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Christopher Deninger’s talk at the International Congress of
Mathematicians in Berlin, 1998 highlighted some deep analogies
between number theory and dynamical systems on foliated spaces.
In particular, here is a quote from his paper “On the nature of the
‘explicit formulas’ in analytic number theory”:

Our example suggests that under suitable conditions
transversal index theory [for smooth foliated manifolds]
generalizes to solenoids or even more general laminated
spaces instead of manifolds.

In this talk, we discuss the nature of “general laminated spaces”
and some of their properties, and give a selection of examples
related to group actions and number theory.
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The objects of study are called various names in the literature:

• Generalized laminations, [Deninger, Ghys, Lyubich & Minsky]

• Matchbox manifolds, [Aarts & Martens, Clark & Hurder]

• Solenoidal manifolds, [Sullivan]

All are foliated spaces as introduced in the book

• Moore & Schochet, Global analysis on foliated spaces, 1988.
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Definition: A C r -foliation F of a manifold M is a “uniform
partition” of M into submanifolds of constant dimension p and
codimension q, such that there is a covering of M by
C r -coordinate charts whose change of coordinate functions
preserve the leaves, for r ≥ 1.



Introduction Solenoids Chains Symmetries Non-Hausdorff Examples Refs HBD

Definition: M is an n-dimensional matchbox manifold if:

• M is a continuum ≡ a compact, connected metric space;

• M admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k};

• each Xi is a clopen subset of a totally disconnected space X;

• plaques Pi (z) = ϕ−1
i ([−1, 1]n × {z}) are connected, z ∈ Xi ;

• for Ui ∩ Uj 6= ∅, each plaque Pi (z) intersects at most one
plaque Pj(z ′), and changes of coordinates along intersection of
plaques are smooth diffeomorphisms;

+ some other technicalities.



Introduction Solenoids Chains Symmetries Non-Hausdorff Examples Refs HBD

The path connected components of M are the leaves of the
foliation F . To the above list, we add the condition:

• there is a leafwise smooth Riemannian metric on the leaves of F ,
which is continuous in each foliation chart.

Proposition: Each leaf of F is a complete Riemannian manifold
with bounded geometry.

It follows that associated to a matchbox manifold are many of the
traditional aspects of Riemannian manifolds, such as leafwise
curvature, leafwise De Rham cohomology, leafwise operators,
foliation-preserving transformation groups, and invariants
constructed from these data.

Basic question: What are these spaces? What are there
properties and invariants?
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Problems to investigate:

• Topological properties of laminated spaces.

? Properties of minimal actions on Cantor spaces.

• Lefschetz Theorems for laminated spaces.

? Extensions of Trace Formulae of Alvarez-Lopez and Kordyukov.

? Distributional trace invariants associated to transverse
profinite group actions.

• Relations to number theory.

? Constructions of examples from absolute Galois groups.
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The Lefschetz trace formulae of Alvarez-Lopez and Kordyukov
appearing in Deninger’s works are usually shown for flows on
Riemannian foliations; that is, a smooth foliation of compact
manifold with a holonomy-invariant transverse Riemannian metric.

The lamination analog of a Riemannian foliation of a compact
manifold M, is a matchbox manifold M whose holonomy is given
by a minimal equicontinuous action on a Cantor space X:

• A Cantor action ϕ : G × X→ X is equicontinuous if for some
metric dX on X, for every ε > 0 there exists δ > 0 such that

dX(x , y) < δ =⇒ dX(ϕ(g)(x), ϕ(g)(y)) < ε for all g ∈ G .
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The equicontinuous hypothesis has strong implications for the
structure of M as we next discuss. We make a brief detour, to
introduce the notion of a weak solenoid.

Let M0 be a connected closed manifold, and let f ii−1 : Mi → Mi−1

be a sequence of finite-to-one proper covering maps. Then

M∞ = lim
←−
{f ii−1 : Mi → Mi−1 | i ≥ 1} (1)

= {(y0, y1, y2, . . .) | f ii−1(yi ) = yi−1 | i ≥ 1}

is a compact connected metrizable space called a (weak) solenoid.

There is a fibration map Π0 : M∞ → M0, and for b ∈ M0 the fiber
X0 = Π−1

0 (x0) is a Cantor space.

