Homogeneous matchbox manifolds

Steven Hurder

University of Illinois at Chicago
www.math.uic.edu/~hurder

Groupoidfest 2009, October 24, 2009
Continua...

Definition: A *continuum* is a compact and connected metrizable space.

Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Examples: The circle S^1 is decomposable. The Knaster Continuum (or *bucket handle*) is indecomposable.

This is one-half of a Smale Horseshoe. The 2-solenoid over S^1 is a branched double-covering of it.
Indecomposable continuum arise naturally as invariant closed sets of dynamical systems; e.g., attractors and minimal sets for diffeomorphisms.

Definition: A space X is homogeneous if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that $h(x) = y$. Equivalently, X is homogeneous if the group $\text{Homeo}(X)$ acts transitively on X.

Question: [Bing1960] If X is a homogeneous continuum and if every proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

Theorem: [Hagopian 1977] Let X be a homogeneous continuum such that every proper subcontinuum of X is an arc, then X is an inverse limit over the circle S^1.
Question: Let X be a homogeneous continuum such that every proper subcontinuum of X is an n-dimensional manifold, must X then be an inverse limit of normal coverings of compact manifolds?

We rephrase the context:

Definition: An n-dimensional *matchbox manifold* is a continuum M which is a foliated space with leaf dimension n, and codimension zero.

M is a foliated space if it admits a covering $\mathcal{U} = \{\varphi_i \mid 1 \leq i \leq \nu\}$ with foliated coordinate charts $\varphi_i : U_i \to [-1, 1]^n \times \mathcal{T}_i$. The compact metric spaces \mathcal{T}_i are totally disconnected $\iff M$ is a matchbox manifold.

The leaves of \mathcal{F} are the path components of M.
Smooth matchbox manifolds

Definition: \mathcal{M} is a *smooth foliated space* if the leafwise transition functions for the foliation charts $\varphi_i : U_i \rightarrow [-1, 1]^n \times \mathcal{F}_i$ are C^∞, and vary continuously on the transverse parameter in the leafwise C^∞-topology.
Automorphisms of matchbox manifolds

A “smooth matchbox manifold” M is analogous to a compact manifold, with the transverse dynamics of the foliation F on the Cantor-like fibers T_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for “stacks”.

Bing Question: For which M is the group $\text{Homeo}(M)$ transitive?

Klein Question: Do the Riemannian symmetries of M characterize it?

Zimmer Question: What countable groups Λ act effectively on M?

Haefliger Question: What are the topological invariants associated to matchbox manifolds, and do they characterize them in some fashion?
Theorem [Clark & Hurder 2009] Let \mathcal{M} be an orientable homogeneous smooth matchbox manifold. Then \mathcal{M} is homeomorphic to a McCord (or normal) solenoid. In particular, \mathcal{M} is minimal, so every leaf is dense.

When the dimension of \mathcal{M} is $n = 1$ (that is, \mathcal{F} is defined by a flow) then this recovers the result of Hagopian, but the proof is much closer in spirit to the later proof of this case by [Aarts, Hagopian and Oversteegen 1991].

The case where \mathcal{M} is given as a fibration over \mathbb{T}^n with totally disconnected fibers was proven in [Clark, 2002].

The key to the proof in the general case is the extensive use of pseudogroups and groupoids – in place of Lie group actions.
Two applications

Here are two consequences of the Main Theorem:

Corollary: Let \mathcal{M} be an orientable homogeneous n-dimensional smooth matchbox manifold, which is embedded in a closed $(n + 1)$-dimensional manifold. Then \mathcal{M} is itself a manifold.

For \mathcal{M} a homogeneous continuum with a non-singular flow, this was a question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding for solenoids of dimension $n \geq 2$ was solved by [Clark & Fokkink, 2002]. Proofs use shape theory and Alexander-Spanier duality for cohomology.

Corollary: Let \mathcal{M} be the tiling space associated to a tiling \mathcal{P} of \mathbb{R}^n. If \mathcal{M} is homogeneous, then the tiling is periodic.
Generalized solenoids

Let M_ℓ be compact, orientable manifolds of dimension $n \geq 1$ for $\ell \geq 0$, with orientation-preserving covering maps

$$
p_{\ell+1} \to M_\ell \to M_{\ell-1} \to \cdots \to M_1 \to M_0
$$

The p_ℓ are called the bonding maps for the solenoid

$$
S = \lim_{\leftarrow} \\{ p_\ell : M_\ell \to M_{\ell-1} \} \subset \prod_{\ell=0}^{\infty} M_\ell
$$

Choose basepoints $x_\ell \in M_\ell$ with $p_\ell(x_\ell) = x_{\ell-1}$. Set $G_\ell = \pi_1(M_\ell, x_\ell)$. Then we have a descending chain of groups and injective maps

$$
p_{\ell+1} \to G_\ell \to G_{\ell-1} \to \cdots \to G_1 \to G_0
$$

Set $q_\ell = p_\ell \circ \cdots \circ p_1 : M_\ell \to M_0$.

