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In this talk, describe program of research that combines ideas from
the programs at the M.S.R.I. during the excellent years 1983-85.

Problem: Classify weak solenoids, up to homeomorphism.

Solution: Classify arboreal actions of finitely-generated groups,
up to return equivalence.

• If G is Noetherian group ⇒ Rigidity Property.

• If G admits uncountably many subgroups ⇒ Wild Actions.

• Related to properties of Invariant Random Subgroups.

• Applications to Arithmetic Number Theory.

• Variety of Open Problems.
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M0 a compact manifold without boundary.

Given a sequence of proper non-trivial coverings, set

M = lim←− {p
`
`+1 : M`+1 → M` | ` ≥ 0}

= {(y0, y1, y2, . . .) | p``+1(y`+1) = y` | ` ≥ 0}

⊂
∏
`≥0

M`

• M is a (weak) solenoid, with foliation FM.

• Leaves are the path connected components of M, which are
non-compact covering spaces of M0

• (M,FM) is a generalized lamination ≡ foliated space with
Cantor transversals.
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Everybody’s favorite example: Vietoris solenoids

S1 S1m1oo S1m2oo S1m3oo S1 · · ·m4oo

Each m` : S1 → S1 is an m`-fold covering map, m` > 1.
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• G = π1(M, x0) is finitely generated group.

M0
p1←− M1

p2←− M2
p3←− M3 · · ·

Choose x` ∈ M` with p`(x`) = x`−1, set G` = π1(M`, x`)

Inclusion maps q`+1 : G`+1 ⊂ G`, descending chain of groups

G = G0
q1←− G1

q2←− G2
q3←− G3 · · ·

X = lim←− {G0/G`+1 −→ G0/G`}

The left G action Φ on Cantor set X is conjugate to monodromy
action on transversal in M. Action is minimal and equicontinuous.
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• (X,G ,Φ) is a Cantor action if X is Cantor set, and action is
minimal and equicontinuous. This is equivalent to an action of G
on a pointed tree, or arboreal action.

• Clopen set U ⊂ X is adapted if the stabilizer is a subgroup

GU = {g ∈ G | ϕ(g)(U) = U}

• GU has finite index, and acts transitively on the finite set of
translates {g · U | g ∈ G} (the vertices in a tree model)

• HΦ
U ≡ {Φ(g)|U | g ∈ GU} ⊂ Homeo(U).

Definition: Equicontinuous Cantor actions (X,G ,Φ) and
(Y,H,Ψ) are return equivalent if there exists adapted sets U ⊂ X
and V ⊂ Y and a homeomorphism h : U → V which conjugates
the groups HΦ

U ⊂ Homeo(U) and HΨ
V ⊂ Homeo(V ).
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Theorem: Given weak solenoids M and M′ with monodromy
actions (X,G ,Φ) and (Y,H,Ψ), if M and M′ are homeomorphic,
then their monodromy actions are return equivalent.

There is a not a converse to this, in general, except in special cases:

Definition: M is a nil-solenoid if the base manifold M0 is a
compact nil-manifold, and FM has a simply connected leaf.

We then have a generalization of the classification result for
1-dimensional solenoids by Aarts and Fokkink.

Theorem: Let M and M′ be nil-solenoids. If their monodromy
actions are return equivalent, then the spaces are homeomorphic.
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• Classify Cantor actions up to return equivalence.

• Give invariants of return equivalence.

Definition: Φ is locally quasi-analytic (LQA) if there exists ε > 0
so that if U adapted and diamX(U) < ε, for all clopen V ⊂ U,

Φ(g)|V = Id =⇒ Φ(g)|U = Id , for all g ∈ GU

That is, the action of HΦ
U on U is topologically free.
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Definition: Cantor actions (X,G ,Φ) and (Y,H,Ψ) are
continuously orbit equivalent (COE) if there exists a
homeomorphism h : X→ Y and continuous functions

α : G × X→ H, h(Φ(g)(x)) = Ψ(α(g , x), h(x)), g ∈ G , x ∈ X

β : H ×Y→ G , h−1(Ψ(g , y)) = Φ(β(g , y), h−1(y)), g ∈ H, y ∈ Y

Actions are locally continuously orbit equivalent (LCOE) if there
exists adapted subsets U ⊂ X and V ⊂ Y such that the restricted
actions are continuously orbit equivalent.