Theorem [McCord, 1966]. A solenoid is a matchbox manifold.
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The classical Vietoris solenoid is an example.

Let P = (p1, p2, . . .) be an infinite sequence, where each pi > 1.

Let f ii−1 : S1 → S1 be a pi -to-1 self-covering map of a circle.

A Vietoris solenoid is the inverse limit space

ΣP = {(yi ) = (y0, y1, y2, . . .) | f ii−1(yi ) = yi−1 } ⊂
∏
i≥0

S1

with subspace topology from the Tychonoff topology on
∏

i≥0 S1 .

Let b ∈ S1, then the fibre Xb = {(b, y1, y2, . . .)} ⊂ ΣP is a Cantor
section, transverse to the foliation by path-connected components.

The fundamental group π1(S1, b) = Z acts on Xb via lifts of paths
in S1, so the monodromy action on the fiber defines a group action
Φ: Z× Xb → Xb which is a classical odometer action.
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The following result, whose proof is surprisingly technical, shows
that the study of equicontinuous matchbox manifolds reduces to
the study of weak solenoids:

Theorem [Clark & Hurder, 2013]. Let M be a matchbox
manifold with equicontinuous holonomy pseudogroup action. Then
M is foliated homeomorphic to a weak solenoid.
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The study of weak solenoids reduces to the study of Cantor actions
obtained from group chains. This approach was initiated by
[Fokkink & Oversteegen, 2002].

Let Π0 : M∞ → M0 be a weak solenoid defined by the system of
maps {f i0 : Mi → M0 | i > 0}, where f i0 = f 1

0 ◦ · · · ◦ f ii−1.

Choose a basepoint b ∈ M0 and basepoints xi ∈ Mi such that
f i0 (xi ) = b. Set x = lim xi ∈ Xb ≡ Π−1

0 (b).

Define G = G0 = π1(M0, b), and let Gi ⊂ G be the subgroup
defined by Gi = Image{(f i0 )# : π1(Mi , xi )→ π1(M0, b)}.

{Gi | i ≥ 0} is a descending chain of subgroups of finite index in G .

The subgroups Gi are not assumed to be normal in G .



Introduction Solenoids Chains Symmetries Non-Hausdorff Examples Refs HBD

Example 1: Here is a simple example

Consider the Vietoris solenoid

Σ = {f ii−1 : S1 → S1}.

Then G = π1(Z, 0) = Z, and Gi = (p1 · · · pi )Z, where pi is the
degree of f ii−1.

Since Z is abelian, each subgroup Gi is normal.
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Each Xi = G0/Gi is a finite set with a left action of G . It is a
group if Gi is normal in G . The Cantor fiber Xb is identified with

Xb
∼= X∞ ≡ lim←− {Xi → Xi−1} = lim←− {G/Gi → G/Gi−1} .

and has a left G -action Φ: G → Homeo(X∞).

The action (X∞,G ,Φ) is called a generalized odometer, or also
called a subodometer by [Cortez & Petite, 2008].

The properties of a generalized odometer action are best seen by
introducing the closure of the action, which is a profinite group.
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Definition: The closure E (Φ) of HΦ = Φ(G ) ⊂ Homeo(X∞),
in the topology of pointwise convergence on maps, is called the
Ellis (enveloping) semigroup.

Proposition: Let Φ be an equicontinuous Cantor action. Then
E (Φ) = HΦ = closure of HΦ in the uniform topology on maps.

For x ∈ Xb let Dx = {h ∈ HΦ | h(x) = x} be its isotropy group.

Lemma: The left action of HΦ on X∞ is transitive, hence
X∞ ∼= HΦ/Dx and the closed subgroup Dx ⊂ HΦ is independent of
the choice of basepoint x , up to topological isomorphism.

The normal core N of a subgroup H ⊂ G is the largest subgroup
N ⊂ H which is normal in G .

Lemma: The normal core of Dx in HΦ is trivial.
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Let Ci ⊂ Gi be the normal core of Gi in G , then Ci has finite index
in G . Define the profinite group

G∞ ≡ lim
←−
{qi : G/Ci+1 → G/Ci | i > 0} .

