#### Lecture 5: Foliation minimal sets

#### Steven Hurder

University of Illinois at Chicago www.math.uic.edu/ $\sim$ hurder/talks/

#### Minimal sets

 $\mathcal{Z} \subset M$  minimal  $\iff$  closed and every leaf  $L \subset \mathcal{Z}$  is dense.

 $\mathcal{W} \subset M$  is *transitive*  $\iff$  closed and there exists a dense leaf  $L \subset \mathcal{Z}$ 

#### Minimal sets

 $\mathcal{Z} \subset M$  minimal  $\iff$  closed and every leaf  $L \subset \mathcal{Z}$  is dense.

 $\mathcal{W} \subset M$  is transitive  $\iff$  closed and there exists a dense leaf  $L \subset \mathcal{Z}$ 

M compact then minimal sets for foliations always exist.

Transitive sets are most important for flows – Axiom A attractors, have minimal sets which are periodic orbits in the domain of attraction.

#### Minimal sets

 $\mathcal{Z} \subset M$  minimal  $\iff$  closed and every leaf  $L \subset \mathcal{Z}$  is dense.

 $\mathcal{W} \subset M$  is transitive  $\iff$  closed and there exists a dense leaf  $L \subset \mathcal{Z}$ 

M compact then minimal sets for foliations always exist.

Transitive sets are most important for flows – Axiom A attractors, have minimal sets which are periodic orbits in the domain of attraction.

Understanding minimal sets of foliations causes enough trouble.

# Shape of minimal sets

 $\mathcal{Z} \subset M$  a compact set.

### Shape of minimal sets

 $\mathcal{Z} \subset M$  a compact set.

**Definition:** The *shape* of  $\mathcal{Z}$  is the equivalence class of any descending chain of open subsets  $M \supset V_1 \supset \cdots \supset V_k \supset \cdots \supset \mathcal{Z}$  with  $\mathcal{Z} = \bigcap_{k \to \infty} V_k$ 

Choose a basepoint  $w_0 \in \mathcal{Z}$ . A minimal set  $\mathcal{Z}$  has *stable* shape if the pointed inclusions

$$(V_{k+1}, w_0) \subset (V_k, w_0)$$

are homotopy equivalences for all  $k \gg 0$ .

### Shape of minimal sets

 $\mathcal{Z} \subset M$  a compact set.

**Definition:** The *shape* of  $\mathcal{Z}$  is the equivalence class of any descending chain of open subsets  $M \supset V_1 \supset \cdots \supset V_k \supset \cdots \supset \mathcal{Z}$  with  $\mathcal{Z} = \bigcap_{k \to \infty} V_k$ 

Choose a basepoint  $w_0 \in \mathcal{Z}$ . A minimal set  $\mathcal{Z}$  has *stable* shape if the pointed inclusions

$$(V_{k+1}, w_0) \subset (V_k, w_0)$$

are homotopy equivalences for all  $k \gg 0$ .

The *shape fundamental group*:

$$\widehat{\pi}_1(\mathcal{Z}, w_0) = \mathsf{inv} \; \mathsf{lim}\{\pi_1(V_k, w_0) \leftarrow \pi_1(V_{k+1}, w_0)\}$$

### DA examples

The "DA process" converts the irrational slope foliation into an exceptional minimal set for a DA map:



These minimal sets are stable:  $\widehat{\pi}_1(\mathcal{Z}, w_0) = \pi_1(\mathbb{T}^2 - \{w_1\}) \cong \mathbb{Z} * \mathbb{Z}$ .

# Foliated shape fundamental group

 $\epsilon_L > 0$  is Lebesgue number for an open cover of M by foliation charts.

Given a leafwise path  $au_{w,z} \colon [0,1] o L_w$  suppose that  $d_M(w,z) < \delta < \epsilon_L$ .

Then  $\tau$  defines closed path in  $V_{\delta} = \{x \in M \mid d_M(x, \mathcal{Z}) < \delta\}$ , and holonomy map  $h_{\tau}$ .