• Renault showed that LCOE is basic notion for isomorphism of
cross-product C ∗ -algebras with Cartan subalgebra.
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• Extend Cortez & Medynets rigidity theorem for free actions:

Theorem: Let (X,G ,Φ) and (Y,H,Ψ) be LQA Cantor actions.

Locally Continuously Orbit Equivalent ⇔ Return Equivalent

Definition: G is Noetherian if every subgroup G ′ ⊂ H is finitely
generated.

Theorem: G Noetherian ⇒ every Cantor action of G is LQA.

Corollary: Cantor actions by Noetherian groups satisfy orbit
equivalence rigidity.
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Definition: G(Φ) = HΦ is closure of HΦ = Φ(G ) ⊂ Homeo(X)
in the uniform topology on maps.

G(Φ) is a profinite group acting transitively on X.

Dx = G(Φ)x = {ĥ ∈ HΦ | ĥ · x = x} (isotropy group of x ∈ X)

Dx ⊂ G(Φ) is independent of the choice of basepoint x , up to
topological isomorphism.

Dx acts effectively on X.

The action (X,G(Φ), Φ̂) is called the profinite model for (X,G ,Φ).



Intro Solenoids Rigidity Profinite models Non-LQA Wild models Questions

Proposition: Dx is totally not normal: for any ĥ ∈ Dx there exists
ĝ ∈ G(Φ) such that ĝ−1 ĥ ĝ 6∈ Dx .

For group chain G = {G` | ` ≥ 0} the normal core of G` in G

C` =
⋂
g∈G

gG`g
−1 ⊂ G`

Theorem [Dyer-Hurder-Lukina, 2016].

Dx
∼= lim←− {π`+1 : G`+1/C`+1 → G`/C` | ` ≥ 0} .

• This result is abstract, but in practice is often effective for
calculating the discriminant group Dx for a given group chain.
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Recipe for Cantor actions:

? Take one finitely-generated group G .

? Choose a profinite completion G(Φ) of G .

? Choose totally not normal closed subgroup D ⊂ G(Φ).

Then action of G on X ≡ G(Φ)/D is minimal and equicontinuous.
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1. Dx is trivial for Cantor action (X,G ,Φ) with G abelian.

2. Dx can be a Cantor group for a Cantor action (X,G ,Φ) when
G is 3-dimensional Heisenberg group.

3. Every finite group and every separable profinite group can be
realized as Dx for a Cantor action by a torsion-free, finite
index subgroup of SL(n,Z).

4. Dx can be wide-ranging for arboreal representations of
absolute Galois groups of number fields and function fields.

5. Every Cantor action by a finitely generated group G can be
realized as the monodromy of a weak solenoid.

The proof of 3 uses ideas of Lubotzky on torsion elements in the
profinite completion of torsion free subgroups of SL(n,Z), and a
construction due to Lenstra.
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Problem: If G is not Noetherian, then how to classify its actions?

Let (X,G ,Φ) be a Cantor action which is not LQA.

Choose an adapted neighborhood basis {U` | ` ≥ 1} of x ∈ X.

Set G0 = G , G` = GU`
for ` ≥ 1.

Then G = {G` | ` ≥ 0} defines X as inverse limit space.

Set K` = {g ∈ G | Φ(g)|U` = Id}.
K` ⊂ K`+1 so Kx = {K` | ` ≥ 1} is increasing chain.

Theorem: (X,G ,Φ) is LQA ⇔ {K` | ` ≥ 1} is bounded.
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Theorem: If Cantor action (X,G ,Φ) is not LQA, then G admits
uncountably many subgroups.

Sketch of proof:

Let G = {U` | ` ≥ 1} be the adapted neighborhood basis of x ∈ X.

For any y ∈ X, there is ĝ ∈ G(Φ) with ĝ · x = y .

ĝ = (g0, g1, g2, . . .) with g` ∈ G and g`C` = g`+1C`

C` ⊂ G` is the normal core subgroup.

Then Gy = {g` · U` | ` ≥ 1} is adapted neighborhood basis of y .

