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Theorem: [Denjoy, 1932] There exist a C 1-foliation F of
codimension-1 with an exceptional minimal set M with no
fixed-points for its holonomy pseudogroup, and M has the shape
of wedge of two circles.

Theorem: [Sacksteder, 1965] An exceptional minimal set M for a
C 2-foliation of codimension-1 always has hyperbolic fixed-points
for its holonomy pseudogroup.

Theorem: [Rosenberg & Roussarie, 1970] There exists
C∞-foliations of codimension-1 with exceptional minimal sets.

Theorem: [Williams, 1974] Let Λ ⊂ M be an expanding attractor
for a diffeomorphism f : M → M, so that the stable foliation of f
is C 1 on some open neighborhood of Λ. Then f : Λ→ Λ is
C 0-conjugate to the shift map on a stationary generalized solenoid.
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F is a C r -foliation of codimension-q of a compact manifold M.

M ⊂ M is exceptional minimal set - transversally is a Cantor set.

The classification of exceptional minimal sets for C r -foliations of
codimension-q remains an open problem, for q ≥ 1 and r ≥ 1.

Problem: classify the possible

• topological types of M, up to homeomorphism;

• holonomy pseudogroups for M, up to Morita equivalence;

• shapes of M, up to shape equivalence.

We consider this in a more general topological setting, and ask to
what extent the Theorems above admit generalizations.
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Definition: A matchbox manifold is a continuum with the
structure of a smooth foliated space M, such that the transverse
model space X is totally disconnected, and for each x ∈M, the
transverse model space Xx ⊂ X is a clopen subset.

Figure: Blue tips are points in Cantor set Xx
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Definition: M is an n-dimensional matchbox manifold if:

• M is a continuum, a compact, connected metric space;

• M admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Ti | 1 ≤ i ≤ κ};
• each Ti is a clopen subset of a totally disconnected space X.

Transversal T = T1 ∪ · · · ∪ Tκ ⊂M defined by coordinate charts.

Holonomy of F on T =⇒ finitely generated pseudogroup GF
acting by homeomorphisms defined on clopen subsets of X.

A “smooth matchbox manifold” M is analogous to a compact
manifold, where the pseudogroup GF is the “fundamental group”.
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Metric properties:

Two metrics dX and d ′X are Lipschitz equivalent, if they satisfy a
Lipschitz condition for some C ≥ 1,

C−1 · dX(x , y) ≤ d ′X(x , y) ≤ C · dX(x , y) for all x , y ∈ X (1)

Proposition: Let GX be a pseudogroup defined by the restriction
of the holonomy for a minimal set M of a C 1-foliation to a
transversal X =M∩ T , then X has a metric dX for which the
action of GX is Lipschitz.
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For a Cantor set defined as the space of ends of a tree with
bounded complexity, there is a natural ultrametric.

For a “fractal” C defined by an Iterated Function System, the tree
associated to the pseudogroup action defines an ultrametric on C.

These classes of examples are said to be locally homogeneous.

Theorem: [Hurder, 2013] There exist compactly-generated
pseudogroups GX acting minimally on a Cantor set X, such that
there is no metric on X for which the generators of GX satisfy a
Lipschitz condition.

Construct pseudogroup adding elements with “ultra-contraction”.

This construction yields pseudogroup analogs of the construction
of open Riemannian manifolds which are not quasi-isometric to
leaves of C 1-foliations by Attie & Hurder.
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Definition: Let GX and GY be a minimal pseudogroup actions on
metric Cantor sets (X, dX) and (Y, dY), respectively.

(GX,X) and (GY,Y) are Morita equivalent if there exist clopen
subsets V ⊂ X and W ⊂ Y, and a homeomorphism h : V →W
which conjugates GX|V to GY|W .

(GX,X, dX) and (GY,Y, dY) are Lipschitz equivalent if they are
Morita equivalent, and the conjugation map h can be chosen to be
a Lipschitz equivalence of the metric Cantor sets.

Problem: Classify the minimal Lipschitz pseudogroup actions on a
Cantor set X, up to Lipschitz equivalence.
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Problem: Given a compactly-generated pseudogroup GX acting
minimally on a Cantor set X, and suppose there exists a metric dX

on X such that the generators are Lipschitz, when is there a
Lipschitz equivalence to the pseudogroup defined by an exceptional
minimal set of a C 1 foliation?

