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A plug P ⊂ R3 is a 3-manifold with boundary, with a non-vanishing
vector field that agrees with the vertical field on the boundary of P:

Mirror Symmetry Property: An orbit entering a plug (from the
bottom) either never leaves the plug (it is “trapped”), or exits the
plug at the mirror image point at the top of the plug.



[Wilson Plug, 1966] Trap orbits so they limit to two periodic
attractors in the plug.

[Schweitzer, 1974] , [Harrison, 1988] Replace the circular orbits of
the Wilson Plug with Denjoy minimal sets, so trapped orbits limit
to Denjoy minimal sets; but vector field cannot be smooth.



Theorem: [K. Kuperberg 1994] There is a smooth aperiodic plug.

Application: Every closed, oriented 3-manifold M admits a
non-vanishing smooth vector field K without periodic orbits.

Goals of Talk:

• present construction of Kuperberg plugs

• consider dynamical properties

• consider dependence on parameters of construction



Kuperberg idea: Consider plugs constructed from a modification of
the Wilson plug and use “flow surgery”.

Step 1: Modify the Wilson plug.





3d-orbits of W appear for r > 2 appear like:



Shigenori Matsumoto’s summary of strategy:

We therefore must demolish the two closed orbits in the Wilson
Plug beforehand. But producing a new plug will take us back to the
starting line. The idea of Kuperberg is to let closed orbits demolish
themselves. We set up a trap within enemy lines and watch them
settle their dispute while we take no active part.

(transl. by Kiki Hudson Arai)



Step 2: Extrude two “horns”



Insert the horns. The vector field W induces a field K on the
surgered manifold. Then the Kuperberg Plug is pictured as:



Wilson dynamics + insertions = Kuperberg dynamics

This is an aperiodic plug, as only chance for periodic orbit is via
the circular Wilson orbits, and they get broken up.



Theorem: [Ghys, Matsumoto, 1994] A Kuperberg flow Φt has a
unique minimal set Σ ⊂ K.

Corollary: Ever orbit either escapes through a face, or limits to Σ.

Problem: Describe the topological shape of Σ, and analyze the
dynamics of Φt restricted to open neighborhoods of Σ.



Theorem: [Katok, 1980] If a smooth flow on M3 has positive
topological entropy, then it has periodic orbits.

Hence, the Kuperberg flow Φt has topological entropy 0.

Problem: What type of entropy-zero dynamical system does the
restricted flow Φt |Σ flow yield? For example, is it an odometer?

Problem: How do the dynamical properties depend on the
construction of the flow?



Definition: A Kuperberg flow K is said to be generic if the

singularities for the vanishing of the vertical part g(r , θ, z)
∂

∂z
of

the Wilson vector field W are of quadratic type, and each insertion
map σi for i = 1, 2 yields a quadratic radius function.



Theorem: A C 1-Kuperberg flow Φt has topological entropy 0.

Vanishing of entropy htop(Φt) = 0 is shown using the structure of
the flow in the region {r ≥ 2} which contains the minimal set Σ,
and standard but elementary estimates on the norms of derivatives.

The method is valid for C 1-flows.



Theorem: The minimal set for a generic smooth Kuperberg flow
is a compact stratified lamination, denoted by M, where:

• 2-strata are open dense manifolds, coarsely isometric to trees;
• 1-strata is dense.

We call these “zippered laminations” as the 1-strata is the
boundary seam along which the 2-strata is zipped to itself.

They resemble “fan continua”.



Theorem: Let Φt be a generic smooth Kuperberg flow. Then the
topological shape of M is not stable, nor is it moveable.

The complexity of the Denjoy continuum is tame, as it is stable
and shape equivalent to a wedge of two circles.

The complexity of the Kuperberg minimal set is wild, as its shape
is a bouquet of circles which grow exponentially in number as the
shape diameter is decreased.



Theorem: Let Φt be a generic smooth Kuperberg flow.
Let C be the transversal Cantor set to M, and GM the induced
pseudogroup acting on C by the holonomy of M. Then the
pseudogroup entropy (resp. slow entropy) of GM satisfies:

• hGLW (GM) = 0;
• hα

GLW (GM) > 0 for α = 1/2.

