, and thus the exterior form
η ∧ dηq is well-defined. As observed by Godbillon and Vey [47], the form η ∧ dηq is closed and yields
a well-defined cohomology class GV (F) ∈ H2q+1(M,R). One of the basic problems of foliation
theory has been to understand the “dynamical meaning” of this class. A fundamental breakthrough
was obtained by Gerard Duminy in the unpublished manuscripts [32, 33], where the study of this
problem “entered its modern phase”. (See also the reformulation of these results by Cantwell and
Conlon in [22].) Based on this breakthrough, the papers [55, 58] showed that if GV (F) 6= 0 then
there is a saturated set of positive measure on which η is non-zero, and hence the set of hyperbolic
leaves HF has positive Lebesgue measure. This study culminated in the following result of the
author with Remi Langevin from [64]:

THEOREM 5.15. Let F be a C2-foliation of codimension-one on a compact manifold. If HF has
positive Lebesgue measure, then F admits exponential quivers, and in particular the dynamics of GF
admits ping-pong games. Thus, h(GF ) > 0.

Combining Theorem 5.15 with the previous remarks yields Theorem 5.8.

Theorem 5.15 is the basis for the somewhat-cryptic Problem 5.3 given at the start of this section.
The assumption that the class [η] ∈ H1(M,F) is non-trivial on a set of positive Lebesgue measure
leads to positive entropy, suggests the question whether there are other such classes, and to what
extent their values in cohomology are related to foliation dynamics.

In general, the results of this section are just part of a more general “Pesin Theory for foliations” as
sketched in the author’s overview paper [59], whose study continues to yield new insights into the
dynamical properties of foliations for which HF is non-empty.
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6. Classification of Minimal Sets

In this last lecture, we discuss a special case of the study of foliation dynamics, the properties of
minimal sets – their dynamical special properties and approaches towards their classification.

Recall that a minimal set for F is a closed, saturated subset M ⊂ M for which every leaf L ⊂ M
is dense. Thus, in spirit at least, what is true for one leaf in M must be “true for all leaves” of M.
This is, of course, false in general; but the study of dynamical properties for which this fails to be
true is of particular interest as well. As usual, we note that M compact implies that there always
exists at least one minimal set for F in M .

A related notion is that of a transitive set for F , which is a closed saturated subset Z ⊂ M such
that there exists at least one dense leaf L0 ⊂ Z. In this case, one can also ask what properties of
this dense leaf are propagated to the other leaves in Z. Very little is known about the transitive
sets for foliations. In general, understanding the properties of foliation minimal sets is a sufficiently
challenging problem.

Note that if M ⊂ M is any closed saturated subset, then it is an example of a foliated space, as
studied for example in [84] or [18, Chapter 11]. In particular, the minimal sets of a foliation F can
be studied “independently” as foliated spaces.

Traditionally, the minimal sets are divided into three classes. A compact leaf of F is a minimal set.
If every leaf of F is dense, then M itself is a minimal set. The third possibility is that the minimal
set M has no interior, but contains more than one leaf, hence the intersection M ∩ T is always a
perfect set. This third case can be subdivided into further cases: if the intersection M ∩ T is a
Cantor set, then M is said to be an exceptional minimal set, and otherwise if M∩T has no interior
but is not totally disconnected, then it is said to be an exotic minimal set. For codimension one
foliations, the case of exotic minimal sets cannot occur, but for foliations with codimension greater
than one there are various types of constructions of exotic minimal sets [11].

The shape of a minimal set is one of the most basic properties, for which there is surprisingly little
discussion in the foliation literature. The concept of shape for a compact metric space was introduced
by Borsuk [13] and “modern shape theory” develops algebraic topology of the shape approximations
of spaces [77, 78]. The Conley Index of invariant sets for flows is one traditional application of shape
theory to the dynamics of flows. We consider a few basic questions about the shape of minimal sets.

