Lecture 3: Exponential Complexity

Steven Hurder

University of Illinois at Chicago
www.math.uic.edu/~hurder/talks/
Recall a simple example from advanced calculus.

Let $f(x) = x/2$.

Let $g(x)$ be smooth with $g(0) = 0$, $g'(0) = 1/2$.

Then $g \sim f$ near $x = 0$. That is, for $\delta > 0$ sufficiently small, there is a smooth map $h: (-\epsilon, \epsilon) \to \mathbb{R}$ such that $h^{-1} \circ g \circ h = f(x)$ for all $|x| < \delta$.

Fact: Exponentially contracting (or simply hyperbolic) maps have a single parameter (their derivative $g'(0)$ at the fixed point) for their germinal conjugacy class.

For maps which are “completely flat” at the origin, where $g(0) = 0$, $g'(0) = 1$, $g^k(0) = 0$ for all $k > 1$, no such classification exists.

Moral: *Complexity is Simplicity.*
Foliation complexity

Let \mathcal{F} be a foliation of a compact Riemannian manifold M.

For each $w \in M$ the leaf L_w containing w inherits a Riemannian metric for which L_w is geodesically complete.

Fix L_w and then count the number of points $Gr(L_w, d) = \#\{L_w \cap T\}$.

The rate of growth of the function $d \mapsto Gr(L_w, d)$ is a measure of the complexity of the leaf.

L_w has exponential growth type if there exists $\lambda > 0$ and $d_0 \geq 0$ such that

$$Gr(L_w, d) \geq \exp\{\lambda \cdot d\}, \quad d \geq d_0$$

L_w has polynomial growth type if there exists $m > 0$ and $d_0 \geq 0$ such that

$$Gr(L_w, d) \leq m^k, \quad d \geq d_0$$
Subexponential complexity

Definition: A foliation \mathcal{F} is *uniformly subexponential* if:

for all $\epsilon > 0$, there exists C_ϵ, d_ϵ so that for all $w \in M$,

$$Gr(L_w, d) \leq C_\epsilon \cdot \exp\{\epsilon \cdot d\} \quad , \quad d \geq d_\epsilon$$

The celebrated theorem of Connes, Feldman and Weiss [1981] implies:

Theorem: If \mathcal{F} is uniformly subexponential, then the equivalence relation it defines on the transversal space \mathcal{T} is amenable, hence hyperfinite.

The pseudogroup action $G_\mathcal{F}$ on \mathcal{T} is *hyperfinite* if it is *measurably orbit equivalent* to an action of the integers \mathbb{Z} on the interval $[0, 1]$.

Moral: Subexponential complexity often leads to ambiguity.
Expansion growth

We measure exponential complexity for pseudogroup actions, following [Bowen 1971] and [Ghys, Langevin & Walczak 1988].

Let $\epsilon > 0$ and $d > 0$. A subset $\mathcal{E} \subset \mathcal{T}$ is said to be (ϵ, d)-separated if

- for all $w, w' \in \mathcal{E} \cap \mathcal{T}_i$
- there exists $g \in \mathcal{G}_\mathcal{F}$ with $w, w' \in \text{Dom}(g) \subset \mathcal{T}_i$, and $\|g\| \leq d$
- then $d_{\mathcal{T}}(g(w), g(w')) \geq \epsilon$.
- If $w \in \mathcal{T}_i$ and $w' \in \mathcal{T}_j$ for $i \neq j$ then they are (ϵ, d)-separated by default.

The “expansion growth function” counts the maximum of this quantity:

$$h(\mathcal{G}_\mathcal{F}, \epsilon, d) = \max\{\#\mathcal{E} \mid \mathcal{E} \subset \mathcal{T} \text{ is } (\epsilon, d)\text{-separated}\}$$

If the pseudogroup consists of isometries, for example, then applying elements of $\mathcal{G}_\mathcal{F}$ does not help to separate points, so these growth functions remain polynomial as functions of d, for all ϵ.
Foliation geometric entropy

The function \(d \mapsto h(\mathcal{G}_\mathcal{F}, \epsilon, d) \) measures expansion growth at distance \(d \) - sort of an integrated total exponent.

