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Critical points with symmetry

Let f : M → R be a C 0-function, where M is a Riemannian manifold.

Study the critical points of f which respect some additional symmetry:

with respect to finite group Γ acting on M;

with respect to connected Lie group G acting on M;

with respect to a foliation F of M, where we require that f be a
foliated map.

Definition: f : M → M ′ is a foliated map, if (M,F) and (M ′,F ′) are
foliated spaces and f maps leaves of F to leaves of F ′.

Last example is the most general, and includes the previous cases.
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Definition of foliation:
A foliation F of dimension p on a manifold M is a decomposition into
“uniform layers” – the leaves – which are immersed submanifolds: there is
an open covering of M by coordinate charts so that the leaves are mapped
into linear planes of dimension p, and the transition function preserves
these planes.

If the dimensions of the leaves are not constant, then we say F is a singular
foliation. Many of the results of this talk apply also to singular foliations.
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Foliations arise in the study of many subjects:

1 Partial differential equations (Reeb, Godbillon, Sacksteder)

2 Representation theory - cocycles, co-orbit spaces, W ∗ & C ∗-algebras
(Murray – von Neumann, Mackey, Kasparov)

3 Generalized dynamical systems (Anosov, Smale, Hirsch, Shub, Hector)

4 Topology of classifying spaces (Bott, Haefliger, Gelfand-Fuks, Mather,
Morita, Thurston)

5 Geometry - open book decompositions and laminations of manifolds
(Lawson, Winkelnkemper, Thurston, Gabai)

6 Physics & Non-Commutative Geometry (Bellisard, Connes, et al)
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Examples: compact foliations

We say that F is a compact foliation if every leaf L of F is a compact
submanifold. F is a compact Hausdorff foliation if every leaf is compact
and the quotient space M ′ = M/F is Hausdorff. Here are three examples:

Let π : M → M ′ be a fibration with M compact. The fibers
L = π−1(x ′) for x ′ ∈ M ′ define the leaves.

Let M3 be a Seifert fibered 3-manifold, fibered by circles, with base
space B an orbifold.

G a compact connected Lie group and G ×M → M locally free.

Not every compact foliation is compact Hausdorff, so even in this simplest
class of foliations, their study is complicated.
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Examples: non-commutative tori

Lines fill up the 2-torus T2
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Examples: Reeb foliation of S3

Planes fill up the solid 2-torus.
Two copies of the torus glue together to give S3.
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Examples: Lie group actions

Let G be a connected Lie group and K a compact topological space, with
a continuous action ϕ : G ×K→ K. If all orbits of ϕ have the same
dimension, then the action defines a lamination of K.

Examples include:

Locally free action of a Lie group on a compact manifold M

Hull closure K of a quasi-periodic symbol on Rp (or more generally on
connected Lie group G .)

If the orbits of G have varying dimensions, then we get a singular foliation.

Steven Hurder (UIC) Critical point theory for foliations July 27, 2007 8 / 26



Examples: Lie group actions

Let G be a connected Lie group and K a compact topological space, with
a continuous action ϕ : G ×K→ K. If all orbits of ϕ have the same
dimension, then the action defines a lamination of K.

Examples include:

Locally free action of a Lie group on a compact manifold M

Hull closure K of a quasi-periodic symbol on Rp (or more generally on
connected Lie group G .)

If the orbits of G have varying dimensions, then we get a singular foliation.

Steven Hurder (UIC) Critical point theory for foliations July 27, 2007 8 / 26



Examples: discrete group actions

Let Γ be a finitely-generated group and N a compact manifold of
dimension q, with a smooth action α : Γ× N → N.

Then there exists a compact q + 2-dimensional manifold M with foliation
Fα having 2-dimensional leaves, such that the global holonomy of Fα is
conjugate to the representation α.

The point is that the geometry (more precisely, the holonomy) of F
captures all of the information about the given group action.

