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1981-1983: Institute for Advanced Study

In Spring 1982, news arrived at the IAS of Gérard Duminy’s breakthrough:

THEOREM: [Duminy] Let F be a C2-foliation of codimension one on a
compact manifold M. If the Godbillon-Vey class GV/(F) € H3(M) is
non-trivial, then F has a resilient leaf, and hence an uncountable set of
leaves with exponential growth.

In a seminar that Spring at the IAS, including Paul, Larry Conlon, James
Heitsch, the speaker and others, Duminy’s hand-written manuscript with
the proof was presented and dissected.

This seed inspired 25 years of subsequent work.
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Fundamental problems — 1982 & today:

Question 1: How do you construct foliations on a given manifold M?
Must there exist any at all?
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which is (quasi-isometric to) a leaf, imposed by the topology of M and the
dynamical properties of F7
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Fundamental problems — 1982 & today:

Question 1: How do you construct foliations on a given manifold M?
Must there exist any at all?

Question 2: How do the geometry and topology of the leaves of a
foliation JF appear? Are there restrictions on the geometry of a manifold
which is (quasi-isometric to) a leaf, imposed by the topology of M and the
dynamical properties of F7

Question 3: How do you keep track of all the foliations on a given
manifold M7 Is it possible to classify foliations on M modulo some natural
equivalence relation, like foliation preserving diffeomorphism, or Morita
equivalence?

Question 3’: Is it possible to classify (almost all) foliations on M based
on their dynamical behavior?
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Foliation dynamics

@ A continuous dynamical system on a compact manifold M is a flow
@: M xR — M, where the orbit L, = {¢:(x) = p(x,t) | t € R} is
thought of as the time trajectory of the point x € M. The trajectories
of the points of M are necessarily points, circles or lines immersed in
M, and the study of their aggregate and statistical behavior is the
subject of ergodic theory for flows.

@ In foliation dynamics, we replace the concept of time-ordered
trajectories with multi-dimensional futures for points. The study of
the dynamics of F asks for properties of the aggregate and statistical
behavior of the collection of its leaves.
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Classifying spaces:

Let g denote the codimension of the foliation F, so g = m — p where p is
the leaf dimension.
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Theorem: (Haefliger [1970]) Each C"-foliation F on M of codimension g
determines a well-defined map hz: M — BI'g whose homotopy class in
uniquely defined by F.
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Classifying spaces:

Let g denote the codimension of the foliation F, so g = m — p where p is
the leaf dimension.

BI';, denotes the “classifying space” of codimension g, C"-foliations
introduced by André Haefliger in 1970.

Theorem: (Haefliger [1970]) Each C"-foliation F on M of codimension g
determines a well-defined map hz: M — BI'g whose homotopy class in
uniquely defined by F.

Theorem: (Thurston [1975]) Each “natural” map hx: M — BI'g x BO,
yields a C"-foliation F on M with concordance class determined by hr.

The topological type of BI'y is analyzed using the “linearization” of the
normal structure along the leaves — the Bott connection and its invariants.
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Secondary classes

Assume F is C'-foliation with r > 2.

Theorem: (Godbillon-Vey [1971]) For each codimension g, there is a
secondary invariant GV/(F) = A(hicf) € H>3TY(M;R).
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Secondary classes
Assume F is C"-foliation with r > 2.

Theorem: (Godbillon-Vey [1971]) For each codimension g, there is a
secondary invariant GV/(F) = A(hic]) € H?*3t1(M; R).

Theorem: (Bott-Haefliger, Gelfand-Fuks, Kamber-Tondeur [1972]) For
each codimension g, there is a non-trivial space of secondary invariants
H*(WOq) and functorial characteristic map whose image contains the
Godbillon-Vey class

H*(BT 4 R)

R

HH(WO,) -2 H*(M: R)

The study of these maps has been the principle source of information
about the (non-trivial) homotopy type of BI'; for r > 2.
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Homotopy chaos

Again, assume that F is C"-foliation with r > 2.

Theorem: (Bott-Heitsch [1972]) By, does not have finite topological
type for g > 2.
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Homotopy chaos

Again, assume that F is C"-foliation with r > 2.

