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The Mathematical Institute,
24 - 29 St Giles,
Oxfords

30th July 1983
Dear Dr, Hurder,

Thank you for your letter of 1 July, which vas vaiting for me when I returned to
Oxford a few days ago.

I'm afraid that I have nothing which is in a sufficiently final form for me to
send to you, but I will try to desoribe the idea of my works The ‘grand design' is
o mimic Comnes procedure for certain non cpmpact Riemanmian menifolds instead of
compact manifolds. The manifolds I consider are those with "bounded geometry" which
means a lower bound on the injectivity radius and an upper bound on the curvature
tensor and its covarient derivatives, Such menifolds, for example, ocour as the leaves
of foliations of compact manifolds - in fact it seems to be an open question whother
they all do. Now to such a Riemsrmian manifold (M,g) I propose to associate &
C* algebra C#(M,g) in such a way that the corresponding K~theory group I(Q(C*\H,g) )
will contain the indices of the ‘natural! elliptic operators on M such as the de Rham
operator d+d%  Next, some menifolds (in fact exactly those manifolds "closed at
infinity" in the sense of Sullivan, Inventiones 36) admit certain functionals which I
call 'invarient means's; these play the role of transverse measures in the Connes theory,
giving rise to = dimension functions xo(c*(M,g)) ~> R There scems to be a Gauss Bommet
formula ik which expresses the real valued index of the de Rham operator in terms of
curvatuze = modulo some analysis which is proving rather rjcaleitrant at prosents Finally,
I hope to be able to compute KO(C*(M,g} ) for nice M = e.g. symmetric spaces or deformations
thoreof - by means of representation theory.

If you think this is intercsting let me lmow and I will try and lot you have a
copy of anything respectable.

Yours sincerely,
e
John Roe (Mr)

PS. One interesting aspect of theseximim results is that thoy scem to be closely related -
at least in the 2 dimensional case - to classical Nevanlinnma theory.
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Problem [Folklore 1974]: Geometry of leaves of foliations.
Problem [Atiyah 1986]: Index theory for coverings.
Problem [Connes 1980]: Index theory of foliations.

Problem [Roe 1983]: Index theory of complete open manifolds.
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Goal of Talk: Weak solenoids = class of foliated spaces whose
leaf geometries remain unclassified.

Goal of Program

e Structure of weak solenoids.

e Index Theory for weak solenoids.

e Spectral geometry of leaves in weak solenoids

e Invariants from C*-algebras associated to Cantor actions.

* Spectral flow, Liick approximation for irregular coverings.

* Bowdoin Lecture [1988] on n-invariants and spectral flow.
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e M is compact manifold without boundary
e G =m(M,xp) is finitely generated group.

M = Mo Ml M2 M3

Choose x; € M, with pg(Xg) = xy_1, set Gy = ﬂl(Mg,Xg)

Inclusion maps q;: Gy C Gy_1, descending chain of groups

6= Go ™ G <% G Gy

Tower of coverings is normal if each Gy C Gg is a normal subgroup.
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Example: Vietoris solenoid is given by chain of subgroups of Z

my mo ms3 mgy

St St st st st...

* each my > 1 is an integer

x my: St — St is an my-fold covering map.
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Inverse limit space = Vietoris solenoid [1927]

S = lim{my.:S' —»S'[£>0}

= {(xo0,x1,...) €S| mpy1(xp41) = x¢ for all £ >0 }

c I[ s
£>0
* Give the product space the product or Tychonoff topology;

* S has the restricted topology;

* & is a compact, connected metric space, so a continuum.
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Properties of the space §
* & is an uncountable union of lines, each dense in S.

* Whatever stage k > 0 you start at, the limit is the same:

Slim{mpq: St — ST £ >k}

* & is homogeneous - for any pair of points x,y € S there is a
homeomorphism h: § — S with h(x) =y.
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e R.H. Bing, Canad. J. Math., 1960
e M.C. McCord, Transactions A.M.S, 1965

Theorem: Let p'= {p1,p2,p3,...} and §={q1,92,93,...} be
sequences of prime numbers. Say that p ~ G if there is £,,{, > 0
so that the two sets

{pﬂﬁzﬁp}:{qﬂﬁzﬁq}

Then the solenoids they generate, call them S(p) and S(§), are
homeomorphic if and only if g~ §.

Question: |s there a similar result in higher dimensions?
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Inverse limit space for a tower of coverings:

Moo = lim {pfy1: Mes1 — Mg | £> 0}

= {(YOa)/l7Y2a .- -) | Pf+1()/z+1) =Y | > 0}

CHMg

is a compact connected metrizable space called a (weak) solenoid.

For each ¢ > 0, there is a fibration map lM,: My, — M,.
For fixed x; € M, the fiber X, = n;l(xg) C Xp is a Cantor space.

The path connected components of M., are manifolds, which are
non-compact covering spaces for Mp, so that M, is a generalized
lamination, or foliated space with Cantor transversals.
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The fundamental group Gy = 71 (Mp, xo) acts on the fiber Xy via
lifts of paths in My to the leaves of Foy giving the monodromy
action on the fiber, ®: Gy x X9 — Xo. The action is minimal, the
orbit of each point is dense in Xg.

Proposition: The monodromy is an equicontinuous group action.

e A Cantor action ¢: G x X — X is equicontinuous if for some
metric dx on X, for every € > 0 there exists § > 0 such that

de(x,y) <0 = dx(e(g)(x),v(g)(y)) <€ forall g€ G.

When G = Z, then a minimal equicontinuous Cantor action
p: G x X — X is conjugate to a classical odometer.
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Cantor action (X, G, ®) is minimal equicontinuous action.

Problem: Classify Cantor actions up to topological conjugacy, or
continuous orbit equivalence, or return equivalence.

Definition: &(®) = Hg = closure of Hy = ®(G) C Homeo(X)
in the uniform topology on maps. &(®) is profinite group.

For x € X, Dx = {h € Ho | h-x = x} = &(®),, (isotropy group)
Lemma: Transitive left action of &(®P) on X = &(P)/Dy.

Closed subgroup D, C &(®) is independent of the choice of
basepoint x, up to topological isomorphism.

The action (X, &(®), ) is called the profinite model for (X, G, ).
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&(P)

3/"

G = m1 (Mo, x0) —2

Theorem: Dy is trivial if and only if X is a Cantor group.

So for Dy trivial, we have a tower of normal coverings, as in
Cheeger-Gromov [1985], Liick [1994], ...

On the other hand, the case when D, is non-trivial seems to be
almost completely unknown in the literature.
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Problem: Relate asymptotic geometry & analysis of leaves in
weak solenoids to algebraic properties of subgroup Dy C &(®P).

Proposition: D, is totaII)A/ not normal: for any h € D, there exists
g € &(®d) such that g=1 h g ¢ D,.

For group chain G = {G; | £ > 0} the normal core of Gy in G

Co=() g6 CG
geiG

Theorem [Dyer-Hurder-Lukina, 2016].

Dy EM {7Tg+1: Gg+1/Cg+1 — Gg/Cg ‘ {> 0} .
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1. Dy is trivial for Cantor action (X, G, ®) with G abelian.

2. Dy can be a Cantor group for a Cantor action (X, G, ®) when
G is 3-dimensional Heisenberg group.

3. Every finite group and every separable profinite group can be
realized as Dy for a Cantor action by a torsion-free, finite
index subgroup of SL(n,Z).

4. Dy can be wide-ranging for arboreal representations of
absolute Galois groups of number fields and function fields.

5. Every Cantor action by a finitely generated group G can be
realized by a tower of finite coverings of a closed surface.

The proof of 3 uses ideas of Lubotzky [1993] on torsion elements
in the profinite completion of torsion free subgroups of SL(n,Z),
and a construction due to Lenstra.
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A Cantor action (X, G, ®) is either stable or wild.

Choose a neighborhood basis {@ | £ > 1} of the identity
€ € &(P). Each C; is a normal subgroup of &(®).

Nested: @H C @, with Np>1 @ = {e}.

Given Dy C &(®), define Ug =D, - @. Then Uy, = Ug/DX is
clopen neighborhood of basepoint x € X.

®(G) C &(d) is dense subgroup; G; = {g € G | ®(g) € Uy}.
®y: Gy x Up — Uy is minimal action; 65: @g x Uy — U,.

Dy € Uy forall £>1, Dy = Np>1 U
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®, induces map pg: Dx — Homeo(Uy);
Set Ky = ker{py} for £ > 1. Then Ky C Ky C ---

Theorem: The isomorphism class of the direct limit group
T(P) = h_rn) {Ke C Kpg1 | 0> 1}
is a conjugacy invariant of a Cantor action (X, G, ®).

A Cantor action (X, G, ®) is:
e stable if the chain {K; | £ > 1} is bounded.
That is, if there exists ¢y so that Ky = Kyq1 for £ > 4p.

e wild if the chain {K; | £ > 1} is unbounded.
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Theorem [Hurder-Lukina 2019]: The property that a Cantor
action is wild is invariant by a continuous orbit equivalence.

* The examples of group actions on trees generated by automata
studied by Nekrashevych, Bartholdi, Grigorchuk et al typically
induce wild actions on the Cantor boundary of a tree.

Theorem [Lukina 2018]: Let p and d be distinct odd primes, let
K = Qp be the field of p-adic numbers. Let f(x) = (x + p)? — p.
Then the action of Gals(f) is stable.

Theorem [Lukina 2018]: Let f(x) be a quadratic polynomial
with critical point c. If the post-critical set P¢ is infinite, then the
action of Galgeom(f), and so of Galaitn(f) is wild.
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There is a geometric interpretation of the stable/wild property.

Definition: A topological action ®: G x X — X is locally
quasi-analytic (LQA) if there exists € > 0 such that for any open
set U C X with diam(U) < ¢, and for any open V C U and
g1,8 € G if

if ®(g1)|V = ®(g2)|V then ®(g1)|U = &(g2)|U .

Alternatively, the action is locally quasi-analytic if and only if for
all g € G if (g)|V = id, then ®(g)|U = id, for open sets V C U.

Theorem [Hurder-Lukina, 2017]: A Cantor action (X, G, ®)
with G finitely generated is stable, if and only if the action
®: B(P) x X — X is locally quasi-analytic.
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Let X be a Cantor set, and let X C Homeo(X) be a group.

An element h € H is non-Hausdorff if there exists x € X and a
collection of open sets {Up},>1 with () U, = {x}, such that

1. h(x) = x,

2. hl|y, is non-trivial,

3. for n > 1, there exists an open set O, C U, with h|p, = id.
Theorem: [Winkelnkemper, 1983] The germinal étale groupoid
(X, G,®) associated to a Cantor action (X, G, ®) is
non-Hausdorff if and only if H = ®(G) contains a non-Hausdorff
element.
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Definition: A Cantor action (X, G, ®) has finite type if each group
in the chain {K; | £ > 1} of isotropy groups is finite.

Theorem [Hurder-Lukina, 2019]: (X, G, ®) a Cantor action:

o If &(P) contains a non-Hausdorff element = action is wild.

e G is finitely generated and action is wild of finite type = &(®)
contains a non-Hausdorff element.

Example [Lukina 2018]: This is false if we only assume that G is
a countable group. There are examples of absolute Galois groups
for function fields, whose arboreal representations are wild, but do
not have a non-Hausdorff element.
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Here are two further results:

Theorem [Hurder-Lukina 2018]: There exists
uncountably many wild actions of torsion-free finite index
subgroups of SL(n,Z) with distinct asymptotic discriminants.

Theorem [Hurder-Lukina 2018]: Let $: G x X — X be a
Cantor action with G a finitely generated nilpotent group. Then
the action is stable. Moreover, any Cantor action which is
continuously orbit equivalent must be return equivalent. That is,
their germinal étale groupoids are Morita equivalent.
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Let C}(X, G, ®) be the reduced C*-algebra associated to the
Cantor action (X, G, ®).

Let 90t be a weak solenoid whose monodromy action is return
equivalent to the Cantor action (X, G, ®).

Let F be the foliation on 91, and let D be a leafwise elliptic
operator along the leaves of F.

Then D induces a KK-class [D] € KK(C(9M), C} (X, G, d)).
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Let X = &(®)/Dy be the profinite model for the action.
A representation p: Dy — U(N) gives [p] € KK1(C, C(9))

Form the index pairing

[P]: KK(C(M), G/ (X, G, ) — K.(C}(X. G, )

Question: Do the values of the index pairing suffice for showing
that a Cantor action (X, G, ®) is wild?
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Let X = &(®)/Dy be the profinite model for the action.
A representation p: Dy — U(N) gives [p] € KK1(C, C(9))

Form the index pairing

[P]: KK(C(M), G/ (X, G, ) — K.(C}(X. G, )

Question: Do the values of the index pairing suffice for showing
that a Cantor action (X, G, ®) is wild?

Thank you for your attention!
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