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whose flow ¢ has no periodic orbits.
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Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow ¢; on M has entropy zero.
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Theorem (Hurder & Rechtman, 2015) Let M be a closed,
orientable 3-manifold. Then M admits a C*°-family of
non-vanishing vector fields X; for —e < t < € whose flows:

e have entropy 0 for t <0
e have no periodic orbits for t =0

e have positive entropy for t > 0.
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Theorem (Hurder & Rechtman, 2015) Let M be a closed,
orientable 3-manifold. Then M admits a C*°-family of
non-vanishing vector fields X; for —e < t < € whose flows:

e have entropy 0 for t <0
e have no periodic orbits for t =0

e have positive entropy for t > 0.

Solution of Palis Conjecture for surface diffeomorphisms:

e E. Pujals and M. Sambarino, On Homoclinic tangencies and hyperbolicity
for surface diffeomorphisms, Ann. of Math. (2),151:961-1023, 2000.

Explicit family of constructions:

e S. Hurder and A. Rechtman, Zippered laminations at the boundary of
hyperbolicity, preprint, 2015.
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Dynamics of ¢; <+ dynamics of f4
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¢t M — M a smooth flow. A complete section is a closed surface
T C M which is everywhere transverse to the flow.

Return map of flow induces diffeomorphism fy: T — T

Dynamics of ¢; <+ dynamics of f4

¢¢r: M — M a smooth flow. A section is a surface T C M which is
generically transverse to the flow.

Return map of flow induces a smooth pseudogroup G4 on T

Dynamics of ¢; <+ dynamics of G4 77
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e 3 is closed

e > is minimal with respect to these two properties.
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> C M is minimal set for ¢; if:
o (X)=Xforallt
e 3 is closed

e > is minimal with respect to these two properties.

Suppose that section T N X is contained in the interior of X
== Dynamics of ¢; <+ dynamics of G4
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unique minimal set ¥ C M, with all other points wandering.
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Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set ¥ C M, with all other points wandering.

Theorem (Hurder & Rechtman, 2013) The unique minimal set
for a generic Kuperberg flow is a zippered lamination, a stratified
space with two strata:

e A 2-dimensional strata that has a laminated structure F;
e A 1-dimensional strata that is transversally Cantor-like.

e > N T defines a smooth pseudogroup Gr
= Dynamics of ¢; <+ dynamics of G4 <+ dynamics of Gr ?

Theorem (Hurder & Rechtman, 2015) Entropy of Kuperberg
flow vanishes if and only if geometric entropy of Gr vanishes.



Minimal sets

Strategy:
e Construct smooth variations of the Kuperberg flow

e Evaluate the entropy of these flows using pseudogroup entropy



Construction

Definition: A plug is a 3-manifold with boundary of the form
P = D x [-1,1] with D a compact surface with boundary. P is
endowed with a non-vanishing vector field X, such that:

o X is vertical in a neighborhood of JP, that is X = d%' Thus X
is inward transverse along D x {—1} and outward transverse along
D x {1}, and parallel to the rest of OP.

e There is at least one point p € D x {—1} whose positive orbit is
trapped in P.

e If the orbit of g € D x {—1} is not trapped then its orbit
intersects D x {1} in the facing point.

e There is an embedding of P into R? preserving the vertical
direction.



Construction

Construct a modified Wilson vector field W in a rectangle R
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Construction

Modified Wilson Plug W:

Consider the rectangle R x S with the vector field W = Wl + fd—fg
The function f is asymmetric in z.
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Embed the Modified Wilson Plug in R3:
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Grow horns and embed them to obtain Kuperberg Plug K,
matching the flow lines on the boundaries.

The subtlety: embed so that the Reeb cylinder {r = 2} is tangent
to itself. Or, vary this parameter by —e < t < € to get X; on K



Construction

€ = 0: The insertion map as it appears in the face E;

r=3
7! = 2 —
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€ < 0: The insertion map as it appears in the face E;
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€ > 0: The insertion map as it appears in the face E;

W™=
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The section Ry C K used to define pseudogroups G4 and Gr.

The flow W is tangent to Ry along the center plane {z =0}.
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The notched cylinder R’ embedded in W

K is obtained from W by a quotient map, 7: W — K
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The flow of the cylinder R’ through one insertion is a simple
propeller:

N

//////////

7

\\\\\\\\\\\\\

=3\




Construction

The flow of the cylinder R’ through infinite time is an infinite
branched tree 91y - a leaf of a lamination:
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Pseudogroup

The Kuperberg pseudogroup Gr is generated by the holonomy of
the lamination 971 defined by the flow of the Reeb cylinder

Mo = {Pe(7(R')) | —00 < t < o0}
M = My CcK
M is wildly wicked, though 9y admits a level filtration

My oMy cms -

which matches the branching of the tree above.
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Generators {Id, 1,1, b5 , ¢, , 1} of the pseudogroup Gr
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Entropy

The word length ||g|| < m if g € Gr can be expressed as the
composition of at most m generators.

Entropy for a C'-pseudogroup action [Ghys, Langevin & Walczak,
1988] measures the “exponentiality” of the orbits.

Let ¢ > 0 and ¢ > 0, and d the metric on Ry. A subset £ C Rg is
said to be (d, ¢, ¢)-separated if for all w, w’ € £ there exists g € Gr
with w, w’ € Dom(g), and ||g||w < ¢ so that d(g(w),g(w’)) > €.

The “expansion growth function” is:

h(Gr,d,e,0) = max{#E | £ C Ro is (d, €, £)-separated}



Entropy

The entropy of Gr is the asymptotic exponential growth type of
the expansion growth function:

4(65) — tim fimsup. 1n (h(Gr, d,e. ) /1|

= lim
e—0
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The entropy of Gr is the asymptotic exponential growth type of
the expansion growth function:

4(65) — tim fimsup. 1n (h(Gr, d,e. ) /1|

Theorem (Hurder & Rechtman, 2015) Let X, be the modified
Kuperberg flow on K. Then the “expansion growth function”:

e for —e < t < 0 has polynomial growth, hence h(Gr) =0
e for t = 0 has growth rate ~ exp(+/n), hence h(Gr) =0
e for 0 < t < € has exponential growth, hence h(Gr) > 0.
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Idea of proof:

e for —e < t < 0, the surface 9 is finitely recursive
e for t =0, the surface 9 is partially recursive

e for 0 < t < ¢, the surface My is fully recursive.

Then use:
e Resulting growth estimates for number of words in G,

e estimate non-expansiveness of maps defined by the words in Gr.
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