Theorem: (Bott-Heitsch [1972]) By, does not have finite topological
type for g > 2.

Theorem: (Thurston [1972]) m3(Bl]) surjects onto R.

Theorem: (Heitsch [1978]) There are continuous families of foliations
with non-trivial variations of their secondary classes for g > 3.

Theorem: (Rasmussen [1980]) There are continuous families of foliations
with non-trivial variations of their secondary classes for g = 2.

Corollary: BI'; has uncountable topological type for all g > 1.

Theorem: (Hurder [1980]) For g > 2, m,(BI;) — R* — 0 where
kog+1 # 0, and in general, k, has a subsequence k,, — oo
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Homotopy chaos

Again, assume that F is C"-foliation with r > 2.

Theorem: (Bott-Heitsch [1972]) By, does not have finite topological
type for g > 2.

Theorem: (Thurston [1972]) m3(Bl]) surjects onto R.

Theorem: (Heitsch [1978]) There are continuous families of foliations
with non-trivial variations of their secondary classes for g > 3.

Theorem: (Rasmussen [1980]) There are continuous families of foliations
with non-trivial variations of their secondary classes for g = 2.

Corollary: BI'; has uncountable topological type for all g > 1.

Theorem: (Hurder [1980]) For g > 2, m,(BI;) — R* — 0 where
kog+1 # 0, and in general, k, has a subsequence k,, — oo

Secondary classes measure some uncountable aspect of foliation geometry.
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Cl*t2 is essential

In contrast, Takashi Tsuboi proved the following amazing result:

Theorem: (Tsuboi [1989]) The classifying map of the normal bundle
v: Bré — BO(q) is a homotopy equivalence.

The proof is a technical tour-de-force, using Mather-Thurston type
techniques for the study of BI', along with (to paraphrase) “smearing
along orbits in acyclic models”.
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Ergodic theory & secondary classes

Mizutani, Morita and Tsuboi [1981], Duminy & Sergiescu [1981], and
Duminy [1982] developed techniques of localizing the Godbillon-Vey class
to open saturated subsets, first for foliations of depth 1, and then for
arbitrary depth. Heitsch & Hurder [1984] extended the localization
technique to saturated measurable subsets. Then add two key ideas:
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to open saturated subsets, first for foliations of depth 1, and then for
arbitrary depth. Heitsch & Hurder [1984] extended the localization
technique to saturated measurable subsets. Then add two key ideas:

Idea 1: (Heitsch & Hurder) The normal derivative cocycle used to define
the forms A(h;) appearing in the secondary class A(hjcy) is only required
to be smooth along leaves, and measurable transversally. Thus, the
contribution of A(h;) can be estimated using ergodic theory techniques for
the measurable equivalence relation defined by F.
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Ergodic theory & secondary classes

Mizutani, Morita and Tsuboi [1981], Duminy & Sergiescu [1981], and
Duminy [1982] developed techniques of localizing the Godbillon-Vey class
to open saturated subsets, first for foliations of depth 1, and then for
arbitrary depth. Heitsch & Hurder [1984] extended the localization
technique to saturated measurable subsets. Then add two key ideas:

Idea 1: (Heitsch & Hurder) The normal derivative cocycle used to define
the forms A(h;) appearing in the secondary class A(hjcy) is only required
to be smooth along leaves, and measurable transversally. Thus, the
contribution of A(h;) can be estimated using ergodic theory techniques for
the measurable equivalence relation defined by F.

Idea 2: (Hurder & Katok) Before passing to cohomology or homotopy,
“smear along orbits the linearization data” for BI';. More precisely, use
the ergodic theory and dynamical data for the foliation to “optimally
temper” the normal derivative cocycle.
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Pseudogroups & Groupoids

Every foliation admits a discrete model by choosing a section 7 C M, an
embedded submanifold of dimension g which intersects each leaf of F at
least once, and always transversally. The holonomy of F vyields a
compactly generated pseudogroup G£ acting on 7.

