The dynamical classification of arboreal actions

Steve Hurder, University of Illinois at Chicago joint work with Olga Lukina, University of Vienna

In this talk we consider:

 \star classification, up to return equivalence, minimal equicontinuous actions of a finitely generated group Γ on a Cantor space $\mathfrak{X}.$

 $\star\,$ a new approach, based on the <u>Steinitz orders</u> of profinite groups associated to the group action.

 $\star\,$ two new classes of actions which are invariants of return equivalence - frothy and <u>turbulent</u> actions.

First, we discuss the motivation for the study of return equivalence.

Consider $\mathcal{P} = \{ q_{\ell} \colon M_{\ell} \to M_{\ell-1} \mid \ell \geq 1 \}$, where each M_{ℓ} is a compact connected manifold without boundary of dimension $n \geq 1$, and q_{ℓ} is a proper covering map. The inverse limit

$$\mathcal{S}_{\mathcal{P}} \equiv \lim_{\longleftarrow} \{q_{\ell} \colon M_{\ell} \to M_{\ell-1}\} \subset \prod_{\ell > 0} M_{\ell}$$

is the solenoidal manifold associated to \mathcal{P} . It is compact and connected but not locally connected, has a fibration map $p_0: S_{\mathcal{P}} \to M_0$ and foliated by leaves which cover M_0 .

For $x_0 \in M_0$, the fiber $\mathfrak{X}_0 = p_0^{-1}(x_0)$ is a Cantor set, and the monodromy along leaves gives an action of $\Gamma = \pi_1(M_0, x_0)$ on \mathfrak{X}_0 .

Problem: Classify the solenoidal manifolds up to homeomorphism.

Vietoris - van Dantzig Solenoid:

$$\mathcal{S}(\vec{m}) = \varprojlim \{ q_{\ell} : \mathbb{S}^1 \to \mathbb{S}^1 \mid \ell \geq 1 \}$$

where q_{ℓ} is a covering map of the circle \mathbb{S}^1 of degree $m_{\ell} > 1$. Let $\vec{m} = (m_1, m_2, ...)$ be the collection of covering degrees, then the Steinitz degree of the covering map $q_0: S(\vec{m}) \to \mathbb{S}^1$ is the product

$$\Pi[\vec{m}] = m_1 \cdot m_2 \cdots m_i \cdots = \prod_{p \in \pi} p^{n(p)} \quad , \quad 0 \le n(p) \le \infty$$

When $m_i = 2$ for all $i \ge 1$ we get the Smale attractor:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Steinitz numbers are asymptotically equivalent, or $\Pi[\vec{m}] \stackrel{\circ}{\sim} \Pi[\vec{n}]$, if there exists $m, n \ge 1$ with $m \cdot \Pi[\vec{m}] = n \cdot \Pi[\vec{n}]$.

[Bing, 1960] and [McCord, 1965] showed the following:

Theorem: Solenoids $S(\vec{m})$ and $S(\vec{n})$ are homeomorphic if and only if $\prod[\vec{m}] \stackrel{\circ}{\sim} \prod[\vec{n}]$.

Question: Does such a result hold for the case of solenoidal manifolds with dimension greater than 1?

• If solenoidal manifolds $S_{\mathcal{P}}$ and $S_{\mathcal{P}'}$ are homeomorphic, then their monodromy Cantor actions are *return equivalent*.

* Clark - Hurder - Lukina, "Classifying matchbox manifolds", Geom & Top, 23, 2019; arXiv:1311.0226.

Minimal equicontinuous Cantor actions:

- Γ is a finitely generated group,
- $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ is a topological action.
- $(\mathfrak{X}, \Gamma, \Phi)$ is minimal if every orbit $\mathcal{O}(x) = \{gx \mid g \in \Gamma\}$ is dense.

• $(\mathfrak{X}, \Gamma, \Phi)$ is *equicontinuous* with respect to a metric $d_{\mathfrak{X}}$ on \mathfrak{X} , if for all $\epsilon > 0$ there exists $\delta > 0$, such that for all $x, y \in \mathfrak{X}$ and $g \in \Gamma$, we have that $d_{\mathfrak{X}}(x, y) < \delta$ implies $d_{\mathfrak{X}}(gx, gy) < \epsilon$.

• \mathfrak{X} Cantor space then the *clopen* (closed and open) subsets $CO(\mathfrak{X})$ form a basis for the topology.