(The construction of F uses a sequence of “twisted surgeries” on S2 × N,
one for each generator of Γ.)
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Elementary properties:

X ⊂ M is saturated if L ∩ X 6= ∅ =⇒ L ⊂ X

K ⊂ M is transitive if K is closed, saturated (non-empty) and there
exists L ⊂ X whose closure is all of K

K ⊂ M is minimal if K is closed, saturated (non-empty) and every
leaf L ⊂ K is dense.

X compact, saturated subset then there exists a minimal set K ⊂ X .

Lemma: If f : M → R is a foliated map for the point foliation F ′ on R,
then for all c ∈ R the inverse image Xc = f −1(c) is a closed, saturated
subset.

Corollary: Assume that f : M → R is proper, then for each critical value
c ∈ R of f , there exists a minimal set Kc ⊂ Xc with f (Kc) = c .
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Counting critical points

We want to study the critical behavior of foliated maps, where F is
assumed to have leaves which are possibly non-compact.

The classical case: let f : M → R be a C 1-function on a closed
Riemannian manifold M.

Theorem: (Lusternik-Schnirelmann [1934])

#{x | x ∈ M is critical for f } ≥ cat(M)

where cat(M) is the Lusternik-Schnirelmann category of M, which is
defined as the least number of open sets {U1, . . . ,Uk} required to cover
M such that each U` is contractible in M to a point.
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Counting critical orbits

If f : M → R satisfies a symmetry condition, then can require that each
categorical open set U and its contracting homotopy Ht : U → M be
invariant (or saturated) for the symmetry.

The equivariant Lusternik-Schnirelmann category catG (M) of an action by
a Lie group G on a manifold M was introduced by Marzantowicz [1989]
for compact G . He proved that

#{G · x | G · x is critical orbit for f } ≥ catG (M)

Ayala, Lasheras and Quintero [2001] generalized the Marzantowicz results
to proper group actions.

Colman defined transverse LS-category for foliations in her Thesis [1998].
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Transverse LS category of foliations

Let (M,F) be a foliated manifold, and U ⊂ M and open saturated subset.

If F is defined by the action of a Lie group G , then we are requiring that
U be G -invariant.

Definition: U is (transversally) categorical if there is a foliated homotopy
Ht : U → M, where H0 is the inclusion, and H1 has image in a leaf of F .

Definition: (Colman) The transverse LS category cat∩| (M,F) of a
foliated manifold (M,F) is the least number of transversely categorical
open saturated sets required to cover M. If no such covering exists, then
set cat∩| (M,F) =∞.
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Transverse LS category of foliations – examples

Example: Let M → M ′ be a fibration with compact fibers which defines
the foliation F on M. Then cat∩| (M,F) = cat(M ′).

Theorem: (Colman [1998]) If F is compact Hausdorff, then cat∩| (M,F)
is finite. Moreover, the Lusternik-Schnirelmann estimate holds for
counting the number of critical leaves:

#{L | L ⊂ M is critical for f } ≥ cat∩| (M,F)
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Transverse LS category of foliations – more examples

Example: Let M = T2 be the linear foliation of the 2-torus, with all leaves
dense. Then cat∩| (M,F) =∞.

Example: Let M = S3 with the 2-dimensional Reeb foliation. Then
cat∩| (M,F) =∞.

In both examples above, we see the problem arises from the properties of
the leaf closures of F .

Theorem: (Hurder [2000]) Let k = cat∩| (M,F) <∞. Given a
transversally categorical covering of M, {H`,t : U` → M | 1 ≤ ` ≤ k} with
H`,1(U`) ⊂ L`, then each L` is a compact leaf.

Corollary: F has no compact leaves ⇒ cat∩| (M,F) =∞.
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Counting critical minimal sets

The basic observation is that compact leaves are just a special case of
compact minimal sets.

• Given a foliated map f : M → R, the goal should not be to count the
critical leaves of F , but rather the critical minimal sets (or possibly the
critical transitive sets.)