This is called an approximate holonomy orbit, and generalize a similar concept for hyperbolic flows.

# Foliated shape fundamental group

 $\epsilon_L > 0$  is Lebesgue number for an open cover of M by foliation charts.

Given a leafwise path  $\tau_{w,z} \colon [0,1] \to L_w$  suppose that  $d_M(w,z) < \delta < \epsilon_L$ .

Then  $\tau$  defines closed path in  $V_{\delta} = \{x \in M \mid d_{M}(x, \mathcal{Z}) < \delta\}$ , and holonomy map  $h_{\tau}$ .

This is called an approximate holonomy orbit, and generalize a similar concept for hyperbolic flows.

Such holonomy maps define the *shape dynamics* of  $\mathcal{Z}$ ..

**Problem:** Given a minimal set  $\mathcal{Z}$ , what can se saw about the "shape dynamics" of  $\mathcal{Z}$ .

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *hyperbolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} \neq \emptyset$ , and *uniformly hyperbolic* if  $\mathcal{Z} \subset M_{\mathcal{H}}$ .

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *hyperbolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} \neq \emptyset$ , and *uniformly hyperbolic* if  $\mathcal{Z} \subset M_{\mathcal{H}}$ .

**Proposition:** If  $\mathcal Z$  is hyperbolic, then there exists hyperbolic *approximate* holonomy maps for  $\mathcal Z$ . That is, there exists closed orbits defined on arbitrarily small open neighborhoods of  $\mathcal Z$  along which the normal holonomy has contracting directions.

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *hyperbolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} \neq \emptyset$ , and *uniformly hyperbolic* if  $\mathcal{Z} \subset M_{\mathcal{H}}$ .

**Proposition:** If  $\mathcal{Z}$  is hyperbolic, then there exists hyperbolic *approximate* holonomy maps for  $\mathcal{Z}$ . That is, there exists closed orbits defined on arbitrarily small open neighborhoods of  $\mathcal{Z}$  along which the normal holonomy has contracting directions.

**Problem:** Suppose that  $\mathcal{F}$  is a  $C^2$  foliation of codimension one, and  $\mathcal{F}$  is a hyperbolic *exceptional* minimal set. Must  $\mathcal{Z}$  have Lebesgue measure zero?

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *hyperbolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} \neq \emptyset$ , and *uniformly hyperbolic* if  $\mathcal{Z} \subset M_{\mathcal{H}}$ .

**Proposition:** If  $\mathcal{Z}$  is hyperbolic, then there exists hyperbolic *approximate* holonomy maps for  $\mathcal{Z}$ . That is, there exists closed orbits defined on arbitrarily small open neighborhoods of  $\mathcal{Z}$  along which the normal holonomy has contracting directions.

**Problem:** Suppose that  $\mathcal{F}$  is a  $C^2$  foliation of codimension one, and  $\mathcal{F}$  is a hyperbolic *exceptional* minimal set. Must  $\mathcal{Z}$  have Lebesgue measure zero?

**Problem:** Can we even begin to classify the stable exceptional minimal sets for  $C^1$ -foliations?

# Minimal sets defined by an IFS

Let  $K \subset \mathbb{R}^n$  be compact convex set, and  $h_\ell \colon K \to K$  affine maps.

Then pseudogroup generated by  $\{h_1, \ldots, h_k\}$  on  $K \subset \mathbb{R}^n$  is called a Iterated Function System.

For  $J=(j_1,j_2,\ldots,j_m)$  set  $h_J=h_{j_1}\circ\cdots\circ h_{j_m}\colon K\to K$ .

# Minimal sets defined by an IFS

Let  $K \subset \mathbb{R}^n$  be compact convex set, and  $h_\ell \colon K \to K$  affine maps.

Then pseudogroup generated by  $\{h_1, \ldots, h_k\}$  on  $K \subset \mathbb{R}^n$  is called a Iterated Function System.