Fact: \mathfrak{X} a Cantor space, a minimal action $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ is equicontinuous if and only if the Γ -orbit of every $U \in CO(\mathfrak{X})$ is finite for the induced action $\Phi_* \colon \Gamma \times CO(\mathfrak{X}) \to CO(\mathfrak{X})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two Models

The <u>tree model</u>, or arboreal actions, where Γ acts on a tree \mathcal{T} preserving a root vertex v, then \mathfrak{X} is identified with the ends of \mathcal{T}

The group chain model, where Γ acts on the coset spaces $X_{\ell} = \Gamma/\Gamma_{\ell}$ where $\Gamma_1 \supset \Gamma_2 \supset \cdots$ is a descending chain of proper subgroups, so Γ acts on the inverse limit space

$$\mathfrak{X} = \varprojlim \{X_1 \leftarrow X_2 \leftarrow \cdots\}$$

Fact: The two models are equivalent.

• Group chain model yields solenoidal manifolds directly.

Definition: $U \subset \mathfrak{X}$ is *adapted* to the action $(\mathfrak{X}, \Gamma, \Phi)$ if U is a *non-empty clopen* subset, and for any $g \in \Gamma$, if $\Phi(g)(U) \cap U \neq \emptyset$ implies that $\Phi(g)(U) = U$.

• Given $x \in \mathfrak{X}$ and clopen set $x \in W$, there is an adapted clopen set U with $x \in U \subset W$.

• For U adapted, the set of "return times" to U,

$$\Gamma_U = \{ g \in \Gamma \mid g \cdot U \cap U \neq \emptyset \}$$

is a subgroup of Γ , called the *stabilizer* of U.

Definition: Minimal equicontinuous Cantor actions $(\mathfrak{X}_1, \Gamma_1, \Phi_1)$ and $(\mathfrak{X}_2, \Gamma_2, \Phi_2)$ are return equivalent if there exists an adapted set $U_1 \subset \mathfrak{X}_1$ for the action Φ_1 and an adapted set $U_2 \subset \mathfrak{X}_2$ for the action Φ_2 , and a homeomorphism $h: U_1 \to U_2$ which induces an isomorphism of the monodromy groups \mathcal{H}_{U_1} with \mathcal{H}_{U_2} .

Basic Problem: Classify the minimal equicontinuous Cantor actions up to return equivalence.

≙

Easier Problem: Find properties of minimal equicontinuous Cantor actions which are return invariant.

Fun Problem: Find interesting examples of minimal equicontinuous Cantor actions.

• Properties

- * Steinitz orders
- ★ Stable & Wild
- $\star\,$ Frothy & Turbulent

• Examples

- * Odometer Actions
- \star Heisenberg Actions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$(\mathfrak{X},\Gamma,\Phi)$ minimal equicontinuous Cantor action

- $\implies \ \ \Phi(\Gamma) \subset \textbf{Homeo}(\mathfrak{X}) \text{ is equicontinuous subgroup,}$
- $\implies \quad \text{closure } \mathfrak{G}(\Phi) = \overline{\Phi(\Gamma)} \subset \textbf{Homeo}(\mathfrak{X}) \text{ is profinite group.}$
- $\implies \ \mathfrak{G}(\Phi) \text{ acts transitively on } \mathfrak{X}, \text{ so have } \widehat{\Phi} \colon \mathfrak{G}(\Phi) \times \mathfrak{X} \to \mathfrak{X}$
- $\implies \text{ Isotropy subgroup } \mathfrak{D}(\Phi, x) = \{\widehat{g} \in \mathfrak{G}(\Phi) \mid \widehat{\Phi}(\widehat{g})(x) = x\}$
 - $\star \ \mathfrak{D}(\Phi, x)$ is finite, or Cantor group

$$\star \ \mathfrak{D}(\Phi, x) \sim \mathfrak{D}(\Phi, y) \text{ for } x, y \in \mathfrak{X}$$

$$\star \ \mathfrak{X} \cong \mathfrak{G}(\Phi)/\mathfrak{D}(\Phi,x)$$

The closure $\overline{\Phi(\Gamma)}$ is also called the Ellis group of the action.

Problem: How does dynamics of action $(\mathfrak{X}, \Gamma, \Phi)$ depend on subgroup $\mathfrak{D}(\Phi, x)$? Or more precisely, on the left (adjoint) action of $\mathfrak{D}(\Phi, x)$ on $\mathfrak{G}(\Phi)/\mathfrak{D}(\Phi, x)$?