Steven Hurder (UIC) Homogeneous matchbox manifolds October 24, 2009 10 / 22
Definition: S is a *McCord solenoid* for some fixed $\ell_0 \geq 0$, for all $\ell \geq \ell_0$ the image H_ℓ of G_ℓ in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable homogeneous smooth matchbox manifold.

Remark: $\pi_1(M_0, x_0)$ nilpotent implies that S is a McCord solenoid.

Caution: There are constructions of inverse limits S as above where the bonding maps are not normal coverings, and the McCord condition does not hold, but S is homogeneous [Fokkink & Oversteegen 2002].

Our technique of proof of the main theorem for such examples presents the inverse limit space S as homeomorphic to a normal tower of coverings.
Effros Theorem

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if $Gx = X$ for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Theorem [Effros 1965] Suppose that a completely metrizable group G acts *transitively* on a second category space X, then it acts micro-transitively on X.

Interpretation for compact metric spaces

The metric on the group $\text{Homeo}(X)$ for (X, d_X) a separable, locally compact, metric space is given by

$$d_H(f, g) := \sup \{d_X(f(x), g(x)) \mid x \in X\}$$
$$+ \sup \{d_X(f^{-1}(x), g^{-1}(x)) \mid x \in X\}$$

Corollary: Let X be a homogeneous compact metric space. Then for any given $\epsilon > 0$ there is a corresponding $\delta > 0$ so that if $d_X(x, y) < \delta$, there is a homeomorphism $h : X \to X$ with $d_H(h, id_X) < \epsilon$ and $h(x) = y$.

In particular, for a homogeneous foliated space \mathcal{M} this conclusion holds.

This observation was used by [Aarts, Hagopian, & Oversteegen 1991] and [Clark 2002] in their study of matchbox manifolds.
Holonomy groupoids

Let \(\varphi_i : U_i \to [-1, 1]^n \times \mathcal{T}_i \) for \(1 \leq i \leq \nu \) be the covering of \(M \) by foliation charts. For \(U_i \cap U_j \neq \emptyset \) we obtain the holonomy transformation

\[
h_{ji} : D(h_{ji}) \subset \mathcal{T}_i \longrightarrow R(h_{ji}) \subset \mathcal{T}_j
\]

These transformations generate the holonomy pseudogroup \(\mathcal{G}_F \) of \(M \), modeled on the transverse metric space \(\mathcal{T} = \mathcal{T}_1 \cup \cdots \cup \mathcal{T}_\nu \).

Typical element of \(\mathcal{G}_F \) is a composition, for \(\mathcal{I} = (i_0, i_1, \ldots, i_k) \) where \(U_{i_\ell} \cap U_{i_{\ell-1}} \neq \emptyset \) for \(1 \leq \ell \leq k \),

\[
h_{\mathcal{I}} = h_{i_ki_{k-1}} \circ \cdots \circ h_{i_1i_0} : D(h_{\mathcal{I}}) \subset \mathcal{T}_{i_0} \longrightarrow R(h_{\mathcal{I}}) \subset \mathcal{T}_{i_k}
\]

\(x \in \mathcal{T} \) is a point of holonomy for \(\mathcal{G}_F \) if there exists some \(h_{\mathcal{I}} \in \mathcal{G}_F \) with \(x \in D(h_{\mathcal{I}}) \) such that \(h_{\mathcal{I}}(x) = x \) and the germ of \(h_{\mathcal{I}} \) at \(x \) is non-trivial.

We say \(\mathcal{F} \) is without holonomy if there are no points of holonomy.

Steven Hurder (UIC) Homogeneous matchbox manifolds October 24, 2009 14 / 22
Equicontinuous matchbox manifolds

Definition: \mathcal{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_I \in \mathcal{G}_\mathcal{F}$ we have

$$x, y \in D(h_I) \text{ with } d_\mathcal{F}(x, y) < \delta \implies d_\mathcal{F}(h_I(x), h_I(y)) < \epsilon$$

Theorem: A homogeneous matchbox manifold \mathcal{M} is equicontinuous without holonomy.

The proof relies on one basic observation and extensive technical analysis.

Lemma: Let $h: \mathcal{M} \to \mathcal{M}$ be a homeomorphism. Then h maps the leaves of \mathcal{F} to leaves of \mathcal{F}. That is, every $h \in \text{Homeo}(\mathcal{M})$ is foliation-preserving.

Proof: The leaves of \mathcal{F} are the path components of \mathcal{M}.

Theorem: An equicontinuous matchbox manifold \mathcal{M} is minimal.
We can now state the three main structure theorems.

Theorem 1: Let \mathcal{M} be an equicontinuous matchbox manifold without holonomy. Then \mathcal{M} is homeomorphic to a solenoid

$$S = \lim \left\{ p_\ell : M_\ell \rightarrow M_{\ell-1} \right\}$$

Theorem 2: Let \mathcal{M} be a homogeneous matchbox manifold. Then the bonding maps above can be chosen so that $q_\ell : M_\ell \rightarrow M_0$ is a normal covering for all $\ell \geq 0$. That is, S is McCord.

