Solenoids

Dynamics 00000 Wild actions

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Classification of weak solenoids

Steve Hurder, University of Illinois at Chicago Joint work with Olga Lukina, University of Vienna

Wild actions

A *Riemannian foliation* is one whose holonomy pseudogroup is generated by local isometries of a Riemannian manifold.

Bruce Reinhart: "Foliated manifolds with bundle-like metrics", Ann. of Math, 69:119–132, 1959

Pierre Molino: Feuilletages riemanniens, Montpellier, 1983 & Riemannian Foliations, Birkhauser, 1988.

An equicontinuous foliated space is one whose holonomy pseudogroup is equicontinuous \sim isometric.

Problem: How much of the theory of Riemannian foliations in Molino's book can be extended to equicontinuous foliated spaces?

Dynamics 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This question has been studied in the works of Jesús Álvarez López:

- * (with Alberto Candel),
 "Equicontinuous foliated spaces",
 Math. Z., 263 (2009), 725–774.
- * (with Manuel Moreira Galicia),
 "Topological Molino's theory",
 Pacific J. Math., 280 (2016), 257–314.
- * (with Ramón Barral Lijó),
 "Molino's description and foliated homogeneity",
 Topology Appl., 260 (2019), 148–177.

Solenoid 000 Dynamics 00000 Wild actions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our interest is the special case where the foliated spaces are transversally totally disconnected:



The objects of study are called various names in the literature:

- Generalized laminations, [Ghys, Lyubich & Minsky]
- Matchbox manifolds, [Aarts & Martens, Clark & Hurder]
- Solenoidal manifolds, [Sullivan]

All are foliated spaces as introduced in the book

• Moore & Schochet, **Global Analysis on Foliated Spaces**, 1988.

Wild actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem [Clark-Hurder, 2013] Let \mathfrak{M} be an equicontinuous matchbox manifold. Then \mathfrak{M} is homeomorphic to a *weak solenoid*.

If ${\mathfrak M}$ is homogeneous space, then the weak solenoid is a profinite group fibration over a compact manifold.

If \mathfrak{M} is not homogeneous, then it is homeomorphic to a quotient of a profinite group fibration by a non-trivial closed subgroup.

Alex Clark & S.H., "Homogeneous matchbox manifolds", **Transactions A.M.S.**, 365 (2013), 3151-3191.

Dynamics 00000 Wild actions

Weak Solenoids

- *M* is compact manifold without boundary
- $G = \pi_1(M, x_0)$ is finitely generated group.

$$M = M_0 \xleftarrow{p_1} M_1 \xleftarrow{p_2} M_2 \xleftarrow{p_3} M_3 \cdots$$

Choose $x_{\ell} \in M_{\ell}$ with $p_{\ell}(x_{\ell}) = x_{\ell-1}$, set $G_{\ell} = \pi_1(M_{\ell}, x_{\ell})$

Inclusion maps $q_\ell \colon G_\ell \subset G_{\ell-1}$, descending chain of groups

$$G = G_0 \xleftarrow{q_1} G_1 \xleftarrow{q_2} G_2 \xleftarrow{q_3} G_3 \cdots$$

Tower of coverings is *normal* if each $G_{\ell} \subset G_0$ is a normal subgroup.

Example: Vietoris solenoid is given coverings of \mathbb{S}^1 , so is determined by a chain of normal subgroups of \mathbb{Z} .

Solenoids

Dynamics 00000 Wild actions

Inverse limit space for a tower of coverings:

$$\begin{split} M_{\infty} &= \varprojlim \; \{ p_{\ell+1}^{\ell} \colon M_{\ell+1} \to M_{\ell} \mid \ell \geq 0 \} \\ &= \; \{ (y_0, y_1, y_2, \ldots) \mid p_{\ell+1}^{\ell} (y_{\ell+1}) = y_{\ell} \mid \ell \geq 0 \} \\ &\subset \; \prod_{\ell \geq 0} \; M_{\ell} \end{split}$$

is a compact connected metrizable space called a *(weak)* solenoid. For each $\ell > 0$, there is a fibration map $\Pi_{\ell} \colon M_{\infty} \to M_{\ell}$.