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 へ ()

Steinitz numbers:

Example: Suppose *a* and *b* are Steinitz numbers, with

$$a=\prod_{p\in\pi}p^{n(p)}$$
 , $b=\prod_{p\in\pi}p^{m(p)}$

where π is the set of distinct prime numbers.

$$LCM(a, b) = \prod_{p \in \pi} p^{\max\{n(p), m(p)\}}$$

Definition: $\mathcal{N} = \{n_i \mid i \in \mathcal{I}\}$ collection of positive integers.

$$LCM(\mathcal{N}) = \prod_{p \in \pi} p^{n(p)}$$
, $0 \le n(p) \le \infty$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

is least common multiple as Steinitz number

Steinitz order:

 \mathfrak{G} a profinite group

 $\mathfrak{N}\subset\mathfrak{G}$ open normal subgroup then $\mathfrak{G}/\mathfrak{N}$ is finite group.

Definition: $\mathfrak{H} \subset \mathfrak{G}$ be a closed subgroup of the profinite group \mathfrak{G} .

 $\Pi[\mathfrak{G}:\mathfrak{H}] = LCM\{\#\{\mathfrak{G}/(\mathfrak{N}\cdot\mathfrak{H})\} \mid \mathfrak{N} \subset \mathfrak{G} \text{ clopen normal subgroup}\}$

is the <u>relative Steinitz order</u> of \mathfrak{H} in \mathfrak{G} .

- <u>Steinitz order</u> of \mathfrak{G} is $\Pi[\mathfrak{G}] = \Pi[\mathfrak{G} : {\widehat{e}}].$
- Steinitz numbers Π₁ ^a ∼ Π₂ (asymptotic equivalence)
 ⇒ m · Π₁ = n · Π₂ for integers m, n ≥ 1

* J.S. Wilson, Chapter 2, Profinite groups, London
 Mathematical Society Monographs. New Series, Vol. 19, 1998.

Theorem: $(\mathfrak{X}, \Gamma, \Phi)$ minimal equicontinuous Cantor action, then the asymptotic relative Steinitz order $\prod_a[\mathfrak{G}(\Phi) : \mathfrak{D}(\Phi)]$ is an invariant of return equivalence class of the action.

Corollary: Asymptotic Steintiz order of tower of coverings is an invariant of the homeomorphism class of solenoidal manifold.

Definition: Prime spectrum of \mathfrak{G} is the collection

 $\pi(\Pi[\mathfrak{G}]) = \{ p \text{ prime } | p \text{ divides } \Pi[\mathfrak{G}] \}$

Theorem: $(\mathfrak{X}, \Gamma, \Phi)$ minimal equicontinuous Cantor action, then the prime spectra $\pi(\Pi[\mathfrak{G}(\Phi)])$ and $\pi(\Pi[\mathfrak{D}(\Phi)])$ are invariants of return equivalence of the action, modulo finite sets of primes.

Remark: Classification problem can be considered in terms of prime spectra of actions.

Regularity properties of Cantor actions:

Here are alternate versions of *topologically free* actions which are valid for Γ profinite group.

• $(\mathfrak{X}, \Gamma, \Phi)$ is quasi-analytic \iff

for any clopen subset $U \subset \mathfrak{X}$ & any $g \in \Gamma$, if $\Phi(g)(U) = U$ and $\Phi(g)|U$ is the identity, then $\Phi(g)$ is the identity on all of \mathfrak{X} .

• $(\mathfrak{X}, \Gamma, \Phi)$ is locally quasi-analytic \iff

if there exists $\epsilon > 0$ such that for any adapted subset $U \subset \mathfrak{X}$ with $\operatorname{diam}(U) < \epsilon$ & any $g \in \Gamma$ with $\Phi(g)(U) = U$, if there exists clopen $V \subset U$ with $\Phi(V) = V$ and the restriction $\Phi(g)|V$ is the identity, then $\Phi(g)|U$ is the identity on all of U.

- ロ ト - 4 回 ト - 4 □

Definition: $(\mathfrak{X}, \Gamma, \Phi)$ is <u>stable</u> if the *profinite* action $\widehat{\Phi} : \mathfrak{G}(\Phi) \times \mathfrak{X} \to \mathfrak{X}$ is locally quasi-analytic.

Theorem: Stable property is an invariant of return equivalence.

Remark: The classification problem for stable actions essentially reduces to a problem in algebra.

* Cortez - Medynets, "Orbit equivalence rigidity of equicontinuous systems", Journal Lond. Math. Soc. (2), 94, 2016.

* Hurder - Lukina, "Orbit equivalence and classification of weak solenoids", Indiana Univ. Math. Journal, Vol. 69, 2020; arXiv:1803.02098.

* Hurder - Lukina, "Nilpotent Cantor actions"; arXiv:1905.07740.