Each group G/Ci acts on the finite set Xi = G/Gi , so there is an
induced action Φ̂∞ : G∞ → Homeo(X∞).

Theorem [Dyer-Hurder-Lukina, 2016]. HΦ = Φ̂∞(G∞), and

D∞ ≡ lim
←−
{πi : Gi+1/Ci+1 → Gi/Ci | ` ≥ 0} ∼= Dx . (2)

The group chain model for minimal equicontinuous Cantor actions
is used to construct examples with prescribed special properties.
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Example 1 continued:

For the Vietoris solenoid

Σ = {f ii−1 : S1 → S1} ,

G = π1(Z, 0) = Z, and G/Gi = Z/p1 · · · piZ, where pi is the
degree of f ii−1.

Since Z is abelian, Gi = Ci , and so Gi/Ci is a trivial group.

Thus C∞ ∼= Xb, where Xb is a fibre of Σ→ S1, and so the
discriminant group Dx of the Vietoris solenoid is trivial.
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Example 2: Here is a more interesting example, with Dx

non-trivial. It is due to [Rogers & Tollefson, 1971/72].

Let T2 = S1 × S1, and consider an involution

r × i(x , y) = (x + 1
2 ,−y).

The quotient K = T2/(x , y) ∼ r × i(x , y)

is the Klein bottle.

The double cover L : T2 → T2 : (x , y) 7→ (x , 2y)

induces a double cover p : K → K .

Define K∞ to be the inverse limit of the iterations of p : K → K .

Since i ◦ L = p ◦ i , there is a double cover i∞ : T∞ → K∞.

Space K∞ cannot be homogeneous.
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The fundamental group of the Klein bottle is

G0 = π1(K , 0) = 〈a, b | bab−1 = a−1〉.

For the cover p : K → K we have

p∗π1(K , 0) = 〈a2, b | bab−1 = a−1〉,

and for pn = p ◦ · · · ◦ p : K → K we have

Gn = (pn)∗π1(K , 0) = 〈a2n , b | bab−1 = a−1〉.

The cosets of G/Gn are represented by aiGi , i = 0, . . . , n − 1,

Cn =
⋂
g∈G

gGng
−1 = 〈a2n | bab−1 = a−1〉.

Then Gn/Cn = {Cn, bCn}, and so Dx
∼= Z/2Z.
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We next discuss some properties of weak solenoids and their
associated monodromy Cantor actions.

The symmetries of an action (X∞,G ,Φ) are given by the right
actions on X∞ that commute with the given left action.

These form a group, Aut(X∞,G ,Φ).

If X∞ is a group, then X∞ ∼= G∞ and the right action of G∞ on
X∞ is transitive.

Proposition: Aut(X∞,G ,Φ) is isomorphic to the commutant of
Dx in G∞. In particular, Aut(X∞,G ,Φ) acts transitively on X∞ if
and only if Dx is the trivial group.

However, this is not the full story for symmetries of weak solenoids.
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For a weak solenoid as defined by (1), and any k ≥ 1 we have

M∞ ∼= lim
←−
{f ii−1 : Mi → Mi−1 | i > k} (3)

Set f i0 = f 1
0 ◦ · · · ◦ f ii−1. Then the fiber of the projection

Πk : M∞ → Mk is the clopen set

Xk = lim←− {Gk/Gi → Gk/Gi−1 | i > k}
= {(f i0 (xk), . . . , xk , yk+1, . . .) ∈ M∞} ⊂ X0 .

The global monodromy with respect to Πk is conjugate to the
restricted action Φk : Gk → Homeo(Xk).
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We derive the group quotient model for the action of Gk on Xk .

The key change is we must introduce the groups Ck,i ⊂ Gk , for
i > k , which are the normal cores of Gi in Gk , so

Ck,i =
⋂

g∈Gk

g Gi g
−1 ⊃

⋂
g∈G

g Gi g
−1 = C0,k = Ck .

Then we have the collection of profinite groups

Gk,∞ ≡ lim
←−
{qi : Gk/Ck,i+1 → Gk/Ck,i | i > k} (4)

Ck,∞ ≡ lim
←−
{qi : Ck,i+1/Ci+1 → Ck,i/Ci | i > k} (5)

Dk,∞ ≡ lim
←−
{qi : Gi+1/Ck,i+1 → Gi/Ck,i | i > k} (6)

D∞ ≡ lim
←−
{qi : Gi+1/Ci+1 → Gi/Ci | i > k} (7)
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Each Gk,∞ acts transitively on Xk with isotropy group Dk,∞ at x .