Problem: How to count critical minimal sets?

Solution: Modify the definition of transversally categorical set.
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Essential transverse LS category of foliations

Let (M,F) be a foliated manifold, and U ⊂ M and open saturated subset.

Definition: U is essentially transversally categorical if there is a foliated
homotopy Ht : U → M, where H0 is the inclusion, and H1 has image in a
minimal set of F .

Definition: The essential transverse LS category cate∩| (M,F) of a foliated

manifold (M,F) is the least number of essentially transversely categorical
open saturated sets required to cover M. If no such covering exists, then
set cate∩| (M,F) =∞.

Remark: F a compact foliation =⇒ cate∩| (M,F) = cat∩| (M,F).
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Riemannian foliations

Definition: F is a Riemannian foliation if there is a Riemannian metric on
TM so that the restriction to the normal bundle Q = TF⊥ is invariant
under the leafwise parallelism.

Equivalently, the induced metric on Q is locally projectable: for any open
set U ⊂ M such that F | U is defined by a fibration πU : U → BU then the
map πU is a local Riemannian submersion.

F defined by locally free action of compact connected Lie group =⇒
F is Riemannian.

F compact Hausdorff =⇒ F is Riemannian.

For each leaf L, the closure L is a minimal set of F .
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Main Theorem

Theorem: (Hurder-Töben [2006]) Let F be a Riemannian foliation of a
compact manifold M. Then:

the essential transverse category cate∩| (M,F) is finite;

if the transverse category cat∩| (M,F) is finite, then

cate∩| (M,F) = cat∩| (M,F);

Let f : M → R be a foliated map. Then we have a generalized form
of the Lusternik-Schnirelmann Theorem:

#{Kc | Kc ⊂ M is critical for f } ≥ cate∩| (M,F)

The proof actually gives much more information.
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Molino Theory

Let F be a Riemannian foliation of a compact manifold M.

Let M̂ denote the bundle of orthonormal frames to F – π : M̂ → M is an
O(q)-fibration with a right action of O(q).

Theorem: (Molino [1982])

The foliation F “lifts” to a Riemannian foliation F̂ of M̂ whose
leaves cover those of F
F̂ is O(q)-equivariant.

For each leaf L̂ of F̂ , the closure L̂ is a submanifold of M̂ (and a
minimal set for F̂ .)

The closures of the leaves of F̂ form a compact foliation F̂ of M̂

The leaf space Ŵ = M̂/F̂ is a manifold, and the quotient map

Υ̂ : M̂ → Ŵ is an O(q)-equivariant Riemannian submersion.
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Equivariant foliated LS category
A foliated C r -map f : M → R induces an O(q)-invariant map f̂ : Ŵ → R.

Proposition: Critical minimal sets of f ⇐⇒ critical orbits of f̂

O(q) = O(q)
↓ ↓

M̂
bΥ−→ Ŵ = M̂/F̂

π ↓ ↓ π̂

M
Υ−→ W = M/F

Theorem: (Hurder-Töben [2006]) Let F be a Riemannian foliation of a

compact manifold M. Then cate∩| (M,F) = catO(q)(Ŵ ).

Corollary: Let f : M → R be a foliated map.

#{Kc | Kc ⊂ M is critical for f } ≥ catO(q)(Ŵ )

Hence, one can use the full-force of equivariant LS category theory to
calculate cate∩| (M,F) and estimate the number of critical minimal sets.

Steven Hurder (UIC) Critical point theory for foliations July 27, 2007 21 / 26



Equivariant foliated LS category
A foliated C r -map f : M → R induces an O(q)-invariant map f̂ : Ŵ → R.
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Polar actions

Definition: Let G Lie group acting smoothly by isometries on a complete
Riemannian manifold M. A section for the G -action is an isometrically
immersed complete submanifold i : Σ→ M which meets every orbit and
always orthogonally.