Definition: $(\mathfrak{X}, \Gamma, \Phi)$ is <u>wild</u> if the *profinite* action $\widehat{\Phi} : \mathfrak{G}(\Phi) \times \mathfrak{X} \to \mathfrak{X}$ is not locally quasi-analytic.

Wild Cantor actions include:

• actions of weakly branch groups on their boundaries

* Bartholdi - Grigorchuk - Šunik, "Branch groups", **Handbook of** algebra, Vol. 3, 2012.

• actions of higher rank arithmetic lattices on quotients of their profinite completions

* Hurder- Lukina, "Wild solenoids", Transactions A.M.S., 371, 2019; arXiv:1702.03032.

- subgroups of wreath product groups acting on trees
- * Álvarez López Barral Lijó Lukina Nozawa, "Wild Cantor actions", J. Math. Soc. Japan, to appear; arXiv:2010.00498.

Classifying nilpotent Cantor actions:

 $(\mathfrak{X}, \Gamma, \Phi)$ is a nilpotent Cantor action \Leftrightarrow

- minimal & equicontinuous,
- Γ contains a finitely-generated nilpotent subgroup of finite index.

Question: How do the dynamical properties of nilpotent Cantor actions differ from those of \mathbb{Z}^n -odometers?

Theorem: [Hurder - Lukina, 2021] Let $(\mathfrak{X}, \Gamma, \Phi)$ be a nilpotent Cantor action. Then

prime spectrum $\pi(\Pi[\mathfrak{G}(\Phi)])$ is finite \implies action is stable

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: Show there exist wild nilpotent Cantor actions.

Two more properties:

Definition: A wild Cantor action $(\mathfrak{X}, \Gamma, \Phi)$ is said to be <u>frothy</u> if $\mathfrak{D}(\Phi) \cong \prod_{i=1}^{\infty} H_i$, where each H_i is a finite group.

Definition: A wild Cantor action $(\mathfrak{X}, \Gamma, \Phi)$ is said to be <u>turbulent</u> if the set of points with non-trivial holonomy has full measure.

This notion has applications to the study of I.R.S.'s

* Gröger - Lukina, "Measures and regularity of group Cantor actions", Discrete Contin. Dynam. Sys.-A, 41(5) 2021; arXiv:1911.00680.

Examples:

- Toroidal Actions
- Heisenberg (nilpotent) Actions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- \star Stable
- \star Wild
- \star Frothy
- \star Turbulent

Classic odometers: Choose two disjoint sets of distinct primes,

$$\pi_f = \{q_1, q_2, \ldots\}$$
 , $\pi_{\infty} = \{p_1, p_2, \ldots\}$

where π_f and π_{∞} can be chosen to be finite or infinite sets. Choose multiplicities $n(q_i) \ge 1$ for the primes in π_f . For each $\ell > 0$, define a subgroup of $\Gamma = \mathbb{Z}$ by

$$\Gamma_{\ell} = \{q_1^{n(q_1)}q_2^{n(q_2)}\cdots q_{\ell}^{n(q_{\ell})}\cdot p_1^{\ell}p_2^{\ell}\cdots p_{\ell}^{\ell}\cdot n\mid n\in\mathbb{Z}\}$$

The completion $\widehat{\Gamma}$ of \mathbb{Z} with respect to this group chain admits a product decomposition into its Sylow *p*-subgroups

$$\widehat{\Gamma} \cong \prod_{i=1}^{\infty} \mathbb{Z}/q_i^{n(q_i)}\mathbb{Z} \cdot \prod_{p \in \pi_{\infty}} \widehat{\mathbb{Z}}_{(p)} \quad , \ \pi(\Pi[\widehat{\Gamma}]) = \pi_f \cup \pi_{\infty}$$

 $\mathbb{Z}\text{-action}$ on $\mathfrak{X}=\widehat{\Gamma}$ is free, so certainly topologically free & stable.

Heisenberg odometers: $\mathcal{H} \subset GL(\mathbb{Z}^3)$

$$\mathcal{H} = \left\{ \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}.$$
(1)

The group operation * in coordinates $(a, b, c), (a', b', c') \in \mathbb{Z}^3$,

$$(a, b, c) * (a', b', c') = (a + a', b + b', c + c' + ab')$$

The normal subgroups and representations of *H* are described in
* Lightwood - Şahin - Ugarcovici, "The structure and spectrum of Heisenberg odometers", Proc. Amer. Math. Soc., 142(7), 2014.
* Danilenko - Lemańczyk, "Odometer actions of the Heisenberg group", J. Anal. Math., 128, 2016.