The growth rates of (ε, n)-separated sets for the action of GM on C
is at least ∼ exp(

√
n) for ε > 0 small and n→∞.



Stable manifold

Reeb cylinder for the Wilson flow is a type of forward/backward
stable manifold

R = {(2, θ, z) | 0 ≤ θ ≤ 2π & − 1 ≤ z ≤ 1} ⊂W

R′ is Reeb cylinder minus insertions to construct Kuperberg plug:



The stable manifold intersect with the faces of insertions is
parabolic curve down. Change of coordinates to bottom face gives
a parabolic curve upwards. It’s Wilson flow is a tongue which
wraps around the stable manifold R′ again.



Propellers and levels

Introduce Φt-invariant sets M0 =
⋃
t∈R

Φt(R′):



Levels and the lamination M

M0 = R′ ∪ M1
0 ∪ M2

0 ∪ · · · ; M ≡M0 ⊂ K

The space M0 decomposes into unions of disjoint propellers at
level ` ≥ 1, corresponding to how many insertions are required to
generate it. M is closed and flow invariant, so Σ ⊂M.

Boundary of the propeller M0 is the Kuperberg orbit of the
periodic orbits in Wilson flow.

This shows explicitly why the periodic orbit gets opened up. All
other orbits with r = 2 limit to this infinite orbit.



The transverse section

The main idea is to use a section to the flow Φt to convert to the
study of a pseudogroup action on the plane.

R0 = {(r , π, z) | 1 ≤ r ≤ 3 & − 2 ≤ z ≤ 2}

disjoint from insertions. Periodic orbits for Wilson flow intersect
R0 in two special points ω1 = (2, π,−1) and ω2 = (2, π, 1).



Transverse pseudogroup

The flow Φt induces a pseudogroup GK on R0. There are five
generators {ψ, φ±1 , φ

±
2 }, which represent basic actions of the

induced Wilson flow and the insertions in the dynamical model.

The intersection M0 ∩ R0 of the propellers with the section reveals
the orbit structure: (except, the intersection M ∩ R0 is a perfect
set!)



Cantor transversal

T = {(r , π, 0) | 1 ≤ r ≤ 3} ⊂ R0 is transverse to M0.

Theorem: C = M ∩ T is a Cantor set, which is a complete
transversal for the open leaves L ⊂M.



Lamination entropy

For ε > 0, say that ξ1, ξ2 ∈ C are (n, ε)-separated if there exists

ϕ ∈ G(n)M with ξ1, ξ2 ∈ Dom(ϕ), and dC(ϕ(ξ1), ϕ(ξ2)) ≥ ε.

A finite set S ⊂ C is said to be (n, ε)-separated if every distinct
pair ξ1, ξ2 ∈ S are (n, ε)-separated.

Let s(GM, n, ε) be the maximal cardinality of an (n, ε)-separated
subset of M.



The lamination entropy of GM is defined by:

h(GM) = lim
ε→0

{
lim sup
n→∞

1

n
ln(s(GM, n, ε))

}
.

The limit h(GM) depends on the generating set, but the fact of
being non-zero does not.

For 0 < α < 1, the slow lamination entropy of GM is defined by:

hα(GM) = lim
ε→0

{
lim sup
n→∞

1

nα
ln(s(GM, n, ε))

}
.

How to generate an (n, ε)-separated subset of S(n, ε) ⊂M?

Use the “geometry” of the pseudogroup action.



The parabolic arcs are one-half of a stretched ellipse, and the
action of GK maps ellipses into ellipses, so can get a good game of
ping-pong up and running. The only catch is that the game runs
slow. The nth–volley takes approximately n2 steps.



Remarks and Problems

Theorem: [H & R] In every C 1-neighborhood of K, there exists a
smooth flow Φ′t on K with positive entropy, and the associated
invariant lamination M′ is the suspension of a horseshoe. We
expect the entropy of this to be positive.

Theorem: [H & R] There exists a piecewise-smooth Kuperberg
Plug (with a break at each periodic orbit of Wilson) so that it has
positive lamination entropy.

Problem: Give a description of the dynamical properties of flows
C 1-close to a generic Kuperberg flow.
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