Ky = {K y
` = g` K` g

−1
` | ` ≥ 1} is increasing subgroup chain.

K y
∞ =

⋃
`≥1 K y

` is infinitely generated if Kx is not bounded, and

K y
∞ 6= K z

∞ if y 6= z .
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Bartholdi, Grigorchuk, Nekrashevych, et al: Examples of
weakly branch group actions on trees induce non-LQA actions on
the Cantor boundary of a d-ary tree, d ≥ 2.

Lukina: Let f (x) be a quadratic polynomial with critical point c.
If the post-critical set PC contains at least 3 points, then the
action of Galgeom(f ) and Galarith(f ) on the boundary of the tree
formed by iterated solutions is non-LQA.

Groeger & Lukina: If Cantor action (X,G ,Φ) is not LQA, then
the push-forward of an ergodic measure on X via the mapping
x 7→ Gx is a continuous (non-atomic) I.R.S. This is a broader class
of examples than just weakly branch actions.

• Thus, can use Ergodic Theory/Descriptive Set Theory to
classify non-LQA Cantor actions.
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There is another approach to the study of non-LQA Cantor actions.

Recall: G(Φ) = HΦ ⊂ Homeo(X)

Dx = G(Φ)x (isotropy group of x ∈ X)

Dx ⊂ U for all adapted x ∈ U ⊂ X

G = {U` | ` ≥ 1} adapted neighborhood basis of x ∈ X.

=⇒ Dx ⊂ U` for all ` ≥ 1.

Φ̂` : G` × U` → U` induces a local action map

ρ` : Dx → Homeo(U`)

Set K̂` ≡ ker{ρ`} ⊂ G(Φ) for ` ≥ 1. Then K̂1 ⊂ K̂2 ⊂ · · ·
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Theorem: The isomorphism class of the direct limit group

Υ(Φ) = lim−→ {K̂` ⊂ K̂`+1 | ` ≥ 1}

is a conjugacy invariant of a Cantor action (X,G ,Φ).

A Cantor action (X,G ,Φ) is:

• stable if the chain {K̂` | ` ≥ 1} is bounded.

That is, if there exists `0 so that K̂` = K̂`+1 for ` ≥ `0.

• wild if the chain {K̂` | ` ≥ 1} is unbounded.

Theorem: The property that a Cantor action is wild, is a locally
continuous orbit equivalence invariant.
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The class of wild actions can be divided into two subclasses.

Let Û` = {ĝ ∈ G(Φ) | Φ̂(ĝ) · U` = U`}
The collection {Û` | ` ≥ 1} is a neighborhood basis of clopen sets
about the identity ê ∈ G(Φ). Consider the restricted Adjoint action

ρ̂` : Dx → Homeo(Û`)

Set K̂ a
` ≡ ker{ρ̂`} ⊂ G(Φ) for ` ≥ 1. Then K̂ a

1 ⊂ K̂ a
2 ⊂ · · ·

Observe that K̂ a
` ⊂ K̂` for all ` ≥ 1.

Analogous to homogeneous space M = G/K where geometry of
model M is studied via adjoint representation of K on the Lie
algebra g of G . Local model for Cantor action may be unstable.
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Definition: A wild Cantor action (X,G ,Φ) is:

• flat wild if K̂ a
` = K̂` for ` sufficiently large.

• dynamically wild if K̂ a
` 6= K̂` for ` sufficiently large.

• The Cantor actions associated to weakly branched groups are
dynamically wild.

• There exists lattices G ⊂ SLN(Z) with actions on a Cantor
space X that are flat wild.

• In the dynamically wild case, it is not known if the chain
{K̂ a

` | ` ≥ 1} must be unbounded as well.
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Question 1: How to classify Cantor actions of a finitely-generated
nilpotent group G?

Use invariants of the associated cross-product C ∗-algebra?
In terms of the representations of G?

Question 2: If an action is wild, when is the action non-LQA?

Question 3: For which numbers fields and polynomials f is the
action of the absolute Galois group Galarith(f ), on the boundary of
the tree of iterated solutions, non-LQA?

Question 4: If G is a higher rank lattice and the action is
effective, must it be stable?

Question 5: If G is a higher rank lattice and the action is wild,
must it be flat wild?
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