Moreover, there is an exact sequence

Ck,∞ −→ D∞ = D0,∞ −→ Dk,∞.

Also, for ` > k ≥ 0 there is a surjective map

ρk,` : Dk,∞ −→ D`,∞ (8)

and Ck,∞ ⊂ C`,∞.

The right action of Ck,∞ ⊂ G∞ on X∞ = G∞/D∞ fixes all the
points in the clopen set Xk but the action is not trivial on X∞.

Each group Ck,∞ is an “internal symmetry” of the weak solenoid
with monodromy is given by (X∞,G ,Φ).
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Definition: An action (X∞,G ,Φ) is stable if there exists k0 ≥ 0
such that for ` > k ≥ k0 the map ρk,` in (8) has trivial kernel.

The action is said to be wild otherwise.

Theorem [Hurder-Lukina, 2017]. Suppose that (X∞,G ,Φ) is a
wild action. Then there exists a strictly increasing chain of indices
{1 ≤ k1 < k2 < · · · } so that the sequence of finite subgroups in
the profinite group G∞

Ck1,∞ ⊂ Ck2,∞ ⊂ · · · ⊂ Ckj ,∞ ⊂ · · · ⊂ D∞

is strictly increasing.

Corollary: A weak solenoid with wild monodromy admits an
infinitely increasing chain of internal symmetry groups.
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We next discuss the notion of an “analytic Cantor action”, which
was introduced in the works of Alvarez Lopez, and its relation to
wildness and the Hausdorff property for the action.

Let U,V ⊂ X be clopen subsets of a Cantor space X.

• A homeomorphism h : U → V is quasi-analytic (QA) if either
U = V and h is the identity map, or for every clopen subset
W ⊂ U the fixed-point set of the restriction
h|W : W → h(W ) ⊂ V has no interior.

• A homeomorphism h : U → V is locally quasi-analytic (LQA) if
for each x ∈ U there exists a clopen neighborhood x ∈ U ′ ⊂ U
such that the restriction hU′ : U ′ → V ′ = H(U ′) is QA.

• A group action ϕ : G : X→ X is LQA if for each x ∈ X, there
exists a clopen neighborhood x ∈ U, such that the restrictions of
elements of G to U are quasi-analytic.
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Remarks:

• A free action G × X→ X is quasi-analytic.

• The automorphism group of a spherically homogeneous rooted
tree Td , acting on the Cantor set of ends, is not LQA.

Theorem [Hurder & Lukina, 2017]. Let ϕ : G × X→ X be an
equicontinuous minimal Cantor action, where G is finitely
generated. Then the action ϕ is stable if and only if the action of
the profinite group G∞ on X∞ satisfies the LQA property.
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The LQA property for a group action (X,G ,Φ) can be interpreted
in terms of the properties of the germinal groupoid G(X,G ,Φ)
associated to the action.

Recall that for g1, g2 ∈ G , we say that Φ(g1) and Φ(g2) are
germinally equivalent at x ∈ X if Φ(g1)(x) = Φ(g2)(x), and there
exists an open neighborhood x ∈ U ⊂ X such that the restrictions
agree, Φ(g1)|U = Φ(g2)|U. We then write Φ(g1) ∼x Φ(g2).

For g ∈ G , denote the equivalence class of Φ(g) at x by [g ]x . The
collection of germs G(X,G ,Φ) = {[g ]x | g ∈ G , x ∈ X} is given
the sheaf topology, and forms an étale groupoid modeled on X.
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Theorem [Hurder & Lukina, 2017]. If an action (X,G ,Φ) is
locally quasi-analytic, then G(X,G ,Φ) is Hausdorff.

The Hausdorff property for a germinal groupoid G(X,G ,Φ) appears
in the work of [Renault, 2008] on the C ∗-algebra associated to the
action, and has been studied in various works in C ∗-algebras.
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For the remainder of this talk, we discuss a variety of more subtle
constructions of weak solenoids and Cantor actions, that illustrate
all of the properties introduced above.