The dimension of Σ is equal to the cohomogeneity of the action, denoted
by q. Note that for any g ∈ G , the map g ◦ i : gΣ→ M is again a section.

Definition: A polar action is a G -action with a section. If Σ is a flat
submanifold, then the action is called hyperpolar.

The geometry of polar actions has been extensively studied by Kostant
[1973], Szenthe [1984], Dadok [1985], Palais & Terng [1988],
Thorbergsson [1999], Kollross [2002], and others.
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Examples of polar actions
1 Isometric cohomogeneity one actions. The sections are the normal

geodesics of a regular orbit. These have been classified in special
cases by Kollross and Berndt & Tamaru, although remains an open
problem to classify all such actions.

2 A compact Lie group G with bi-invariant metric acting on itself by
conjugation. The maximal tori are the sections.

3 Let N be a symmetric space. The identity component of the isometry
group, G = I (N)0, acts transitively on N. We can write N = G/K ,
where K = Gp for some point p ∈ N, and (G ,K ) is called a
symmetric pair. Then the isotropy action

K × G/K → G/K ; (k , gK ) 7→ kgK

and its linearization K × (T[K ]G/K )→ T[K ]G/K at the the tangent
space to the point [K], are hyperpolar. The sections are the maximal
flat submanifolds through [K ], and their tangent spaces in [K ],
respectively. These are called s-representations.
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Weyl group

Let G a Lie group acting smoothly by isometries on a complete Riemannian
manifold M, and assume the action is polar with section i : Σ→ M. Let

N := NG (Σ) = {g ∈ G | g(i(Σ)) = i(Σ)}
Z := ZG (Σ) = {g ∈ G | gi(x) = i(x) for any x ∈ Σ}

Definition: The Weyl group is

WG (Σ) = NG (Σ)/ZG (Σ)

In the case of Example (2) above, this is just the usual Weyl group.
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Category for polar actions

Theorem: (Hurder-Töben [2007]) Let G be a Lie group with a proper
polar action on M, i : Σ→ M a section, and W = NG (Σ)/ZG (Σ) the
generalized Weyl group acting on Σ. Then

catG (M) ≤ catW (Σ) (1)

Proof uses ideas and techniques developed for the study of the transverse
LS category of Riemannian foliations (especially the lifting of foliated
homotopies via the Ehresmann connection on Riemannian submersions.)

As an application, we obtain a well-known result of Wilhelm Singhoff:

Theorem: (Singhoff [1975]) The LS-categories of the unitary and the
special unitary groups are cat(SU(n)) = n and cat(U(n)) = n + 1.
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Theorem: (Hurder-Töben [2007]) Let G be a Lie group with a proper
polar action on M, i : Σ→ M a section, and W = NG (Σ)/ZG (Σ) the
generalized Weyl group acting on Σ. Then

catG (M) ≤ catW (Σ) (1)

Proof uses ideas and techniques developed for the study of the transverse
LS category of Riemannian foliations (especially the lifting of foliated
homotopies via the Ehresmann connection on Riemannian submersions.)

As an application, we obtain a well-known result of Wilhelm Singhoff:

Theorem: (Singhoff [1975]) The LS-categories of the unitary and the
special unitary groups are cat(SU(n)) = n and cat(U(n)) = n + 1.

Steven Hurder (UIC) Critical point theory for foliations July 27, 2007 25 / 26



Some open problems / works in progress

1 Develop relations between cat∩| (M,F) and cat(M) for other Lie
group actions.

2 Extend the proof of the Main Theorem to Singular Riemannian
Foliations, and arbitrary isometric actions of connected Lie groups.

3 Classify the Riemannian foliations for which the action O(q) on Ŵ is
polar, or hyperpolar.

4 Let F be a Riemannian foliation of a compact manifold. Relate
cate∩| (M,F) to the transverse Euler characteristic (Hopf index) of F .
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