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Introduction

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable
3-manifold. Then M admits a C*> non-vanishing vector field
whose flow ¢ has no periodic orbits.

e K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of
Math. (2), 140:723-732, 1994.
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There are many choices in the construction of Kuperberg plugs:

Ghys: Par ailleurs, on peut construire beaucoup de piéges
de Kuperberg et il n'est pas clair qu'ils aient le méme
dynamique.

o E Ghys, Construction de champs de vecteurs sans orbite périodique
(d’aprés Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No.
785, Astérisque, 227: 283-307, 1995.
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Problem: Investigate the invariants of “Kuperberg flows":
e dynamical invariants of the smooth flow in plug W
e topological invariants of unique minimal set ¥

e relations with their smooth deformations.
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e topological invariants of unique minimal set ¥

e relations with their smooth deformations.

Theorem (Katok, 1980) Let M be a closed, orientable
3-manifold. A smooth aperiodic flow ¢ on M has entropy zero.

Theorem (H & Rechtman, 2016) The minimal set ¥ of a
generic Kuperberg flow is a 2-dimensional “zippered lamination”,
which has unstable shape.

Theorem (Ingebretson, 2017) The Hausdorff dimension of the
minimal set ¥ for a generic Kuperberg flow has 2 < HD(X) < 3.



Entropy

Let p;: M — M be a smooth non-vanishing flow on a compact
Riemannian manifold. For ¢, T > 0, two points p,q € M are said
to be (¢¢, T, €)-separated if

du(et(p), ve(q)) > € forsome —T<t<T.

A set E C M is (¢¢, T, €)-separated if all pairs of distinct points in
E are (¢, T,€)-separated. Let s(p¢, T,€) be the maximal
cardinality of a (¢, T, €)-separated set in X.

The topological entropy of the flow ¢, is then defined by

1 ) 1
htop(pt) = 5 lim {Ilm sup 7 log(s(p:, T, e))} ,

=0 [ Tooo

which is independent of the choice of metric dy.



Entropy

For a flow with zero entropy, de Carvalho, and independently
Katok and Thouvenot, introduced the notion of slow entropy as a
measure of the complexity of the flow. The slow entropy measures
the subexponential growth of the e-separated points.

Definition. For 0 < o < 1, the a-slow entropy of ¢; is given by

Haplo0) = 3. i {imsup - tog{s(e. T} }

T—o00
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Kyewon Park and her coauthors introduced the notion of the
entropy dimension of a flow ¢;:

Dimy(i) = inf {Aisp(1)} = 0.

e Are there non-trivial entropy-like invariants for Kuperberg flows?



Constructions
W = [-2,2] x [L,3] x S with non-vanishing vector field

- f f
W=g—+f—
&5z " dg
e f is asymmetric in the vertical coordinate z about z =0
e g > 0is constant in the S! factor, and vanishes only along the

circles O; = {(~1)'} x {2} x St




Constructions

By symmetry on g > 0, it must vanish to an even order along O;.
In the generic case, g vanishes to second order.

Consider the case where g vanishes to order 2n for n > 1. As n
increases, the speed of approach to the orbits O; slows down.

.
ot



Constructions

Self-insert the Wilson plug with a twist and a bend, matching the
flow lines on the boundaries, to obtain Kuperberg Plug K

Embed so that the Reeb cylinder {r = 2} is tangent to itself.

The degree of tangency influences the dynamics.



Lamination

Define the closed subsets of W = [1,3] x S! x [-2,2] = R x St

D; = 0i(D;) for i = 1,2 are solid 3-disks embedded in W.

W = W—{D,UD,} , W= W_{D,UD,}.

C = {r=2} [Full Cylinder]
R = {(2,0,z)| -1<z<1} [Reeb Cylinder]
R = RNW [Notched Reeb Cylinder]

O; = {(2,6,(-1))},i=1,2 [Periodic Orbits]
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Consider the flow of the image 7(R’) C K
Mo = {P(7(R)) | —0 < t < o0}

The surface My is union of embedded “tongues” in K, where each
tongue wraps around the Reeb cylinder 7(R’).




Lamination

My is an infinite union of tongues at increasing levels,
corresponding to the level filtration

MM omg C---
The closure M = My C K is a lamination with boundary.
The topology of 9 is highly complex.

Mo is a “fat tree” whose leaves at higher levels are recurrent on
themselves, corresponding to the branching of the tree below.



Introduction Entropy Constructions Lamination Growth Shape

ot
() T(A)

(v) ()

7(R')




Growth

Choose a Riemannian metric on the plug K.

Then 9ty C K inherits a Riemannian metric.

Let dyy denote the associated path-distance function on 9.
Fix the basepoint wy = (2,7,0) € 7(R’) and let

B.o(s) = {x € My | dop(wo, x) < s}

be the closed ball of radius s about the basepoint wy.
Let A(X) denote the Riemannian area of a Borel subset X C 9.
Then Gr(9Mo, s) = A(B.,(s)) is the growth function of M.

Given functions f1, f,: [0,00) — [0,00), we say that f; < £, if there
exists constants A, B, C > 0 such that for all s > 0, we have that
fz(s) < A. fl(B . S) + C.

Say that f; ~ f» if both f; < f; and f, < 1 hold.



Growth

f1 ~ f> defines an equivalence relation on functions, which is used
to define their growth type.

Theorem (H & Ingebretson, 2017) There exists Kuperberg
flows such that the growth type Gr(9, s) satisfies

Gr(My, s) ~ exp(s*)

for a > 0 arbitrarily small.

We give two applications of this construction.



Growth

The Kuperberg pseudogroup Gr is generated by the holonomy of
the lamination 9 for the section Rp.

The “expansion growth function” is:

h(Gr,d,e,0) = max{#E | £ C Ro is (d, €, £)-separated}

The complexity of Gr is the growth type of £ — h(Gr,d, €, {)

Theorem (H & Ingebretson, 2017) There exists Kuperberg
flows such that for € > 0 sufficiently small, the growth type
satisfies h(Gr, d, €,0) ~ exp(£®), for o > 0 arbitrarily small.

These examples have non-trivial lamination slow entropy.

The relation between the lamination slow entropy and the flow
slow entropy is complicated.



Shape

The open sets Uy = {x € K| dx(x,X) < €/} where we have
0<epy1 <eforalé>1, and Zlim €, = 0, give a shape
—00

approximation to X.

For a > 0, an a-pseudo-orbit for the Kuperberg flow ¢,
determines a path in U, if a < €.

Theorem (Misiurewicz, 1984) h;o,(¢:) = hy(p:) where hy(¢:)
denotes the entropy of ¢; calculated using pseudo-orbits.

Theorem (Barge & Swanson, 1990) h:,, () = Hy () where
Hy(p+) denotes the growth rate of separated periodic
pseudo-orbits for ;.

Conjecture: The expansion growth function for ¢; defined using
pseudo-orbits has the same growth type as for 9.



Shape

We also state an additional shape property for the minimal set of a
generic Kuperberg flow.

Theorem (H & Rechtman, 2016) Let ¥ be the minimal set for a
generic Kuperberg flow. Then the Mittag-Leffler condition for
homology groups is satisfied. That is, given a shape approximation
U= {Us} for X, then for any £ > 1 there exists p > ¢ such that for
any q > p

Image{H1(Up; Z) — H1(Up; Z)} = Image{H1(Uq; Z) — H1(Us; Z)}.

A shape 1-cycle is an “almost closed” path with endpoints
sufficiently close (see picture below.)

Problem: How are the shape 1-cycles related to the periodic
pseudo-orbits for ;7
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Thank you for your attention!
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