Definition: A pseudogroup of transformations G of 7 is compactly
generated if there is

@ a relatively compact open subset 7y C 7 meeting all leaves of F

o afinite set I = {g1,...,8k} C G such that (I') = G|To;

e gi: D(gi) — R(gi) is the restriction of g; € G with D(g) C D(g;).
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Pseudogroups & Groupoids

Every foliation admits a discrete model by choosing a section 7 C M, an
embedded submanifold of dimension g which intersects each leaf of F at
least once, and always transversally. The holonomy of F vyields a
compactly generated pseudogroup G£ acting on 7.

Definition: A pseudogroup of transformations G of 7 is compactly
generated if there is

@ a relatively compact open subset 7y C 7 meeting all leaves of F
o afinite set I = {g1,...,8k} C G such that (I') = G|To;

e gi: D(gi) — R(gi) is the restriction of g; € G with D(g) C D(g;).
Definition: The groupoid of G is the space of germs
g ={lelx|g§cG &xeD(g)}, TF=Tg,
with source map s[g]x = x and range map r[g]x = g(x) = y.
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Derivative cocycle

Assume (G, T) is a compactly generated pseudogroup, and 7 has a

uniform Riemannian metric. Choose a uniformly bounded, Borel

trivialization, T7 =27 xRY9, T,7 =2, R9 forall xecT.

Definition: The normal cocycle Dyp: 'g x T — GL(RY) is defined by
Dylglx = Dxg: T.T =R — T, 7 =, RY

which satisfies the cocycle law

D([h]y o [g]x) = DI[h], - Dlglx
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Pseudogroup word length

Definition: For g € g, the word length ||[g]||x of the germ [g]x of g at x
is the least n such that

[elc =g o o8]k

Word length is a measure of the “time” required to get from one point on
an orbit to another.
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Asymptotic exponent

Definition: The transverse expansion rate function at x is

[ D.gll,||D,g !
ANGmx) = max m(malIDeell DM g
ligl<n ]l

Definition: The asymptotic transverse growth rate at x is

MG, x) =limsup A(G,n,x) > 0

n—oo

This is essentially the maximum Lyapunov exponent for G at x.
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Expansion classification

M=EUPUH
where each are F—saturated, Borel subsets of M, defined by:
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Expansion classification

M=EUPUH

where each are F—saturated, Borel subsets of M, defined by:

@ Elliptic points: ENT ={xe€ T |V n>0, \G,n,x) <r(x)}
i.e., “points of bounded expansion”
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Expansion classification

M=EUPUH

where each are F—saturated, Borel subsets of M, defined by:

@ Elliptic points: ENT ={x €T |V n>0, \NG,n, x) <k(x)}
i.e., “points of bounded expansion”

@ Parabolic points: PNT ={xecT —(ENT) | AG,x) =0}
i.e., "points of slow-growth expansion”

@ Partially Hyperbolic points: HN7 ={x €T | A\(G,x) > 0}

i.e., "points of exponential-growth expansion” or non-uniformly,
partially hyperbolic transverse dynamics
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& ~ measurable Riemannian structure

Theorem: There exists a measurable Riemannian metric on the normal
bundle Q | £ which is holonomy invariant.

Proof. Introduce the space of fiberwise Riemannian metrics
S = GL(Q)/O(q) — M on which the derivative cocycle Dy acts
isometrically on the fiberwise symmetric spaces GL(Qx)/O(q).

A measurable section o: £ — S corresponds to a measurable transverse
metric on £, and the action of Dy extends to an action on such sections.
Let op be a smooth metric on @ restricted to £.

For x € £ there is an upper bound on the distance between op(x) and
[g]x - oo(x) for all [g]x € g. Hence we can use a center of mass
construction to obtain a section ¢ which is invariant. [
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Examples with M = &

Example: F is Riemannian = M = €£.

Is this the only example?
Question: If M = &, must F be Riemannian?

In the case where F is defined by a smooth measure-preserving action of a
higher rank lattice I' on a compact manifold, this is a well-known (old)
question of Robert Zimmer, which has recently been shown true by David
Fisher and Gregory Margulis if ' has Property T.
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P ~ almost invariant metric

Theorem: For all € > 0, there exists a measurable Riemannian metric o,
on the normal bundle Q | P which is e-holonomy invariant.
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P ~ almost invariant metric

Theorem: For all ¢ > 0, there exists a measurable Riemannian metric o,
on the normal bundle Q | P which is e-holonomy invariant.