DEFINITION 6.1. Let Z ⊂M be a saturated compact subset. The shape of Z is the equivalence

class of any descending chain of open subsets M ⊃ V1 ⊃ · · · ⊃ Vk ⊃ · · · ⊃ Z with Z =
∞⋂
k=1

Vk

The notion of equivalence referred to in the definition is defined by a “tower of equivalences” between
such approximating neighborhood systems. The reader is referred to [77, 78] for details and especially
the subtleties of this definition. Here is one basic property of shape:

DEFINITION 6.2. Let Z ⊂ M be a saturated compact subset, and w0 ∈ Z a fixed basepoint.
Then Z has stable shape if the pointed inclusions (Vk+1, w0) ⊂ (Vk, w0) are homotopy equivalences
for all k � 0.

The shape fundamental group of Z is defined by

(7) π̂1(Z, w0) = inv lim{π1(Vk+1, w0)→ π1(Vk, w0)}

If Z = M then clearly Z has stable shape.

Note that if Z has stable shape, then for k � 0 we have π̂1(Z, w0) ∼= π1(Vk, w0). The following
example from [25] shows that even for minimal sets with stable shape, the isomorphisms between
stages of the shape tower exhibit subtleties.
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Consider a Denjoy flow on the 2-torus T2, obtained by applying inflation to an orbit of the flow, as
illustrated in Figure 14 below. These minimal sets are stable: π̂1(Z, w0) = π1(T2 − {w1}) ∼= Z ∗ Z.

Figure 14. Inflating an orbit to obtain a Denjoy flow

As another example, let F be a codimension-one foliation with an exceptional minimal set M ⊂M .
Then M has stable shape if and only if the complement M − M consists of a finite union of
connected open saturated subsets. In the shape framework, one of the long-standing open problems
for codimension-one foliation theory is then:

PROBLEM 6.3. Let F be a codimension-one, C2foliation of a compact manifold M . Show that
an exceptional minimal set M for F must have stable shape.

More generally, one can ask whether there are other classes of foliations with codimension greater
than one, for which the minimal sets are “expected” to have stable shape?

Associated to a shape approximation of a transitive set Z is another group-like object, defined using
the foliate structure of Z. Let L0 ⊂ Z be a dense leaf, and choose a basepoint w0 ∈ L0. Let ε0 > 0
be a Lebesgue number for an open cover of M by foliation charts. Define a system of approximating
open neighborhoods,

Vk = {x ∈M | dM (x,Z) < ε0/k}

For k > 0, let τw0,z : [0, 1] → L0 be a leafwise path such that dM (w0, z) < ε0/k. Then τ defines
closed path τ̂ in Vk, obtained by concatenating τ with a short path contained in BM (w0, ε0/k) that
joins the endpoints of τ . Define an equivalence relation on such loops by τ̂0 ∼ τ̂1 if there is a leafwise
homotopy τt from τ0 to τ1 such that τt(0) = w0 and τt(1) ∈ BM (w0, ε0/k) for all 0 ≤ t ≤ 1. The
collection of all such loops up to equivalence is denoted by

(8) πF1 (Vk, w0) = {τ̂ | τ̂ ∼ τ̂ ′}
The sets πF1 (Vk, w0) do not have a group structure, as concatenation of paths is not necessarily
well-defined, unless the holonomy pseudogroup GF is equicontinuous. In any case, there are always
inclusions πF1 (Vk′ , w0) ⊂ πF1 (Vk, w0) for k′ > k.

Associated to each such τ̂ is the holonomy map hτ defined by τ which contains w0 in its domain.
The collection of all such holonomy maps define the shape dynamics of Z. The idea is simply to
consider the holonomy along “almost closed leafwise paths”, which has a long tradition in foliation
folklore. Shape theory simply adds some additional formal structure to their consideration. This
notion is closely associated to the concept of “germinal holonomy” introduced by Timothy Gendron
[42, 43]. A related construction has been used by André Haefliger in his study of the isometry groups
associated to the holonomy along a fixed leaf of a Riemannian foliation [50].

PROBLEM 6.4. Given a minimal set M, what can we saw about the “shape dynamics” of M?