For fixed $x_{\ell} \in M_{\ell}$ the fiber $\mathfrak{X}_{\ell} = \Pi_{\ell}^{-1}(x_{\ell}) \subset \mathfrak{X}_{0}$ is a Cantor space.

- The path connected components of M_∞ are manifolds,
- leaves are non-compact covering spaces of M_0 ,
- M_{∞} is a foliated space with Cantor transversals.

Wild actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The monodromy action on the fiber, $\Phi \colon G_0 \times \mathfrak{X}_0 \to \mathfrak{X}_0$

Fundamental group $G_0 = \pi_1(M_0, x_0)$ acts on the fiber \mathfrak{X}_0 via lifts of paths in M_0 to the leaves of $\mathcal{F}_{\mathfrak{M}}$.

This action is

- minimal = the orbit of each point is dense in \mathfrak{X}_0 .
- equicontinuous: for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_{\mathfrak{X}}(x,y) < \delta \implies d_{\mathfrak{X}}(\varphi(g)(x), \varphi(g)(y)) < \epsilon \quad ext{for all } g \in \mathcal{G}.$$

Cantor action $(\mathfrak{X}, G, \Phi) \equiv \text{minimal } \&$ equicontinuous

Conclusion of works with Clark & Lukina can be summarized:

Analyze/Classify weak solenoids \Leftrightarrow Analyze/Classify Cantor actions

<u>Profinite model</u> for Cantor action (\mathfrak{X}, G, Φ) .

Definition: $\mathfrak{G}(\Phi) = \overline{H_{\Phi}} = \text{closure of } H_{\Phi} = \Phi(G) \subset \text{Homeo}(\mathfrak{X})$ in the *uniform topology on maps*. $\mathfrak{G}(\Phi)$ is profinite group.

For $x \in \mathfrak{X}$, $\mathcal{D}_x = \{\widehat{h} \in \overline{H_{\Phi}} \mid \widehat{h} \cdot x = x\}$ (isotropy group)

Lemma: Left action of $\mathfrak{G}(\Phi)$ on \mathfrak{X} is transitive. Hence

•
$$\mathfrak{X} \cong \mathfrak{G}(\Phi)/\mathcal{D}_x$$

• \mathcal{D}_x independent of the choice of basepoint *x*.

The <u>normal core</u> of G_ℓ is $C_\ell = \bigcap_{g \in G} g G_\ell g^{-1} \subset G_\ell$

Theorem [Dyer-Hurder-Lukina, 2016]

$$\mathcal{D}_{x} \cong \varprojlim \{\pi_{\ell+1} \colon G_{\ell+1}/C_{\ell+1} \to G_{\ell}/C_{\ell} \mid \ell \geq 0\}$$

・ロト・西ト・モン・モー シック

Dynamics 00000

- 1. \mathcal{D}_x is trivial for Cantor action (\mathfrak{X}, G, Φ) with G abelian.
- 2. \mathcal{D}_x can be a Cantor group for a Cantor action (\mathfrak{X}, G, Φ) when G is 3-dimensional Heisenberg group.
- Every finite group and every separable profinite group can be realized as D_x for a Cantor action by a torsion-free, finite index subgroup of SL(n, Z), n ≥ 3.
- 4. \mathcal{D}_x can be wide-ranging for arboreal representations of absolute Galois groups of number fields and function fields.
- 5. Every Cantor action by a finitely generated group G can be realized by a tower of finite coverings of a closed surface.

Problem: Can one "hear" \mathcal{D}_x in the spectrum of leafwise elliptic operators (e.g. Lapacians) on weak solenoids?

Intro	Solenoids	Dynamics	Wild actions
0000	000	00000	0000000

The inverse limit of a weak solenoid can begin at any level of the tower of coverings:

$$M_{\infty} = \varprojlim \{ p_{\ell+1}^{\ell} \colon M_{\ell+1} \to M_{\ell} \mid \ell \ge 0 \}$$

$$\cong \varprojlim \{ p_{\ell+1}^{\ell} \colon M_{\ell+1} \to M_{\ell} \mid \ell \ge k \}$$

Conclusion: Dynamical invariants for weak solenoids must be unchanged upon passing to restrictions to clopen subsets which are adapted to the action of the monodromy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

* Study dynamics up to return equivalence.