Lipschitz invariants of minimal Lipschitz pseudogroup actions:

• Hausdorff dimension

• Positive geometric entropy

Theorem: [Lukina, 2014] The Ghys-Kenyon construction of a
metric Cantor set from the space of pointed subtrees of the Cayley
graph of the free group Fn has infinite Hausdorff dimension, and
admits a minimal Lipschitz pseudogroup action induced by Fn.
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Two dynamical properties of pseudogroup actions:

Definition: M is an equicontinuous matchbox manifold if it
admits some covering by foliation charts, such that for all ε > 0,
there exists δ > 0 so that for all g ∈ GF we have

x , x ′ ∈ D(g) with dT (x , x ′) < δ =⇒ dT (g(x), g(c ′)) < ε

Definition: M is an ε-expansive matchbox manifold if it admits
some covering by foliation charts, and there exists ε > 0, so that
for all w 6= w ′ ∈ T with dT (w ,w ′) < ε, there exists g ∈ GF
defined by the holonomy along some path, with w ,w ′ ∈ Dom(g)
such that dT (g(w), g(w ′)) ≥ ε.
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Examples:

• The classical 1-dimensional solenoids are equicontinuous.

• Denjoy minimal sets are expansive.

• The tiling space for an aperiodic tiling of Rn with finite local
complexity has expansive pseudogroup dynamics.

Need property of matchbox manifolds and their pseudogroup
actions, which applies for both the usual examples, as well as the
exceptional examples, which are not so exceptional.
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A continuum is a compact connected metric space.

Definition: [Borsuk, 1968] The shape of a continuum Ω is the
homotopy type of the inverse limit of the realizations of the Čech
complexes associated to finite open covers of Ω.

Definition’: The shape of a continuum Ω is defined by a collection
of maps {q` : Ω→ Y` | ` = 1, 2, . . .} where each Y` is a finite
simplicial complex, and each q` is a continuous onto map whose
fibers have diameter bounded by ε` where ε` → 0.

Definition”: [Alexandroff, 1928] Let Y be a collection of finite
simplicial complexes. Then the shape of Ω is Y-like, if for all
ε > 0, there exists Yε ∈ Y and a map qε : Ω→ Yε such that the
fibers of qε have diameters uniformly less than ε.
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complexes associated to finite open covers of Ω.

Definition’: The shape of a continuum Ω is defined by a collection
of maps {q` : Ω→ Y` | ` = 1, 2, . . .} where each Y` is a finite
simplicial complex, and each q` is a continuous onto map whose
fibers have diameter bounded by ε` where ε` → 0.

Definition”: [Alexandroff, 1928] Let Y be a collection of finite
simplicial complexes. Then the shape of Ω is Y-like, if for all
ε > 0, there exists Yε ∈ Y and a map qε : Ω→ Yε such that the
fibers of qε have diameters uniformly less than ε.



Intro Matchbox manifolds Metrics Shape Results Classification Problems

Definition: A continuum Ω is Y -like if it is Y-like for Y = {Y }.
We say that Ω has the shape of Y .

Example: A classical 1-dimensional solenoid has the shape of S1.

Example: A Denjoy minimal set has the shape of S1 ∨ S1.

Theorem: [Anderson & Putnam, 1999] The tiling space for an
aperiodic tiling of Rn defined by a substitution rule has the shape
of a branched n-manifold Y .
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Presentation is a collection P = {p`+1 : Y`+1 → Y` | ` ≥ 0},
• each Y` is a connected compact simplicial complex, dimension n,

• each “bonding map” p`+1 is a proper surjective map of simplicial
complexes with discrete fibers.

Associated to P is the generalized solenoid

SP ≡ lim
←−
{p`+1 : Y`+1 → Y`} ⊂

∏
`≥0

Y`

where SP is given the product topology.

P is stationary if Y` = Y0 for all ` ≥ 0, and the bonding maps
p` = p1 for all ` ≥ 1.
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Theorem: [Mardešić and Segal, 1963] Let Ω be a continuum
which is Y-like, then there exists Y` ∈ Y and continuous surjections
p`+1 : Y`+1 → Y` for ` ≥ 1, such that Ω is homeomorphic to a
generalized solenoid with these maps defining the presentation.

Definition: SP is a weak solenoid if for each ` ≥ 0, M` is a
compact manifold without boundary, and the map p`+1 is a proper
covering map of degree m`+1 > 1.

Theorem: [McCord, 1965] A weak solenoid is a matchbox
manifold.

Remark: A generalized solenoid may be a matchbox manifold,
such as for Williams solenoids which are stationary, and the
Anderson–Putnam and Gähler–Sadun construction of finite
approximations to tiling spaces.
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Let M be a minimal matchbox manifold M.

Consider the properties of M:

• Morita class of pseudogroup GF acting on Cantor set X

• Dynamical properties of GF acting on Cantor set X

• Shape of M

• M is realized as exceptional minimal set of C 1-foliation

• Homeomorphism type of M

Program: Combine properties to obtain conclusions about others.
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Theorem: [Hagopian, 1977] A matchbox manifold M is S1-like if
and only if it is homeomorphic to the inverse limit SP of a tower of
coverings:

−→ S1 n`+1−→ S1 n`−→ · · · n2−→ S1 n1−→ S1

where all covering degrees n` > 1. These spaces were introduced
by Vietoris [1927] and van Dantzig [1930].