Our interest is in group chains in \mathcal{H} which are <u>not normal</u>. Here is a very useful result:

Theorem: Let $\widehat{\Gamma}$ be a profinite completion of a finitely-generated nilpotent group Γ . Then there is a topological isomorphism

$$\widehat{\Gamma} \cong \prod_{p \in \pi(\Pi[\widehat{\Gamma}])} \ \widehat{\Gamma}_{(p)} \ ,$$

where $\widehat{\Gamma}_{(p)} \subset \widehat{\Gamma}$ denotes the Sylow *p*-subgroup of $\widehat{\Gamma}$ for a prime *p*.

Thus the action of $\widehat{\Gamma}$ can be analyzed for each prime. Conversely, actions of \mathcal{H} can be constructed prime by prime.

A model action of a finite *p*-group:

Fix a prime $p \ge 2$.

For $n \ge 1$ and $0 \le k < n$, we have the following finite groups:

$$G_{p,n} = \left\{ \left[\begin{array}{rrr} 1 & \overline{a} & \overline{c} \\ 0 & 1 & \overline{b} \\ 0 & 0 & 1 \end{array} \right] \mid \overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/p^n \mathbb{Z} \right\}$$

$$H_{p,n,k} = \left\{ \begin{bmatrix} 1 & p^k \overline{a} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid \overline{a} \in \mathbb{Z}/p^n \mathbb{Z} \right\}$$

$$X_{p,n,k} = G_{p,n}/H_{p,n,k}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The isotropy group of the action of $G_{p,n}$ on $X_{p,n,k}$ at the coset $eH_{p,n,k}$ of the identity element is $H_{p,n,k}$.

Construction of a wild example:

Let π_f and π_∞ be two disjoint collections of primes, with π_f an infinite set and π_∞ arbitrary, possibly empty.

Enumerate $\pi_f = \{q_1, q_2, \ldots\}$ and choose integers $1 \le r_i \le n_i$ for $1 \le i < \infty$.

Enumerate $\pi_{\infty} = \{p_1, p_2, \ldots\}$, again with the convention that if ℓ is greater than the number of primes in π_{∞} then we set $p_{\ell} = 1$. For each $\ell \geq 1$, define the integers

$$\begin{aligned} M_\ell &= q_1^{r_1} q_2^{r_2} \cdots q_\ell^{r_\ell} \cdot p_1^\ell p_2^\ell \cdots p_\ell^\ell , \\ N_\ell &= q_1^{n_1} q_2^{n_2} \cdots q_\ell^{n_\ell} \cdot p_1^\ell p_2^\ell \cdots p_\ell^\ell . \end{aligned}$$

For $\ell \geq 1$, define a subgroup of \mathcal{H} , in the coordinates above,

$$\mathcal{H}_{\ell} = \{(aM_{\ell}, bN_{\ell}, cN_{\ell}) \mid a, b, c \in \mathbb{Z}\},\$$

Its core subgroup is given by $C_{\ell} = \{(aN_{\ell}, bN_{\ell}, cN_{\ell}) \mid a, b, c \in \mathbb{Z}\}$. For $k_i = n_i - r_i$ we then have

$$\widehat{\mathcal{H}}_{\infty} \cong \prod_{i=1}^{\infty} G_{q_i,n_i} \cdot \prod_{j=1}^{\infty} \widehat{\mathcal{H}}_{(p_j)} , \quad D_{\infty} \cong \prod_{i=1}^{\infty} H_{q_i,n_i,k_i} .$$

The Cantor space $X_{\infty} = \widehat{\mathcal{H}}_{\infty}/D_{\infty}$ associated to the group chain $\{\mathcal{H}_{\ell} \mid \ell \geq 1\}$ is given by

$$X_{\infty} \cong \prod_{i=1}^{\infty} X_{q_i,n_i,k_i} \times \prod_{j=1}^{\infty} \widehat{\mathcal{H}}_{(p_j)}.$$

ション・ 山田・ 山田・ 山田・ 山田・

Let $x_i \in X_{q_i,n_i,k_i}$ denote the coset of the identity element. For each $\ell \ge 1$, we define a clopen set in X_{∞}

$$U_{\ell} = \prod_{i=1}^{\ell} \{x_i\} \times \prod_{i=\ell+1}^{\infty} X_{q_i,n_i,k_i} \times \prod_{j=1}^{\infty} \widehat{\mathcal{H}}_{(p_j)}.$$

- This action is wild.
- If the set π_{∞} is empty, then the action is frothy as well.
- With proper choices of integers $1 \le r_i \le n_i$ for $1 \le i < \infty$, the action will be turbulent.

Details of calculations and more examples are in the paper

* Hurder-Lukina, "The prime spectrum of solenoidal manifolds", 2021; arXiv:2103.06825