Proof. Much the same as above, but using tempering of cocycles and
techniques from the papers:

e [Hurder & Katok 1987] “Ergodic theory and Weil measures for
foliations”, Ann. of Math. (2) 126 (1987)

e [Hurder & Langevin 2004] “Dynamics and the Godbillon-Vey Class of C*
Foliations”, Jour. Diff. Geometry (to appear)
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Examples with M =P

Example: Let F be defined by the suspension of an irrational rotation
diffeomorphism of S which is not C!-conjugate to a rotation. (g = 1)
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Example: Let F be defined by the suspension of the action of a f.g.
subgroup ' C G on G/A where G is non-abelian simply connected
nilpotent Lie group, and G/A is compact manifold. (g > 1)

Steven Hurder (UIC) Classifying Foliations August 7, 2007 18 / 24



Examples with M =P

Example: Let F be defined by the suspension of an irrational rotation
diffeomorphism of S! which is not C!-conjugate to a rotation. (q = 1)

Example: Let F be defined by the suspension of the action of a f.g.
subgroup ' C G on G/A where G is non-abelian simply connected
nilpotent Lie group, and G/A is compact manifold. (g > 1)

Example: A foliation F is distal if its pseudogroup (G, T) is distal: that
is, for all x # y € T there exists €, > 0 such that

dr(g(x),g(y)) > ex, for all g € GF

For example, all compact foliations are distal.

Theorem: If F is distal and C1t¢ for some a > 0, then M = P.
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Examples with M =P

Theorem: (Clark & Hurder [2006]) Suppose that F has a compact leaf L
with H(L,R) # 0, and there is a saturated open neighborhood L C U
such that F | U is a product foliation. Then there is an arbitrarily small
smooth perturbation F’ of F such that F’ has a solenoidal minimal set

K C U, where the leaves of 7’ | K all cover L. Moreover, if F is distal,
then F' is distal.
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Examples with M =P

Theorem: (Clark & Hurder [2006]) Suppose that F has a compact leaf L
with H(L,R) # 0, and there is a saturated open neighborhood L C U
such that F | U is a product foliation. Then there is an arbitrarily small
smooth perturbation F’ of F such that F’ has a solenoidal minimal set
K C U, where the leaves of 7’ | K all cover L. Moreover, if F is distal,
then F' is distal.

Problem: If M = P, does there exists a structure theory for the minimal

sets of F7 For example, must such K admit a topological Lie group
structure transversally, or have a factor with this property?
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Secondary classes and dynamics

Recall that a secondary class y;c; € H*(WO,) is residual if c; has degree
2q. The two results above then imply:

Theorem: (Hurder) If y;c; € H*(WO,) is a residual secondary class (e.g.,
Godbillon-Vey type) then the localizations A(y;c,)|€ = 0 and

A(y;cy)|P = 0. Hence, if A(y;cy) non-zero implies that H has positive
Lebesgue measure.

Thus, understanding the dynamical meaning of the residual secondary

classes requires understanding the dynamics of foliations which have
non-uniformly, partially hyperbolic behavior on a set of positive measure.
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‘H ~ codimension one

Theorem: [Hurder (2005)] Let G be a compactly generated
Cl*a_pseudogroup, where the Holder exponent o > 0, and 7 has
dimension one. The for every minimal set K C 7 the intersection KN'H
has Lebesgue measure zero.
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'H ~ codimension one

Theorem: [Hurder (2005)] Let G be a compactly generated
Cl*te_pseudogroup, where the Holder exponent a > 0, and 7 has
dimension one. The for every minimal set K C 7 the intersection KN'H
has Lebesgue measure zero.