Example 3: 3-dimensional matchbox manifolds.

Let M̃0 = H be the real Heisenberg group, presented in the form
H = (R3, ∗) with the group operation ∗ given by
(x , y , z) ∗ (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + xy ′). This operation
is standard addition in the first two coordinates, and addition with
a twist in the last coordinate. Let H = (Z3, ∗) be the integer
lattice subgroup, so that M0 = H/H is a compact 3-manifold.
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Consider subgroups of H which can be written in the form

Γ = MZ2 ×mZ where M =

(
i j
k l

)
is a 2-by-2 matrix with

non-negative integer entries and m > 0 is an integer. Then γ ∈ Γ
is of the form γ = (ix + jy , kx + ly ,mz) for some x , y , z ∈ Z. A
straightforward computation gives the following:

Theorem [Dyer, 2015]. Let An =

(
pn 0
0 qn

)
, p and q are

distinct primes. Define the group chain

G0 = H , {Gn}n≥1 = {AnZ2 × pnZ}n≥1.

Then the discriminant D∞ for the action is a Cantor group, and
the action is stable.
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Thus, the weak solenoid M∞ defined by the coverings of M0

associated to this chain is not homogeneous.

Note that the intersection
⋂
n≥0

Gn = {0}.

This implies that the leaf Lx of the foliation F on M∞ through the
basepoint x ∈ Xb is isometric to the real Heisenberg group H.
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Example 4: [Schori, 1966] gave first example of a
non-homogeneous weak solenoid. It is obtained by taking repeated
3-fold coverings starting with a closed surface Σ2 of genus 2.

3
X0

2
X0

1
X0

c)

H0 F 0

0D’ 0D’’0C’
0C’’

0X

b)

X 1

H 1
F 1

D 1
C 1

d)

0D0C

0F
H0

X0

a)

Proposition [Hurder & Lukina, 2017]. The monodromy action
of G = π1(Σ2, b0) on the fiber of the solenoid over Σ2 is wild.
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Example 5: Wild actions of arithmetic lattices. Lubotzky [1993]
showed that the profinite completions of higher rank arithmetic
lattices contain arbitrary products of finite torsion groups.

SLN(Z) = N × N matrices with integer entries and determinant 1

ŜLN(Z) profinite completion of SLN(Z)

P = set of all primes

ŜLN(Z) ≡ lim
←−

SLN(Z/MZ) ∼= SLN(Ẑ) ∼=
∏
p∈P

SLN(Ẑp) . (9)

Let G ⊂ SLN(Z) be a finite-index, torsion free subgroup.

Then G is finitely generated, and its profinite completion Ĝ is a

clopen subgroup of ŜLN(Z), hence there is a cofinite P ′ ⊂ P, with∏
p∈P ′

SLN(Ẑp) ⊂ Ĝ ⊂
∏
p∈P

SLN(Ẑp)
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Set Ĥ =
∏
p∈P ′

SLN(Z/pZ). Then there is a homomorphism with

dense image α : G → Ĥ. For each p ∈ P ′, choose
Dp ⊂ SLN(Z/pZ) with trivial normal core. Set D =

∏
p∈P ′ Dp.

Theorem [Hurder & Lukina, 2017]. For a closed subgroup
D ⊂ Ĥ as above, the induced action ϕα,D of G on Ĥ/D by α
satisfies:

• The action ϕα,D is minimal and equicontinuous;

• The action ϕα,D is wild for suitable choices of D;

• The actions ϕα,D for uncountably many such choices of D yield
non-homeomorphic weak solenoids.
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Example 6: Arboreal actions of Galois groups.

The analogy between theory of finite coverings and Galois theory
of finite field extensions suggests looking for examples of minimal
Cantor actions arising from purely arithmetic constructions.

• [R.W.K. Odoni, 1985] began the study of arboreal
representations of absolute Galois groups on the rooted trees
formed by the solutions of iterated polynomial equations.

• [Jones, 2013] gives a nice introduction and survey of this
program, from the point of view of arithmetic dynamical systems
and number theory.
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The following discussion concerns results of [Lukina, 2018].

Let X = Pd be the space of paths

in a spherically homogeneous rooted tree Td .

