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Introduction Entropy Leaves Examples:

Let (X , dX ) and (Y , dY ) be metric spaces.

A homeomorphism f : X → Y is said to be a quasi-isometry if
there exists a constant C > 0 so that for all x , x ′ ∈ X

λ−1 · dX (x , x ′) ≤ dY (f (y), f (y ′)) ≤ λ · dX (x , x ′)

Proposition: Let L be a leaf of a foliation F of a compact
Riemannian manifold M. Then L has a complete Riemannian
metric, unique up to quasi-isometry.

In his 1974 ICM address, Dennis Sullivan asked:

Question: Let L be a complete Riemannian smooth manifold
without boundary. When is L quasi-isometric to a leaf of a
C r -foliation FM of a compact smooth manifold M, for r ≥ 1?

To solve this, you need some property of complete Riemannian
manifolds which is an invariant of quasi-isometry, which
distinguishes when the manifold is a leaf.
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There have been two types of obstructions, to date:

• The average Euler class of leaves with subexponential growth, in
[Phillips & Sullivan, 1981] and [Cantwell & Conlon, 1982], and the
average or Pontrjagin classes, introduced in [Januszkiewicz, 1984]

• The coarse entropy of a complete Riemannian manifold,
introduced in [Attie & Hurder, 1996]

In this talk, we recall the definition of coarse entropy, and give the
relation between this invariant and the work of Lukina in the
previous talk.



Introduction Entropy Leaves Examples:

We begin with a discussion of graph spaces.

Let G be a metric graph of finite type k . That is, there is a
countable set of vertices V (G) and edges E (G) such that:

• each edge e ∈ E (G) connects to two vertices, ∂+e, ∂−e ∈ V (G);

• each vertex v ∈ V (G) is connected to at least one edge;

• each vertex v ∈ V (G) is connected to no more than k edges;

• each edge has length 1.

The space G is given the path length metric, denoted dG .

Denote the closed ball by BG(v ,R) = {x ∈ G | dG(v , x) ≤ R}.
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Fix R > 0. An R-quasi-tiling of G is a collection {K1, . . . ,Kµ} of
compact metric spaces with diameters at most 2R, the tiles, and a
countable set of homeomorphisms into {fi : Kαi → G | i ∈ I} with:

• Each fi is an isometry onto its image.

• For any v ∈ V (G), there exist i ∈ I so that BG(v ,R) ⊂ fi (Kαi ).

Let H(G, dG ,R) denote the least number of sets in an
R-quasi-tiling for G. If no R-quasi-tiling exists, then set
H(G, dG ,R) =∞.

Example: Let G be the Cayley graph of a finitely presented group
Γ. Then H(G, dG ,R) = 1 for R sufficiently large.
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Fix a base vertex v0 ∈ V (G).

Let #e(S) be the number of vertices in a subgraph S ⊂ G.

Example: Let G(F2) be the tree for the free group F2 = Z ∗ Z.
Then #e(BG(v0,R)) ∼ e3R is an exponential function of R.

Define the entropy of the graph (G, dG)

h(G, dG) = lim sup
R→∞

ln{H(G, dG ,R)}
#e(BG(v0,R))

Thus if h(G, dG) > 0, then the number of quasi-tile classes in the
collection of balls, {BG(v , 2R) | v ∈ V (G)} is a super-exponential
function.
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Given v ∈ V (G) observe that each connected tree in the set with
v ∈ T ⊂ BG(v ,R) is a “tile” in the sense above. In the above
definition, we identify these tree-tiles if they are isometric, so the
number of tiles needed to cover may be less.

In the previous talk, the tree-tiles are identified if they agree up to
translation by the (isometric) group action. We call these
equivalence classes the “patterns”.

Proposition: The number of tree patterns in the collection of
balls, {BG(v ,R) | v ∈ V (G)}, is bounded below by H(G, dG ,R).

Hence by the calculations in [Lukina, 2014], the Hausdorff
dimension of the Ghys-Kenyon graph space for G is infinite.
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Let M be a compact Riemannian manifold, and F a foliation, with
a complete transversal T ⊂ M. For example, we can take T to be
the union of the transversals in a covering of M by foliation charts.