If all n` = p > 1 are constant, then SP can be realized as a
Smale-Williams hyperbolic attractor for a smooth map of S3.
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A continuum Ω is homogeneous if the group of homeomorphisms
of Ω is point-transitive.

Theorem: [Clark & Hurder, 2010] Let M be a matchbox manifold.

• If M has equicontinuous pseudogroup, then M is homeomorphic
to a weak solenoid as foliated spaces.

• If M is homogeneous, then M has equicontinuous pseudogroup,
and is moreover, homeomorphic to a McCord (normal) solenoid.

This last result is a higher-dimensional version of the Bing
Conjecture for 1-dimensional matchbox manifolds.

The proof uses coding functions for the pseudogroup action on a
transversal. Inspired by work of Coornaert & Papadopoulos in
Symbolic dynamics and hyperbolic groups, 1993.
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Let Mn = {M | M is closed oriented manifold of dimension n}

Theorem: [Clark, Hurder, Lukina, 2014] Let M be a matchbox
manifold which is Mn-like. Then GF has equicontinuous dynamics,
hence is homeomorphic to a weak solenoid.

Theorem: [Clark, Hurder, Lukina, 2013] Let M be a matchbox
manifold which is Tn-like. Then M is homeomorphic to an inverse
limit space defined by a presentation

−→ Tn p`+1−→ Tn p`−→ · · · p2−→ Tn p1−→ Tn

Corollary: Let M be a Tn-like minimal matchbox manifold, then
M is homeomorphic to a minimal set of a C 1-foliation.
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Recall the algebraic classification of S1-like solenoids.

Two sequences of primes P = (p1, p2, . . .) and Q = (q1, q2, . . .)
are equivalent, P ∼ Q, if and only if one can delete a finite
number of entries from each sequence so that every prime occurs
the same number of times in deleted sequences.

Example: P = (2, 3, 3, . . .), Q = (3, 3, 3, . . .),
S = (2, 3, 2, 3, 2, 3, . . .). Then P ∼ Q, and P � S, and Q � S.

Theorem: [Bing, 1960] P ∼ Q ⇒ SP is homeomorphic to SQ.

Theorem: [McCord, 1965] P ∼ Q ⇐ SP is homeomorphic to SQ.

Remark: Results of Hjorth & Thomas imply there is no algebraic
classification for weak solenoids, when dimension n > 1.
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A manifold Y is aspherical, if it is connected and higher homotopy
groups πn(X ), n ≥ 2 are trivial.

Equivalently, Y is aspherical if it is connected and has a
contractible universal cover.

Example: Tn, n ≥ 1, surfaces of genus g ≥ 1 are aspherical.

A sphere Sn, n ≥ 2, is not aspherical.
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A collection AB of closed manifolds is called Borel if it satisfies the
following.

1. Each Y ∈ AB is aspherical,

2. Any closed manifold X which is homotopy equivalent to a
Y ∈ AB is homeomorphic to Y ,

A closed manifold Y is strongly Borel if the set of its finite covers
forms a Borel collection.

Example: Tn is strongly Borel, as is every closed nilmanifold.

n = 3, Thurston Geometrization Conjecture, proved by Perleman.

n = 4, Freedman’s proof of Poincaré Conjecture.

n ≥ 5, Surgery Theory plus Poincaré Conjecture.
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Theorem: [Clark, Hurder, Lukina, 2013] Suppose that M1 and
M2 are Tn-like matchbox manifolds. Then M1 and M2 are
homeomorphic if and only if GF1 and GF2 are Morita equivalent.

Theorem: [Clark, Hurder, Lukina, 2013] Suppose that M1 and
M2 are Y -like matchbox manifolds, where Y is strongly Borel.
Assume that each of M1 and M2 has a leaf which is simply
connected. Then M1 and M2 are homeomorphic if and only if GF1

and GF2 are Morita equivalent.

The proofs of these two results are in our most recent paper,

Classifying matchbox manifolds, arXiv:1311.0226

and uses techniques from all previous works.
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Some Problems

• Develop effective invariants for (Lipschitz) equicontinuous
minimal pseudogroup actions on (metric) Cantor sets.

This is work in progress with Jessica Dyer and Olga Lukina.

• Let Y be a closed branched n-manifold. Give a “combinatorial”
structure theorem for Y -like matchbox manifolds.

The case where the Y -like matchbox manifold M has leaves with
non-trivial holonomy is not well-understood.

• Given a Y -like matchbox manifold M, when does there exists a
(Lipschitz) embedding into a C r -foliation, for some r ≥ 1?

Extend the results of [Williams, 1974] and [Clark-Hurder, 2011].
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Thank you for your attention.
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