Intro	Solenoids	Dynamics	V
0000	000	00000	C

For Cantor action (\mathfrak{X}, G, Φ) , $U \subset \mathfrak{X}$ is *adapted* to the action Φ

- U is a non-empty clopen subset,
- for any $g \in G$, $\Phi(g)(U) \cap U \neq \emptyset$ implies that $\Phi(g)(U) = U$.

Translates of U form a partition of the Cantor set \mathfrak{X} .

The set of "return times" to U,

$$G_U = \{g \in G \mid \varphi(g)(U) \cap U \neq \emptyset\}$$

is a subgroup of finite index in G, called the *stabilizer* of U.

Wild actions

Definition: Let Φ_i : $G_i \times \mathfrak{X}_i \to \mathfrak{X}_i$ be Cantor actions, for i = 1, 2.

Then Φ_1 is return equivalent to Φ_2 if there exist

- for i = 1, 2 a clopen subset $U_i \subset \mathfrak{X}_i$ adapted for action Φ_i
- homeomorphism $h \colon U_1 \to U_2$

• isomorphism $\alpha_h \colon H_1 \to H_2$ of the action groups, induced by h, where $H_i = \Phi_i(G_{U_i}) \subset \text{Homeo}(U_i)$

Remark: When $U_i = \mathfrak{X}_i$ for i = 1, 2, and the actions are effective, this reduces to the notion of isomorphism, or just topological conjugacy of the actions, where $\alpha_h \colon G_1 \to G_2$ intertwines them.

Problem: Find return equivalence invariants of Cantor actions.

Solenoic 000 Dynamics 00000 Wild actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let (\mathfrak{X}, G, Φ) be Cantor action. Fix basepoint $x \in \mathfrak{X}$ and $\epsilon > 0$. There exists an adapted clopen set $U \subset \mathfrak{X}$ with $x \in U$ and $\operatorname{diam}(U) < \epsilon$. Iterating this construction, for a given basepoint x, one can always construct the following:

Definition: A properly descending chain of clopen sets $\mathcal{U} = \{ U_{\ell} \subset \mathfrak{X} \mid \ell \geq 1 \} \text{ is an adapted neighborhood basis at } x \in \mathfrak{X} \text{ for the action } \Phi \text{ if }$

- $x \in U_{\ell+1} \subset U_{\ell}$ for all $\ell \ge 1$ with $\cap U_{\ell} = \{x\}$,
- each U_ℓ is adapted to the action Φ , set $\mathcal{G}_\ell = \mathcal{G}_{U_\ell}$

We obtain a sequence of localized Cantor actions $(U_{\ell}, H_{\ell}, \Psi_{\ell})$: $H_{\ell} = \Phi_{\ell}(G_{\ell}) \subset \text{Homeo}(U_{\ell}), \ \Psi_{\ell} \colon H_{\ell} \times U_{\ell} \to U_{\ell}$ Solenoid 000 Dynamics 00000 Wild actions

A Cantor action (\mathfrak{X}, G, Φ) is either <u>stable</u> or <u>wild</u>.

Depends on whether the "sheaf" of local actions is stable, or not.

Let $\mathcal{D}(\Psi_{\ell}) \subset \text{Homeo}(U_{\ell})$ be discriminant group of $(U_{\ell}, H_{\ell}, \Psi_{\ell})$. There is surjective homomorphism $\rho_{\ell} \colon \mathcal{D}_{x} = \mathcal{D}(\Psi_{0}) \to \mathcal{D}(\Psi_{\ell})$. Set $K_{\ell} \equiv \ker\{\rho_{\ell}\}$ for $\ell \geq 1$. Then $K_{1} \subset K_{2} \subset \cdots$ Theorem [Hurder-Lukina 2019] The isomorphism class of the

Theorem [Hurder-Lukina, 2019] The isomorphism class of the direct limit group

$$\Upsilon(\Phi) = \varinjlim \{ K_\ell \subset K_{\ell+1} \mid \ell \geq 1 \}$$

is a well-defined conjugacy invariant of a Cantor action (\mathfrak{X}, G, Φ) .