Theorem 3: Let \mathcal{M} be a homogeneous matchbox manifold. Then there exists a clopen subset $V \subset \mathcal{T}$ such that the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv \mathcal{G}_\mathcal{F}|_V$ is a group, and \mathcal{M} is homeomorphic to the suspension of the action of $\mathcal{H}(\mathcal{F}, V)$ on V. Thus, the fibers of the map $q_\infty : \mathcal{M} \rightarrow M_0$ are homeomorphic to a profinite completion of $\mathcal{H}(\mathcal{F}, V)$.
Let \mathcal{M} be an equicontinuous matchbox manifold without holonomy.

Fix basepoint $w_0 \in \text{int}(\mathcal{T}_1)$ with corresponding leaf $L_0 \subset \mathcal{M}$.

The equivalence relation on \mathcal{T} induced by \mathcal{F} is denoted Γ, and we have the following subsets:

- $\Gamma_W = \{(w, w') \mid w \in W, \, w' \in \mathcal{O}(w)\}$
- $\Gamma_W^W = \{(w, w') \mid w \in W, \, w' \in \mathcal{O}(w) \cap W\}$
- $\Gamma_0 = \{w' \in W \mid (w_0, w') \in \Gamma_W^W\} = \mathcal{O}(w_0) \cap W$

Note that Γ_W^W is a groupoid, with object space W. The assumption that \mathcal{F} is without holonomy implies Γ_W^W is equivalent to the groupoid of germs of local holonomy maps induced from the restriction of \mathcal{G}_F to W.
Proposition: Let \mathcal{M} be an equicontinuous matchbox manifold without holonomy. Given $\epsilon_* > 0$, then there exists $\delta_* > 0$ such that:

- for all $(w, w') \in \Gamma_{\mathcal{W}}$ the corresponding holonomy map $h_{w,w'}$ satisfies $D_{\mathcal{I}}(w, \delta_*) \subset D(h_{w,w'})$
- $d_{\mathcal{I}}(h_{w,w'}(z), h_{w,w'}(z')) < \epsilon_*$ for all $z, z' \in D_{\mathcal{I}}(w, \delta_*)$.

Let $\mathcal{W} \subset \mathcal{I}_1$ be a clopen subset with $w_0 \in \mathcal{W}$. Decompose \mathcal{W} into clopen subsets of diameter $\epsilon_\ell > 0$,

$$\mathcal{W} = \mathcal{W}_1^\ell \cup \cdots \cup \mathcal{W}_{\beta_\ell}^\ell$$

Set $\eta_\ell = \min \left\{ d_{\mathcal{I}}(W_i^\ell, W_j^\ell) \mid 1 \leq i \neq j \leq \beta_\ell \right\} > 0$ and let $\delta_\ell > 0$ be the constant of equicontinuity as above.
The orbit coding function

• The code space $C_\ell = \{1, \ldots, \beta_\ell\}$

• For $w \in W$, the C_w^ℓ-code of $u \in W$ is the function $C_{w,u}^\ell : \Gamma_w \to C_\ell$ defined as: for $w' \in \Gamma_w$ set $C_{w,u}^\ell(w') = i$ if $h_{w,w'}(u) \in W_i^\ell$.

• Define $V_\ell = \left\{ u \in W_1^\ell \mid C_{w_0,u}^\ell(w') = C_{w_0,0}^\ell(w') \text{ for all } w' \in \Gamma_0 \right\}$

Lemma: If $u, v \in W$ with $d_\Sigma(u, v) < \delta_\ell$ then $C_{w,u}^\ell(w') = C_{w,v}^\ell(w')$ for all $w' \in \Gamma_w$. Hence, the function $C_w^\ell(u) = C_{w,u}^\ell$ is locally constant in u.

Thus, V_ℓ is open, and the translates of this set define a Γ_0-invariant clopen decomposition of W.
The Thomas tube \tilde{N}_ℓ for M is the “saturation” of V^ℓ by \mathcal{F}.

The saturation is necessarily all of M. But the tube structure comes with a vertical fibration, which allows for collapsing the tube in foliation charts. This is the basis of the main technical result:

Theorem: For $\text{diam}(V^\ell)$ sufficiently small, there is a quotient map $\Pi_\ell: \tilde{N}_\ell \rightarrow M_\ell$ whose fibers are the transversal sections isotopic to V^ℓ, and whose base if a compact manifold. This yields compatible maps $\Pi_\ell: M \rightarrow M_\ell$ which induce the solenoid structure on M.

Furthermore, if M is homogeneous, then $\text{Homeo}(M)$ acts transitively on the fibers of the tower induced by the maps $\Pi_\ell: M \rightarrow M_\ell$, hence the tower is normal.
Conjecture: Let M be an equicontinuous matchbox manifold, and $V \subset \mathcal{T}$ a clopen set. Then M is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv G_\mathcal{F}|V$ and any partial quotient M_ℓ.

That is, for matchbox manifolds, Kakutani equivalence implies homeomorphism (modulo some obvious additional conditions.)

This is known for flows [Dye 1957, Fokkink 1991].
Happy Birthday, Jean!

Jean Renault - Boulder 1999