Combining this with results from Poincaré-Bendixsion Theory for
C?-foliations, one gets:

Theorem: [Hurder 2005] Let F be a C?-foliation of codimension g = 1
with GV/(F) # 0. Then there is an open subset U C M with

e U is saturated by the leaves of F,

e U contains the support of the cohomology class GV/(F)
e U contains a dense collection of chaotic laminations.

o F|U is expansive
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Geometric entropy
Given a subset X C 7, S = {x1,...,x¢} C X is (n, €)-separated if
V xj #xj , 3 g €G|X suchthat ||g|lx < n & dr(g(xi),g(xj)) > €

Then set

h(X,n,e) = max #{S|S C X is (n,€) separated}
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Geometric entropy
Given a subset X C 7, S = {x1,...,x¢} C X is (n, €)-separated if

Vxi#x, 3g€GIX suchthat [lgl < n & dr(g(x).g(x)) > ¢

Then set

h(X,n,e) = max #{S|S C X is (n,€) separated}

Definition: (Ghys, Langevin, Walczak [1986])

) ) Inh(7, n,
1) = fim {imsup 22}

The geometric entropy of F is h(F) = h(Gr).

Proposition: If G contains a Markov subpseudogroup, then h(G) > 0.
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Local entropy

Local entropy for measure-preserving transformations was introduced by

Brin & Katok at a talk in Rio de Janeiro in 1981. There is a very useful
version of this notion for pseudogroups.

Let B(x,d) C 7 denote the open d—ball about x € 7.

Definition: The local entropy of G at x is

hioc(G, x) = lim { lim { lim sup In h(B(x, ), n,€) }}

6—0 Le— n—o0 n
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Local entropy for measure-preserving transformations was introduced by
Brin & Katok at a talk in Rio de Janeiro in 1981. There is a very useful
version of this notion for pseudogroups.

Let B(x,d) C 7 denote the open d—ball about x € 7.
Definition: The local entropy of G at x is

hioc(G, x) = lim { lim { lim sup In h(B(x, ), n,€) }}

6—0 Le—0 n—o0 n

Example: G generated by an expanding map f: N — N of a compact
manifold N, then hjoc(G, x) = hjoc(f, x) is the usual local entropy of f.
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Local entropy

Local entropy for measure-preserving transformations was introduced by
Brin & Katok at a talk in Rio de Janeiro in 1981. There is a very useful
version of this notion for pseudogroups.

Let B(x,d) C 7 denote the open d—ball about x € 7.
Definition: The local entropy of G at x is

hioc(G, x) = lim { lim { lim sup In h(B(x, ), n,€) }}

6—0 Le—0 n—o0 n

Example: G generated by an expanding map f: N — N of a compact
manifold N, then hjoc(G, x) = hjoc(f, x) is the usual local entropy of f.

Proposition: (Hurder [2005]) G a finitely-generated pseudogroup:

h(g) = sup hloc(g7x)
T

IS
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Entropy and chaos and 'H

Theorem: (Hurder [2005]) Let K C 7 be a minimal set such that
hioc(G, x) > 0 for some x € K. Then KNH # 0.
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Entropy and chaos and 'H

Theorem: (Hurder [2005]) Let K C 7 be a minimal set such that
hioc(G, x) > 0 for some x € K. Then KNH # 0.

Problem: If H has positive Lebesgue measure and G is C1T for some
a > 0, show that hjc(G, x) > 0 for almost every x € H.
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Entropy and chaos and 'H

Theorem: (Hurder [2005]) Let K C 7 be a minimal set such that
hioc(G, x) > 0 for some x € K. Then KNH # 0.

Problem: If H has positive Lebesgue measure and G is C1T for some
a > 0, show that hjc(G, x) > 0 for almost every x € H.

Problem: Characterize the set {x € 7 | hjoc(G,x) > 0} — what are its
properties? |s there an estimate for its Hausdorff dimension in terms of
cohomology invariants of F7
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cohomology invariants of F7

Problem: Extend our understanding of the relation between cohomology

invariants and properties of foliation dynamical systems to codimension
greater than one.
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Entropy and chaos and H

Theorem: (Hurder [2005]) Let K C 7 be a minimal set such that
hioc(G, x) > 0 for some x € K. Then KNH # 0.

Problem: If H has positive Lebesgue measure and G is C1T for some
a > 0, show that hjc(G, x) > 0 for almost every x € H.

Problem: Characterize the set {x € 7 | hjoc(G,x) > 0} — what are its
properties? |s there an estimate for its Hausdorff dimension in terms of
cohomology invariants of F7

Problem: Extend our understanding of the relation between cohomology
invariants and properties of foliation dynamical systems to codimension

greater than one.

No Problem: Happy Birthday, Paul!!
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