For 
$$J=(j_1,j_2,\ldots,j_m)$$
 set  $h_J=h_{j_1}\circ\cdots\circ h_{j_m}\colon K\to K$ .

**Proposition:** If each map  $h_{\ell}$  is a contraction, then  $K_* = \bigcap h_J(K)$  is a hyperbolic minimal set.

# Minimal sets defined by an IFS

Let  $K \subset \mathbb{R}^n$  be compact convex set, and  $h_\ell \colon K \to K$  affine maps.

Then pseudogroup generated by  $\{h_1, \ldots, h_k\}$  on  $K \subset \mathbb{R}^n$  is called a Iterated Function System.

For 
$$J=(j_1,j_2,\ldots,j_m)$$
 set  $h_J=h_{j_1}\circ\cdots\circ h_{j_m}\colon K\to K$ .

**Proposition:** If each map  $h_{\ell}$  is a contraction, then  $K_* = \bigcap h_J(K)$  is a hyperbolic minimal set.

This construction has many generalizations, and leads to a variety of interesting examples.

# A hyperbolic minimal set defined by an IFS



**Definition:** A minimal set  $\mathcal{Z}$  is said to be *parabolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} = \emptyset$ .

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *parabolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} = \emptyset$ .

**Proposition:** Let  $\mathcal{F}$  be a  $C^1$ -foliation of a compact manifold M, with all leaves of  $\mathcal{F}$  compact. Then every leaf of  $\mathcal{F}$  is a parabolic minimal set.

*Proof:* If some holonomy transformation along  $L_w$  has a non-unitary eigenvalue, then it has a stable manifold.

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *parabolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} = \emptyset$ .

**Proposition:** Let  $\mathcal{F}$  be a  $C^1$ -foliation of a compact manifold M, with all leaves of  $\mathcal{F}$  compact. Then every leaf of  $\mathcal{F}$  is a parabolic minimal set.

*Proof:* If some holonomy transformation along  $L_w$  has a non-unitary eigenvalue, then it has a stable manifold.

What other sorts of parabolic minimal sets are there?

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *parabolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} = \emptyset$ .

**Proposition:** Let  $\mathcal{F}$  be a  $C^1$ -foliation of a compact manifold M, with all leaves of  $\mathcal{F}$  compact. Then every leaf of  $\mathcal{F}$  is a parabolic minimal set.

*Proof:* If some holonomy transformation along  $L_w$  has a non-unitary eigenvalue, then it has a stable manifold.

What other sorts of parabolic minimal sets are there?

**Proposition:** A parabolic minimal set has zero entropy.

**Definition:** A minimal set  $\mathcal{Z}$  is said to be *parabolic* if  $\mathcal{Z} \cap M_{\mathcal{H}} = \emptyset$ .

**Proposition:** Let  $\mathcal{F}$  be a  $C^1$ -foliation of a compact manifold M, with all leaves of  $\mathcal{F}$  compact. Then every leaf of  $\mathcal{F}$  is a parabolic minimal set.

*Proof:* If some holonomy transformation along  $L_w$  has a non-unitary eigenvalue, then it has a stable manifold.

What other sorts of parabolic minimal sets are there?

**Proposition:** A parabolic minimal set has zero entropy.

Question: What are the zero entropy minimal sets?

#### Solenoidal minimal sets

An *n-dimensional solenoid* is an inverse limit space

$$S = \lim_{\leftarrow} \{ p_{\ell+1} \colon L_{\ell+1} \to L_{\ell} \}$$

where for  $\ell \geq 0$ ,  $L_{\ell}$  is a closed, oriented, *n*-dimensional manifold, and  $p_{\ell+1}: L_{\ell+1} \to L_{\ell}$  are smooth, orientation-preserving proper covering maps.