- A Cantor action (\mathfrak{X}, G, Φ) is:
- <u>stable</u> if the chain $\{K_{\ell} \mid \ell \geq 1\}$ is bounded. That is, if there exists ℓ_0 so that $K_{\ell} = K_{\ell+1}$ for $\ell \geq \ell_0$.
- wild if the chain $\{K_{\ell} \mid \ell \geq 1\}$ is unbounded.

Theorem [Hurder-Lukina, 2019]: The wild property for a Cantor action is invariant under continuous orbit equivalence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dynamics 00000 Wild actions

Example: The examples of group actions on trees generated by automata studied by Nekrashevych, Bartholdi, Grigorchuk *et al* typically induce wild actions on the boundary of the trees.

Theorem [Lukina, 2019]: Let p and d be distinct odd primes, let $K = \mathbb{Q}_p$ be the field of p-adic numbers. Let $f(x) = (x+p)^d - p$. Then the action of $\operatorname{Gal}_{\infty}(f)$ is stable.

Theorem [Lukina, 2018]: Let f(x) be a quadratic polynomial with critical point c. If the post-critical set P_C is infinite, then the action of $\operatorname{Gal}_{\text{geom}}(f)$, and so of $\operatorname{Gal}_{\text{arith}}(f)$ is wild.

Dynamics 00000 Wild actions

There is a geometric interpretation of the stable/wild property.

Definition: A topological action $\Phi: G \times \mathfrak{X} \to \mathfrak{X}$ is *locally quasi-analytic* (LQA) if there exists $\epsilon > 0$ such that for any open set $U \subset \mathfrak{X}$ with $diam(U) < \epsilon$, and for any open $V \subset U$ and $g_1, g_2 \in G$ if

if $\Phi(g_1)|V = \Phi(g_2)|V$ then $\Phi(g_1)|U = \Phi(g_2)|U$.

Alternatively, the action is locally quasi-analytic if and only if for all $g \in G$ if $\Phi(g)|V = id$, then $\Phi(g)|U = id$, for open sets $V \subset U$.

Theorem [Hurder-Lukina, 2017]: A Cantor action (\mathfrak{X}, G, Φ) with *G* finitely generated is stable, if and only if the pro-finite action $\widehat{\Phi} : \mathfrak{G}(\Phi) \times \mathfrak{X} \to \mathfrak{X}$ is locally quasi-analytic.

Intro	Solenoids	Dynamics	Wild act
0000	000	00000	00000
0000	000	00000	000000

tions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here are two further results:

Theorem [Hurder-Lukina, 2018]: Let $\Phi: G \times \mathfrak{X} \to \mathfrak{X}$ be a Cantor action with *G* a finitely-generated *nilpotent* group. Then the action is stable. Moreover, any Cantor action which is continuously orbit equivalent must be return equivalent.

Theorem [Hurder-Lukina, 2018]: There exists uncountably many wild actions of torsion-free finite index subgroups of $SL(n,\mathbb{Z})$ with distinct pro-isomorphism classes of direct limit groups $\Upsilon(\Phi)$.

Problem: The wild property lurks in the spectrum of the leafwise laplacians for weak solenoids. *Find it.*

Wild actions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

A. Clark and S. Hurder, *Homogeneous matchbox manifolds*, **Trans. A.M.S.**, 365 (2013), 3151–3191.

J. Dyer, S. Hurder and O. Lukina, *Molino theory for matchbox manifolds*, Pac. Jour. Math., 289 (2017), 91-151.

S. Hurder and O. Lukina, *Wild solenoids*, **Trans. A.M.S.**, 371 (2019), 4493–4533; arXiv:1702.03032

A. Clark, S. Hurder and O. Lukina, *Classifying matchbox manifolds*, **Geometry & Topology**, 23 (2019), 1–27.

S. Hurder and O. Lukina, *Orbit equivalence and classification of weak solenoids*, **Indiana Univ. Math. J.**, 2020; arXiv:1803.02098.

A. Clark, S. Hurder and O. Lukina, *Pro-groups and a generalization of a theorem of Bing*, **Topology and Its Applications**, 2020; arXiv:1811.00288.

S. Hurder and O. Lukina, *Limit group invariants for non-free Cantor actions*, **submitted**; arXiv:1904.11072.

Thank you for your attention!