Define:

\[
h(\mathcal{G}_\mathcal{F}, \epsilon) = \limsup_{d \to \infty} \frac{\ln \left\{ \max \{ \# \mathcal{E} \mid \mathcal{E} \text{ is } (\epsilon, d)-\text{separated} \} \right\}}{d}
\]

\[
h(\mathcal{G}_\mathcal{F}) = \lim_{\epsilon \to 0} h(\mathcal{G}_\mathcal{F}, \epsilon)
\]

Theorem: [GLW 1988] The quantity \(h(\mathcal{G}_\mathcal{F}) \) is finite if \(\mathcal{F} \) is a \(C^1 \)-foliation. Moreover, the property \(h(\mathcal{G}_\mathcal{F}) > 0 \) is independent of all choices.

Theorem: If \(\mathcal{F} \) is defined by a flow \(\phi_t \) then \(h(\mathcal{G}_\mathcal{F}) = 2 \cdot h_{top}(\phi_1) \).
Doubling maps have entropy $\ln(2) > 0$

Exercise: The Hirsch foliations always have positive geometric entropy.

Solution: The holonomy pseudogroup \mathcal{G}_F of the Hirsch example is topologically semi-conjugate to the pseudogroup generated by the doubling map $z \mapsto z^2$ on \mathbb{S}^1.

After d-iterations, the inverse map to $z \mapsto z^{2^d}$ has derivative of norm 2^d so we have a rough estimate

$$h(\mathcal{G}_F, \epsilon, d) \sim \left(\frac{2\pi}{\epsilon}\right) \cdot 2^d$$
Orbit growth implies entropy

For the Hirsch example, notice as we wander out the tree-like leaf, we are also wandering around the transversal space \mathcal{T}.
Manning’s Theorem

Let B be a compact manifold of non-positive curvature.
Let $M = T^1 B$ denote the unit tangent bundle to B.
Let $\phi_t : M \to M$ be the geodesic flow of B.

Theorem: [Manning 1976] $h_{top}(\phi) = Gr(\pi_1(B, b_0))$

That is, the growth rate of the volume of balls in the universal covering of B equals the entropy.

This is actually a theorem about foliation entropy and growth rates of leaves.
Fundamental domains

The assumption that B has non-positive curvature implies that its universal covering \tilde{B} is a disk, and we can “color” it with fundamental domains:

The proof of Manning’s Theorem follows from the picture.
Assume that B has uniformly negative sectional curvatures.

Let $\phi_t: M \to M$ be the geodesic flow. Define an equivalence relation on points of M:

$$w \sim_\phi w' \iff d_M(\phi_t(w), \phi_t(w')) \leq C \text{ for } t \to \infty$$

Then define

$$L_w = \{ w' \in M \mid w' \sim_\phi w \}$$

Theorem: [Pugh-Shub 1974] The sets L_w form the leaves of a C^1-foliation of M. The resulting foliation is called the *weak-stable foliation* for ϕ_t.

1) Each leaf L_w is a C^∞-immersed submanifold of M.

2) The orbits of the geodesic flow $\phi_t(w)$ are contained in the leaves of \mathcal{F}.
Theorem: Let B be a compact manifold of negative curvature, and let \mathcal{F} be the weak stable foliation for the geodesic flow ϕ_t. Then

$$h(\mathcal{G}_\mathcal{F}) = 2 \cdot h_{\text{top}}(\phi_1)$$

The proof that $h(\mathcal{G}_\mathcal{F}) \geq 2 \cdot h_{\text{top}}(\phi_1)$ is easy - we use the holonomy along geodesic segments to separate points.

The other estimate requires knowing about the structure of the weak stable foliations - the leaves are obtained by applying the geodesic flow to the strong stable foliations, which are polynomial growth, so do not add any exponential complexity.
Entropy and chaos

Question: When is \(h(G_F) > 0? \)

- Expanding holonomy (Hirsch examples)
- Weak stable foliations (for Anosov flows)
- Ping-pong games (Resilient leaves in codimension one)

Are there other canonical situations where we can expect positive entropy?

For example, if \(F \) has leaves of exponential growth, does there always exist a \(C^1 \)-close perturbation of \(F \) with positive entropy?

Next time, we discuss the relation between foliation entropy and the existence of hyperbolic invariant measures for the foliation geodesic flow.
Monday [3/5/2010]: Characterize the transversally hyperbolic invariant probability measures μ_* for the foliation geodesic flow of a given foliation.

Tuesday [4/5/2010]: Classify the foliations with subexponential orbit complexity and distal transverse structure.

Wednesday [5/5/2010]: Find conditions on the geometry of a foliation such that exponential orbit growth implies positive entropy.

Thursday [6/5/2010]:

Friday [7/5/2010]:

