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Three approaches to the same subject:

• Equicontinuous Cantor actions

Dynamical systems approach

• Group actions on rooted trees

Geometric group theory approach

• Clopen subset chains for profinite groups

Descriptive set theory approach

Each approach has its own language.

The approach of Lukina & myself is a sort of “creole”, combining
language and techniques from each of these three areas.
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Cantor actions

• Γ is a finitely generated group

• X is a Cantor space

• Φ: Γ× X→ X is a minimal continuous action

• A Cantor action Φ: Γ× X→ X is equicontinuous if for some
metric dX on X, for every ε > 0 there exists δ > 0 such that

dX(x , y) < δ =⇒ dX(Φ(g)(x),Φ(g)(y)) < ε for all g ∈ Γ.
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When G = Z then a minimal equicontinuous Cantor action
Φ: Γ× X→ X is conjugate to a classical odometer.

For a general group Γ, the action is called a (sub) odometer in

• [Cortez & Petite, J. London Math Soc., 2008]

• [Cortez & Medynets, J. London Math Soc., 2016]

• [Li, Ergodic Theory Dynamical Systems, 2018]
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General approach via group chains: G = {Γ` | ` ≥ 0}

Γ`+1 ⊂ Γ` is proper inclusion with finite index.

Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ Γ3 · · ·

Each quotient X` = Γ/Γ` is a finite set with left Γ-action.

The Cantor space is

X = lim←− {Γ0/Γ`+1 −→ Γ0/Γ`} ⊂
∏
`>0

X`

Induces left Γ-action Φ on X which is minimal and equicontinuous.

Problem: How to organize and classify Cantor actions?
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Topology of Cantor space X is generated by clopen subsets:
U is closed and open. Non-empty clopen U ⊂ X is adapted if the
return times to U form a subgroup

ΓU = {g ∈ Γ | Φ(g)(U) = U} ⊂ Γ

Definition: (X, Γ,Φ) a Cantor action. A properly descending chain
of clopen sets U = {U` ⊂ X | ` ≥ 0} is said to be an
adapted neighborhood basis at x ∈ X for the action Φ, if
x ∈ U`+1 ⊂ U` for all ` ≥ 0 with ∩`>0 U` = {x}, and each U` is
adapted to the action Φ.

Proposition: Let (X, Γ,Φ) be a Cantor action. Given x ∈ X, there
exists an adapted neighborhood basis U at x for the action Φ.

The defining group chain is given by G = {Γ` ≡ ΓU`
| ` ≥ 0}.
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Isomorphism (Rigidity Theory)

Definition: Cantor actions (X1, Γ1,Φ1) and (X2, Γ2,Φ2) are said
to be isomorphic if there is a homeomorphism h : X1 → X2 and
group isomorphism Θ: Γ1 → Γ2 so that

Φ1(g) = h−1 ◦ Φ1(Θ(g)) ◦ h ∈ Homeo(X1) for all g ∈ Γ1 . (1)
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Return equivalence (Dynamical systems)

Definition: Equicontinuous Cantor actions Φ1 : Γ1 ×X1 → X1 and
Φ2 : Γ2 × X2 → X2 are return equivalent if there exist adapted
clopen subsets U ⊂ X1 and V ⊂ X2, such that the restricted
actions Φ1,U : Γ1,U × U → U and Φ2,V : Γ2,V × V → V are
isomorphic.

This is weaker than isomorphism, even for U = X.

It loses information about the kernel of the action map
Φ0 : Γ→ Homeo(X)
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Continuous orbit equivalence (C ∗-algebras)

Definition: Let (X1, Γ1,Φ1) and (X2, Γ2,Φ2) be Cantor actions.
A continuous orbit equivalence between the actions is a
homeomorphism h : X1 → X2 which is an orbit equivalence, and
satisfies the locally constant properties:

1. for each x ∈ X1 and g ∈ Γ1, there exists α(g , x) ∈ Γ2 and an
open set x ∈ Ux ⊂ X1 s.t. Φ2(α(g , x)) ◦ h|Ux = h ◦Φ1(g)|Ux ;

2. for each y ∈ X2 and k ∈ Γ2, there exists β(k , y) ∈ Γ1 and an
open set y ∈ Vy ⊂ X2 s.t. Φ1(β(k , y)) ◦ h|Vy = h ◦Φ2(k)|Vy .

The functions α : Γ1 × X→ Γ2 and β : Γ2 × X2 → Γ1 are
continuous, as the groups Γ1 and Γ2 have the discrete topology,
but need not be cocycles over the actions.

• Renault showed that COE is basic notion for isomorphism of
cross-product C ∗ -algebras with Cartan subalgebra.
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Diagonal Odometers

• Γ = Zk for k ≥ 1

• Choose sequence of integer vectors ~n` = (n`1, . . . , n
`
k), n`i > 1

• Set m`
i = n`1 · n`2 · · · n`k

• Γ` = {(m`
1n1, . . . ,m

`
knk) | (n1, . . . nk) ∈ Zk}

Random Odometers

• Γ = Zk for k ≥ 1

• Choose sequence of integer matrices A` ∈ GL(k,Z), detA` > 1

• Γ` = {A`A`−1 · · ·A1 · ~n | ~n ∈ Zk}

In both cases, the inverse limit X is profinite group.

For k = 1, 2 classified by Giordano, Putnam & Skau [2017]
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Renormalizable

A countable group Γ is finitely non-co-Hopfian if there exists a
self-embedding ϕ : Γ→ Γ whose image is a proper subgroup of
finite index. ϕ : Γ→ Γ is called a renormalization of Γ

If Γ admits a renormalization, then it is said to be renormalizable.

The renormalization group chain Gϕ = {Γ` = ϕ`(Γ) | ` ≥ 0}.
Yields equicontinuous Cantor action Φϕ : Γ× Xϕ → Xϕ

Gϕ is a scale for Γ if K (Gϕ) ≡
⋂
`>0

Γ` is a finite group.

Conjecture: [Benjamini, Nekrashevych & Pete] If Γ admits a
renormalization which defines a scale, then Γ is virtually nilpotent.
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Heisenberg group:

Γ =

[x , y , z ] =

 1 x z
0 1 y
0 0 1

 | x , y , z ∈ Z


Example 1:

• Let m > 1. Define ϕ1[x , y , z ] = [mx ,my ,m2z ]

• Xϕ1 is a profinite Heisenberg group,

• Φϕ1 is left multiplication by Γ.

Example 2:

• p, q > 1 distinct primes. Define ϕ2[x , y , z ] = [px , qy , pqz ]

• Xϕ2
∼= {[x , y , z ] | x ∈ Ẑp , y ∈ Ẑq , z ∈ Ẑpq}.

• Φϕ2 is left multiplication by Γ.



Intro Equivalences Examples Profinite actions Regularity Adjoints Results

• Equicontinuous Cantor action Φ: Γ× X→ X, same as
homomorphism Φ0 : Γ→ Homeo(X)

• Γ̂ = Φ0(Γ) ⊂ Homeo(X) - closure in uniform topology

• Γ̂ is separable profinite group, compact and totally disconnected

• Φ̂ : Γ̂× X→ X is transitive equicontinuous action

• For x ∈ X, define D = {ĝ ∈ Γ̂ | Φ̂(ĝ)(x) = x}
• D is called the discriminant of the action Φ

• Isomorphism class of D is independent of choice of x and
invariant of isomorphism of actions.



Intro Equivalences Examples Profinite actions Regularity Adjoints Results

• If D is the trivial group, then X ∼= Γ̂ is a profinite group, and the
action of Φ on X is given by left multiplication on Γ̂.

• For Γ abelian, D is always trivial.

Dynamics of action are studied using structures of profinite
groups. If action is effective then it is fixed-point free.

• There are fixed-point free actions for which D is non-trivial.

• Study properties of equicontinuous actions with D non-trivial.

• D acts via adjoint on Γ̂: Ad(ĥ)(ĝ) = ĥ−1 ĝ ĥ, ĥ ∈ D, ĝ ∈ Γ̂

Problem: Study properties of adjoint Ad : D × Γ̂→ Γ̂.
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For an equicontinuous Cantor action Φ: Γ× X→ X

1. (Dyer Thesis 2016) D can be a Cantor group for a Cantor
action (X, Γ,Φ) when Γ is 3-dimensional Heisenberg group.

2. ([DHL2016]) Every finite group and every
separable profinite group can be realized as D for a Cantor
action by a torsion-free, finite index subgroup of SL(n,Z),
n ≥ 3.

3. ([Lukina2018a,Lukina2018b]) D can be wide-ranging for
arboreal representations of absolute Galois groups of number
fields and function fields.
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Cantor action Φ: Γ× X→ X

• is effective, or faithful, if Φ0 : Γ→ Homeo(X) has trivial kernel.

• is free if for all x ∈ X and g ∈ Γ, g · x = x implies that g = e

• isotropy group of x ∈ X is Γx = {g ∈ Γ | g · x = x}
• Fix(g) = {x ∈ X | g · x = x}, and isotropy set

Iso(Φ) = {x ∈ X | ∃ g ∈ Γ , g 6= id , g · x = x} =
⋃

e 6=g∈Γ

Fix(g)

• is topologically free if Iso(Φ) is meager in X.

If Iso(Φ) meager, then Iso(Φ) has empty interior.
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Quasi-analytic (General topological actions)

Definition: An action Φ: H × X→ X, where

• H is a topological group and

• X is a Cantor space

is quasi-analytic if for each clopen set U ⊂ X, g ∈ H

• if Φ(g)(U) = U and the restriction Φ(g)|U is the identity map
on U, then Φ(g) acts as the identity on all of X.

For H a countable group, this is equivalent to topologically free.
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Locally quasi-analytic (Equicontinuous Cantor actions)

Definition: An action Φ: H × X→ X, where

• H is a topological group and

• X is a Cantor space

is locally quasi-analytic if if there exists ε > 0 such that

• for any adapted set U ⊂ X with diam(U) < ε,

• for any adapted subset V ⊂ U,

• g ∈ H satisfies Φ(g)(V ) = V and the restriction Φ(g)|V is the
identity map on V , then Φ(g) acts as the identity on all of U.

Definition: An equicontinuous Cantor action Φ: H × X→ X is
stable if the associated profinite action Φ̂ : Γ̂× X→ X is locally
quasi-analytic. The action is said to be wild otherwise.
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Equicontinuous Cantor action Φ: Γ× X→ X defined by group
chain G = {Γ` | ` ≥ 0}, X = lim←− {Γ0/Γ`+1 −→ Γ0/Γ`}.
For k ≥ 0, define

Uk = {(g0, g1, g2, . . .) ∈ X | gi = e for 0 ≤ i ≤ k}
= lim←− {p`+1 : Γk/Γ`+1 → Γk/Γ` | ` ≥ k} ,

which is a clopen subset of X adapted to the action Φ, with
stabilizer subgroup ΓUk

= Γk . Define

Ûk = {ĝ ∈ Γ̂ | Φ̂(ĝ)(Uk) = Uk

which is a clopen set in Γ̂, and D =
⋂
`>0

Ûk .
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K(k) = ker
{

Φ̂(k) : D → D(k) ⊂ Homeo(Uk)
}

C (G) = K(0) ⊂ K(1) ⊂ K(2) ⊂ K(3) ⊂ · · ·

Proposition: Φ is stable iff the chain has an upper bound;

i.e. there exists k0 ≥ 0 such that k > k0 implies K(k) = K(k0).

Definition: If Φ is stable, then Ds ≡ Φ̂(k)(D) ∼= D/Kk for k ≥ k0.
This is called the stable discriminant for the action.
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Definition: An equicontinuous Cantor action Φ: Γ× X→ X is
wild if the chain K = {K0 ⊂ K1 ⊂ K2 ⊂ · · · } does not stabilize.

• The examples of group actions on trees generated by automata
studied by Nekrashevych, Bartholdi, Grigorchuk et al typically
induce wild actions on the boundary of the trees.

• A torsion-free, finite index subgroup Γ ⊂ SL(n,Z), n ≥ 3 has
uncountably many wild equicontinuous Cantor actions which are
pairwise not return equivalent - see [HL2017].

Idea is to use isomorphism

̂SL(n,Z) ∼= SL(n, Ẑ) ∼=
∏

p prime

SL(n, Ẑp)
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• The dynamical properties of equicontinuous Cantor actions are a
lot more mysterious than one might expect.

• Analyze the cases:

? action is stable;

? Γ is virtually nilpotent;

? Γ is renormalizable.

• Classification of wild actions is mostly unknown. Closely related
to presence of non-Hausdorff elements for the action of Γ̂ on X.
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Stable actions

Theorem [HL2018]: The stable property is invariant under
continuous orbit equivalence.

Theorem [HL2019b]: Let (X, Γ,Φ) be a nilpotent Cantor action.
Then the action is stable.

Theorem [HLvW2020]: The Cantor action Φϕ : Γ× Xϕ → Xϕ

associated to a renormalization ϕ : Γ→ Γ is quasi-analytic. Hence,
if the action Φϕ is also effective, then it is topologically free.
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Rigidity

Theorem [HL2018,HL2019b]: Let Φ1 : Γ1 × X1 → X1 be a
stable equicontinuous Cantor action. Let Φ2 : Γ2 × X2 → X2 be a
Cantor action which is continuously orbit equivalent to Φ1.

Then the action Φ2 is equicontinuous and stable, and the actions
Φ1 and Φ2 are return equivalent.

• The dynamics of a stable equicontinuous Cantor action is
essentially preserved by continuous orbit equivalence.
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Nilpotent actions

A finitely generated torsion-free nilpotent group Γ has many
special properties:

? Γ is Noetherian (ascending group chains stabilize)

? The profinite completion Γ̂ is nilpotent and torsion-free.

Theorem [HL2019b]: Let Φ1 : Γ1 × X1 → X1 be an
equicontinuous Cantor action with Γ virtually nilpotent. Suppose
that the action is continuously orbit equivalent to a Cantor action
Φ2 : Γ2 × X2 → X2. Then

• The actions Φ1 and Φ2 are return equivalent.

• If the action Φ2 is effective, then Γ2 is virtually nilpotent.

• The stable discriminants of the two actions are isomorphic.
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Renormalizable groups

Recall that Γ is renormalizable if there exists a self-embedding
ϕ : Γ→ Γ whose image is a proper subgroup of finite index.

This induces a very strong type of self-symmetry for the action
Φϕ : Γ× Xϕ → Xϕ.

Theorem [HLvL2020]: Let ϕ be a renormalization of the finitely
generated group Γ. Suppose that

K (Gϕ) =
⋂
`>0

ϕ`(Γ) ⊂ Γ , Dϕ =
⋂
n>0

ϕ̂n
0(Γ̂ϕ) ⊂ Γ̂ϕ

are both finite groups, then

• Γ is virtually nilpotent,

• If both groups are trivial, then Γ is nilpotent.
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Key point in the proof is to use results by Colin Reid on
self-embeddings of profinite groups:

Endomorphisms of profinite groups, Groups Geom. Dyn.,
8:553–564, 2014.

Extensive literature of profinite subgroups with self-embeddings.

One expects there are many more ideas in these works to exploit.

Question: What are the implications of the above results for the
C ∗-algebras associated to equicontinuous Cantor actions?
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