Let G be any discrete group, acting on Td

by permuting edges at each level

so that the paths are preserved.

The space of paths with the

cylinder topology is a Cantor set

This action is equicontinuous.
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Let f (x) be an irreducible polynomial of degree d over a number
field K . Let α ∈ K , and suppose f (x) = α has d distinct solutions.

Identify α with the root of a d-ary tree Td , and identify every
solution α11, α12, . . . , α1d of f (x) = α with a vertex at level 1 in
the tree.

Gal(K (f −1(α))/K ) is identified with a subgroup

of the symmetric group Sd .

For every α1i , consider the equation

f (x) = α1i , so f ◦ f (x) = f (α1i ) = α.

Suppose there are d2 distinct roots. Identify the solutions of
f (x) = α1i with the d vertices at level 2 connected with α1i at
level 1.
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The action of Gal(K (f −2(α))/K ) preserves the structure of the
tree, so

Gal(K (f −2(α))/K ) ⊆ [Sd ]2,

where [Sd ]2 denotes the two-fold wreath product of symmetric
groups Sd .

Continue by induction, assuming that for each i > 0 the
polynomial f i (x) has d i distinct roots.

In the limit, we get a d-ary infinite tree Td of preimages of α
under the iterations of f (x), and the profinite group

Gal∞(f ) = lim
←−
{Gal(K (f −i (α))/K )→ Gal(K (f −(i−1)(α))/K )},

a subgroup of the infinite wreath product Aut(Td) = [Sd ]∞.
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The group Gal∞(f ) is called an arboreal representation of the
absolute Galois group Gal(K sep/K ).

The representation depends on the polynomial f .

Thus Gal∞(f ) is a profinite group acting on the Cantor set of
paths in the tree Td .

Example [Odoni, 1985]. If K = Q, α = 0, f (x) = x2 − x + 1,
then

Gal∞(f ) ∼= Aut(T2) ∼= [S2]∞ .
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Theorem [Lukina, 2018]. Let f (x) be a polynomial of degree
d ≥ 2 over a field K , suppose all roots of f i (x) are distinct and
f i (x)− α is irreducible for all i ≥ 0.

Let v be a path in the space of paths Pd of the tree Td .

Then there exists a countably generated group G0, a
homomorphism Φ : G0 → Homeo(Pd) and a chain {Gi}i≥0 of
subgroups in G0 such that

(1) There is an isomorphism φ̃ : Φ(G0)→ Gal∞(f ),

(2) There is a homeomorphism φ : lim
←−
{G0/Gi} → Pd with

φ(eGi ) = v,

(3) For all u ∈ Pd and g ∈ Φ(G0) we have

φ̃(g) · φ(u) = φ(g(u)).
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Theorem [Lukina, 2018]. Suppose the image of an arboreal
representation Gal∞(f ) is a subgroup of finite index in Aut(Td).
Then the action of the dense subgroup G0 on the path space Pd is
wild.

Remark: The proof of this result is geometric, it uses the absence
of the strong quasi-analytic property of wild actions.

The proof does not require an explicit description of the Galois
groups involved.
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Theorem [Lukina, 2018]. Let p and d be distinct odd primes, let
K = Qp be the field of p-adic numbers, and let

f (x) = (x + p)d − p.

Then the action of the dense subgroup group G0 of the arboreal
representation Gal∞(f ) is stable.

Remark: The group acting on Td in this result is the
Baumslag-Solitar group BS(p, 1) = {τ, σ | στσ−1 = τp}. The
proof uses explicit representations of subgroups Gi in terms of
generators and relations.

There are many further constructions of arboreal actions, by
[Boston & Jones, 2007] and Nekrashevych for example. It is work
in progress, to understand further the structure of arboreal Galois
actions, from the point of view of the geometry and dynamics of
the weak solenoids associated to these actions.
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Conclusions:

• The construction of weak solenoids whose monodromy action
has interesting properties, such as non-trivial Cantor discriminant
group and possibly also wild, is closely related to constructions in
geometric group theory and number theory.

• The invariants of weak solenoids obtained using foliation index
theorems and Lefschetz trace formulae, are as good a place as any,
to go hunting for number theory formulae...
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