For example, if GF is equicontinuous, then the shape dynamics are associated to a local isometric
group action on T . As another example, if F is defined by a suspension of a finitely-generated group
Γ acting on a compact space N , then the shape dynamics is a form of associated inverse limit action,
and the problem asks what aspects of the dynamics of the foliation are captured by this action.
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We mention one other aspect of the shape theory for minimal sets, which has precedents in the study
of codimension-one foliations and Riemannian foliations. Let {Vk | M ⊂ Vk} be a system of open
shape approximations to a minimal set M, then there are maps ιk : π`(Vk, w0)→ π`(M,w0) for each
` > 0, induced by the inclusions Vk ⊂M . Thus, there are induced maps

ι∗ : π̂`(Z, w0)→ πM
` (M,w0) ⊂ π`(M,w0)

We formulate another general question:

PROBLEM 6.5. Given a minimal set M, how is the image group πM
` (M,w0) related to the dy-

namics of F and the topology of M?

For the remainder of the section, we discuss the dynamical properties of minimal sets and how these
are related to their classification. First, we recall a result mentioned previously:

THEOREM 6.6 (G-L-W 1988). Let F be a C1-foliation F of codimension q ≥ 1 on a compact
manifold M , and let M be a minimal set for F . If the restricted entropy h(GF ,M) = 0, then the
action of GF restricted to M ∩ T admits an invariant probability measure.

Thus, if M does not admit a transverse invariant measure, then the restricted entropy h(GF ,M) > 0.

Moreover, if h(GF ,M) > 0 then by Proposition 5.9 there exists a transversally hyperbolic invariant
probability measure µ∗ for the foliation geodesic flow restricted to M, and hence M∩HF 6= ∅. One
of the main open problems in foliation dynamics is to obtain a partial converse to this.

DEFINITION 6.7. A minimal set M is said to be hyperbolic if M ∩HF 6= ∅.

PROBLEM 6.8. Let F be a Cr-foliation F of codimension q ≥ 1 on a compact manifold M ,
and let M be a hyperbolic minimal set. Find conditions on r ≥ 1, the topology of M, and/or the
Hausdorff dimension of M ∩HF ∩ T which are sufficient to imply that h(GF ,M) > 0.

In general, one might expect that generically, the typical minimal set of F is hyperbolic. There is
a family of constructions of foliations for which this is always the case. Let N be a Riemannian
manifold of dimension q with metric dN . Let X ⊂ N be a convex subset for the metric. A
diffeomorphism f : N → N is said to be contracting on X if f(X) ⊂ X and for all x, y ∈ X, we have
dN (f(x), f(y)) < dN (x, y). Then define

DEFINITION 6.9. An iterated function system (IFS) on N is a collection of diffeomorphisms
{f1, . . . , fk} of N and a compact convex subset X ⊂ N such that each f` is contracting on X.

Note that since X is assumed compact, the contracting assumption implies that for each map f` the
norm of its differential Df` is uniformly less than 1. That is, they are infinitesimal contractions.

The suspension construction [17, 18] yields a foliation F on a fiber bundle M over a surface of genus
k with fiber N , for which the maps {f1, . . . , fk} define the holonomy of F . If the manifold N is
compact then M will also be compact.

The relevance of this construction is that such a system admits a minimal set K ⊂ X, which is
necessarily hyperbolic. In fact, K is the unique minimal set for the restriction of the action to X.
Let Σ = 〈f1, · · · , fk〉 be the positive semigroup generated by the generators. Then we have

K = K{f1, . . . , fk} =
⋂
f∈Σ

f(X)

The set K is called the Markov Minimal Set associated to the IFS (see [11]).

The traditional construction of an IFS is for N = Rq and the maps f` are assumed to be affine
contractions. The compact convex set X can then be chosen to be any sufficiently large closed
ball about the origin in Rq. There is a vast literature on affine IFS’s as well as illustrations of the
possible invariant sets. We include in Figure 15 below just one random example to give an idea of
the complexity of the sets so obtained.
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Note that every affine map of Rq extends to a conformal map of Sq, so these constructions also
provide examples of hyperbolic minimal sets for smooth foliations of compact manifolds. However,
the construction of affine minimal sets has many generalizations, and leads to a variety of interesting
examples, which have not been examined from the foliation point of view.

