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Minimal sets

Z ⊂ M minimal ⇐⇒ closed and every leaf L ⊂ Z is dense.

W ⊂ M is transitive ⇐⇒ closed and there exists a dense leaf L ⊂ Z

M compact then minimal sets for foliations always exist.

Transitive sets are most important for flows – Axiom A attractors, have
minimal sets which are periodic orbits in the domain of attraction.

Understanding minimal sets of foliations causes enough trouble.

Steven Hurder (UIC) Dynamics of Foliations May 7, 2010 2 / 14



Minimal sets

Z ⊂ M minimal ⇐⇒ closed and every leaf L ⊂ Z is dense.

W ⊂ M is transitive ⇐⇒ closed and there exists a dense leaf L ⊂ Z

M compact then minimal sets for foliations always exist.

Transitive sets are most important for flows – Axiom A attractors, have
minimal sets which are periodic orbits in the domain of attraction.

Understanding minimal sets of foliations causes enough trouble.

Steven Hurder (UIC) Dynamics of Foliations May 7, 2010 2 / 14



Minimal sets

Z ⊂ M minimal ⇐⇒ closed and every leaf L ⊂ Z is dense.

W ⊂ M is transitive ⇐⇒ closed and there exists a dense leaf L ⊂ Z

M compact then minimal sets for foliations always exist.

Transitive sets are most important for flows – Axiom A attractors, have
minimal sets which are periodic orbits in the domain of attraction.

Understanding minimal sets of foliations causes enough trouble.

Steven Hurder (UIC) Dynamics of Foliations May 7, 2010 2 / 14



Shape of minimal sets

Z ⊂ M a compact set.

Definition: The shape of Z is the equivalence class of any descending

chain of open subsets M ⊃ V1 ⊃ · · · ⊃ Vk ⊃ · · · ⊃ Z with Z =
⋂

k→∞
Vk

Choose a basepoint w0 ∈ Z. A minimal set Z has stable shape if the
pointed inclusions

(Vk+1,w0) ⊂ (Vk ,w0)

are homotopy equivalences for all k � 0.

The shape fundamental group:

π̂1(Z,w0) = inv lim{π1(Vk ,w0)← π1(Vk+1,w0)}
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DA examples

The “DA process” converts the irrational slope foliation into an
exceptional minimal set for a DA map:

These minimal sets are stable: π̂1(Z,w0) = π1(T2 − {w1}) ∼= Z ∗ Z.
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Foliated shape fundamental group

εL > 0 is Lebesgue number for an open cover of M by foliation charts.

Given a leafwise path τw ,z : [0, 1]→ Lw suppose that dM(w , z) < δ < εL.

Then τ defines closed path in Vδ = {x ∈ M | dM(x ,Z) < δ}, and
holonomy map hτ .

This is called an approximate holonomy orbit, and generalize a similar
concept for hyperbolic flows.

Such holonomy maps define the shape dynamics of Z..

Problem: Given a minimal set Z, what can se saw about the “shape
dynamics” of Z.

Steven Hurder (UIC) Dynamics of Foliations May 7, 2010 5 / 14



Foliated shape fundamental group

εL > 0 is Lebesgue number for an open cover of M by foliation charts.

Given a leafwise path τw ,z : [0, 1]→ Lw suppose that dM(w , z) < δ < εL.

Then τ defines closed path in Vδ = {x ∈ M | dM(x ,Z) < δ}, and
holonomy map hτ .

This is called an approximate holonomy orbit, and generalize a similar
concept for hyperbolic flows.

Such holonomy maps define the shape dynamics of Z..

Problem: Given a minimal set Z, what can se saw about the “shape
dynamics” of Z.

Steven Hurder (UIC) Dynamics of Foliations May 7, 2010 5 / 14



Hyperbolic minimal sets

Definition: A minimal set Z is said to be hyperbolic if Z ∩MH 6= ∅, and
uniformly hyperbolic if Z ⊂ MH.

Proposition: If Z is hyperbolic, then there exists hyperbolic approximate
holonomy maps for Z. That is, there exists closed orbits defined on
arbitrarily small open neighborhoods of Z along which the normal
holonomy has contracting directions.

Problem: Suppose that F is a C 2foliation of codimension one, and F is a
hyperbolic exceptional minimal set. Must Z have Lebesgue measure zero?

Problem: Can we even begin to classify the stable exceptional minimal
sets for C 1-foliations?
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Minimal sets defined by an IFS

Let K ⊂ Rn be compact convex set, and h` : K → K affine maps.

Then pseudogroup generated by {h1, . . . , hk} on K ⊂ Rn is called a
Iterated Function System.

For J = (j1, j2, . . . , jm) set hJ = hj1 ◦ · · · ◦ hjm : K → K .

Proposition: If each map h` is a contraction, then K∗ =
⋂

hJ(K ) is a

hyperbolic minimal set.

This construction has many generalizations, and leads to a variety of
interesting examples.
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A hyperbolic minimal set defined by an IFS
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Parabolic minimal sets

Definition: A minimal set Z is said to be parabolic if Z ∩MH = ∅.

Proposition: Let F be a C 1-foliation of a compact manifold M, with all
leaves of F compact. Then every leaf of F is a parabolic minimal set.

Proof: If some holonomy transformation along Lw has a non-unitary
eigenvalue, then it has a stable manifold.

What other sorts of parabolic minimal sets are there?

Proposition: A parabolic minimal set has zero entropy.

Question: What are the zero entropy minimal sets?
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Solenoidal minimal sets

An n-dimensional solenoid is an inverse limit space

S = lim
←
{p`+1 : L`+1 → L`}

where for ` ≥ 0, L` is a closed, oriented, n-dimensional manifold, and
p`+1 : L`+1 → L` are smooth, orientation-preserving proper covering maps.

Theorem: [Clark-H 2008] Let F0 be a C r -foliation of codimension q ≥ 2
on a manifold M. Let L0 be a compact leaf with H1(L0;R) 6= 0, and
suppose that F0 is a product foliation in some open neighborhood U of
L0. Then there exists a foliation F on M which is C r -close to F0, and F
has a solenoidal minimal set contained in U with base L0. If F0 is a distal
foliation, then F is also distal.
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Solenoidal minimal sets

This is a consequence of a general construction:

Theorem: Let L0 be a closed oriented manifold of dimension n, with
H1(L0,R) 6= 0. Let q ≥ 2, r ≥ 1, and F0 denote the product foliation of
M = L0 × Dq. Then there exists a C r -foliation F of M which is C r -close
to F0, such that F is a volume-preserving, distal foliation, and satisfies

1 L0 is a leaf of F
2 F = F0 near the boundary of M

3 F has a minimal set S which is a generalized solenoid with base L0
4 each leaf L ⊂ S is a covering of L0.
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Constructing solenoids

This is a consequence of a general construction:
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Problemos de la semana

Monday [3/5/2010]: Characterize the transversally hyperbolic invariant
probability measures µ∗ for the foliation geodesic flow of a given foliation.

Tuesday [4/5/2010]: Classify the foliations with subexponential orbit
complexity and distal transverse structure.

Wednesday [5/5/2010]: Find conditions on the geometry of a foliation
such that exponential orbit growth implies positive entropy.

Thursday [6/5/2010]: Find conditions on the Lyapunov spectrum and
invariant measures for the geodesic flow which implies positive entropy.

Friday [7/5/2010]: Characterize the exceptional minimal sets of zero
entropy.
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