#### Solenoidal minimal sets

An *n-dimensional solenoid* is an inverse limit space

$$S = \lim_{\leftarrow} \{ p_{\ell+1} \colon L_{\ell+1} \to L_{\ell} \}$$

where for  $\ell > 0$ ,  $L_{\ell}$  is a closed, oriented, n-dimensional manifold, and  $p_{\ell+1}: L_{\ell+1} \to L_{\ell}$  are smooth, orientation-preserving proper covering maps.

**Theorem:** [Clark-H 2008] Let  $\mathcal{F}_0$  be a  $C^r$ -foliation of codimension  $q \geq 2$ on a manifold M. Let  $L_0$  be a compact leaf with  $H^1(L_0;\mathbb{R}) \neq 0$ , and suppose that  $\mathcal{F}_0$  is a product foliation in some open neighborhood U of  $L_0$ . Then there exists a foliation  $\mathcal{F}$  on M which is  $C^r$ -close to  $\mathcal{F}_0$ , and  $\mathcal{F}$ has a solenoidal minimal set contained in U with base  $L_0$ . If  $\mathcal{F}_0$  is a distal foliation, then  $\mathcal{F}$  is also distal.

#### Solenoidal minimal sets

This is a consequence of a general construction:

**Theorem:** Let  $L_0$  be a closed oriented manifold of dimension n, with  $H^1(L_0,\mathbb{R}) \neq 0$ . Let  $q \geq 2$ ,  $r \geq 1$ , and  $\mathcal{F}_0$  denote the product foliation of  $M = L_0 \times \mathbb{D}^q$ . Then there exists a  $C^r$ -foliation  $\mathcal{F}$  of M which is  $C^r$ -close to  $\mathcal{F}_0$ , such that  $\mathcal{F}$  is a volume-preserving, distal foliation, and satisfies

- $lackbox{0}$   $L_0$  is a leaf of  $\mathcal{F}$
- ②  $\mathcal{F} = \mathcal{F}_0$  near the boundary of M
- $oldsymbol{\Im}$   ${\mathcal F}$  has a minimal set  ${\mathcal S}$  which is a generalized solenoid with base  $L_0$
- **4** each leaf  $L \subset S$  is a covering of  $L_0$ .

# Constructing solenoids

This is a consequence of a general construction:



#### Problemos de la semana

Monday [3/5/2010]: Characterize the transversally hyperbolic invariant probability measures  $\mu_*$  for the foliation geodesic flow of a given foliation.

Tuesday [4/5/2010]: Classify the foliations with subexponential orbit complexity and distal transverse structure.

Wednesday [5/5/2010]: Find conditions on the geometry of a foliation such that exponential orbit growth implies positive entropy.

Thursday [6/5/2010]: Find conditions on the Lyapunov spectrum and invariant measures for the geodesic flow which implies positive entropy.

Friday [7/5/2010]: Characterize the exceptional minimal sets of zero entropy.

#### References

- J.-M. Gambaudo and C. Tresser, *Diffeomorphisms with infinitely many strange attractors*, **J. Complexity**, 6:409–416, 1990.
- J.-M. Gambaudo, D. Sullivan and C. Tresser, *Infinite cascades of braids and smooth dynamical systems*, **Topology**, 33:85–94, 1994.
- J. Kennedy and J. Yorke, *Bizarre topology is natural in dynamical systems*, **Bull. Amer. Math. Soc.** (N.S.), 32:309–316, 1995.
- A. Bís, S. Hurder, and J. Shive, *Hirsch foliations in codimension greater than one*, in **Foliations 2005**, World Scientific Publishing, 2006: 71–108.
- A. Clark and S. Hurder, Embedding matchbox manifolds, preprint 2008.
- S. Hurder, *Classifying foliations*, **Foliations**, **Topology and Geometry**, Contemp Math. Vol. 498, AMS 2009, pages 1–65.
- A. Biś and S. Hurder, Markov minimal sets of foliations, 2010.
- S. Hurder and A. Rechtman, Some remarks on pseudogroups of four generators, 2010.
- A. Clark, S. Hurder & O. Lukina, Classifying Matchbox Manifolds, 2010.