Figure 15. Minimal set for an IFS

Finally, we consider the case of minimal sets M for which the restricted entropy h(GF ,M) = 0.
This “zero entropy” case is most interesting, as it includes the solenoidal minimal sets mentioned
previously.

DEFINITION 6.10. A minimal set M is said to be parabolic if M ∩HF = ∅.

We have seen previously that h(GF ,M) > 0 implies M ∩ HF 6= ∅ so the parabolic minimal sets
include the zero entropy case. Also, a minimal set for a foliation for which GF acts distally will be
parabolic.

Recall that a compact foliation is one for which every leaf is compact.

PROPOSITION 6.11. Let F be a C1-foliation of a compact manifold M , with all leaves of F
compact. Then every leaf of F is a parabolic minimal set.

Proof. A compact foliation is clearly distal, so by the proof of Theorem 5.6, we have HF = ∅. �

In general, one can ask for other constructions of parabolic minimal sets of C1-foliations, about
which little is known. We conclude this section with one such construction, which yields minimal
sets with the special structure of a generalized solenoid.

An n-dimensional solenoid is an inverse limit space

S = lim
←
{p`+1 : L`+1 → L`}

where for ` ≥ 0, L` is a closed, oriented, n-dimensional manifold, and p`+1 : L`+1 → L` are smooth,
orientation-preserving proper covering maps. These were introduced by McCord [81]as generaliza-
tions of the classical notion of a solenoid defined by covering maps of the circle, where all L` = S1.
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To the author’s knowledge, the following problem is completely open, with the exception of the
results cited afterwards.

PROBLEM 6.12. Let S = lim
←
{p`+1 : L`+1 → L`} be an n-dimensional solenoid. When does there

exists a Cr-foliation of a compact manifold M for which S is homeomorphic to a parabolic minimal
set of F?

Theorem 7 of Clark and Fokkink [24] give a partial solution to this question in the case of r = 0.

Another partial result is provided by a recent result of Clark and the author [26], which constructs
such minimal sets for Cr-foliations, but the construction severely restricts the bonding maps due to
the differentiability requirement.

THEOREM 6.13 (Clark-H 2008). Let F0 be a Cr-foliation of codimension q ≥ 2 on a manifold
M . Let L0 be a compact leaf with H1(L0; R) 6= 0, and suppose that F0 is a product foliation in some
open neighborhood U of L0. Then there exists a foliation F on M which is Cr-close to F0, and F
has a solenoidal minimal set contained in U with base L0. If F0 is a distal foliation, then F is also
distal.

The method of proof is to build a “solenoidal plug” for the foliation in a tubular foliated neighborhood
of the compact leaf L0. The construction of such plugs follows from a general procedure:

THEOREM 6.14. Let L0 be a closed oriented manifold of dimension n, with H1(L0,R) 6= 0. Let
q ≥ 2, r ≥ 1, and F0 denote the product foliation of M = L0 ×Dq. Then there exists a Cr-foliation
F of M which is Cr-close to F0, such that F is a volume-preserving, distal foliation, and satisfies

(1) L0 is a leaf of F
(2) F = F0 near the boundary of M
(3) F has a minimal set S which is a generalized solenoid with base L0

(4) each leaf L ⊂ S is a covering of L0.

We conclude with the general:

PROBLEM 6.15. Find constructions and a classification for the parabolic ) or even just distal)
minimal sets of Cr-foliations when r ≥ 1.

When considered as a homework exercise, one should allow several years for its completion. Hints
may be contained in the references [28, 39, 74].

7. Some Open Problems

Monday: Characterize the transversally hyperbolic invariant probability measures µ∗ for the foliation
geodesic flow of a given foliation.

Tuesday: Classify the foliations with subexponential orbit complexity and distal transverse structure.

Wednesday: Find conditions on the geometry of a foliation such that exponential orbit growth implies
positive entropy.

Thursday: Find conditions on the Lyapunov spectrum and invariant measures for the geodesic flow
which implies positive entropy.

Friday: Characterize the exceptional minimal sets of zero entropy.

A solution (or even a reasonable partial solution) to any of these problems would constitute a
fundamental advance in our understanding of foliation dynamical systems.
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