Give each leaf L ⊂ M the leafwise Riemannian metric,

Let NL = L ∩ T be the net defined by the choice of transversal,
and give NL the restricted metric from dL.

Definition: The Cayley graph of a leaf G(L) has vertices
V (L) = NL, and an edge between two vertices if their
corresponding plaques in the coordinate charts overlap. See
[Lozano-Rojo, 2006] for example. We declare all edges to have
length 1 as before, and give G(L) the path length metric dG(L).

The number h(G(L), dG(L)) may depend upon the choices made to
define it, so it is not an invariant of the leaf itself.
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If there is a naturally given net NL ⊂ L and metric on L, then
h(G(L), dG(L)) may be an invariant for this data. This is the case
for tiling spaces for aperiodic, locally-finite tilings of Rn. Then
h(G(L), dG(L)) is well-defined, and related to the pattern
complexity function in the work [Julien, 2014], which also has
references to other works for complexity of tiling spaces.

However, for leaves of foliations, there is no reason why this
invariant should be independent of the choices of Riemannian
metric on M and covering of M by foliation charts. The solution is
to “coarsify” the pattern entropy (terminology due to John Roe).

That is, we allow a controlled amount of distortion in our tiling
patterns, and then let this coarsening tend to infinity.
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Let (X , dX ) and (Y , dY ) be metric spaces.

For ε > 0 we say that a subset Z ⊂ Y is ε-dense, if for every
y ∈ Y there exists z ∈ Z with dY (y , z) < ε.

A map f : X → Y is said to be a λ-coarse isometry if, for all
x , x ′ ∈ X ,

λ−1 · dX (x , x ′)− λ ≤ dY (f (y), f (y ′)) ≤ λ · dX (x , x ′) + λ

and the image f (X ) ⊂ Y is λ > 0 dense.

A map f : X → Y is said to be a coarse isometry, if it is λ-coarse
isometry for some λ ≥ 1.

Note that a quasi-isometry is a coarse isometry, and a composition
of coarse isometries is again a coarse isometry.
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Example: The inclusion Zn ⊂ Rn is a λ-coarse isometry, for λ ≥ 1.

Example: Let M be a compact Riemannian manifold, and F a
foliation, with a complete transversal T ⊂ M. Each leaf L ⊂ M of
F inherits a leafwise Riemannian metric, for which the path length
metric dL is complete. Let NL = L ∩ T be the net defined by the
coordinates transversal, and give NL the restricted metric from dL.

Then the inclusion (NK , dL) ⊂ (L, dL) is a coarse isometry.
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Definition: Fix λ,R > 0. An (λ,R)-quasi-tiling of a complete
Riemannian manifold L is a collection {K1, . . . ,Kµ} of a compact
metric spaces with diameters at most 2R, the coarse quasi-tiles,
and a countable set of continuous maps into,
{fi : Kαi → L | i ∈ I}, with:

• Each fi is a λ-coarse isometry onto its image.

• For any x ∈ L, there exist i ∈ I so that

BL(x ,R) ⊂ Pen(fi (Kαi ), λ) ≡ {y ∈ L | DL(y , z) for some z ∈ fi (Kαi )}

Hc(L, dL, λ,R) denotes the least number of sets in an
(λ,R)-quasi-tiling for L.

If no (λ,R)-quasi-tiling exists, then set Hc (L, dL, λ,R) =∞.
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Define the λ-coarse entropy

hλ(L, dL) = lim sup
R→∞

ln{Hc (L, dL, λ,R)}
Vol(BL(x0,R))

and the coarse entropy

hc (L, dL) = lim
λ→∞

hλ(L, dL)

Lemma: hc (L, dL) is a coarse invariant of the metic space (L, dL).
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Theorem: If (L, dL) is quasi-isometric to a leaf of a C 1-foliation of
a compact manifold, then hc (L, dL) = 0.

The inclusion G(L) ⊂ L of the leafwise Cayley graph, with geodesic
edges, is a coarse isometry, hence

Corollary: hc(L, dL) > 0 =⇒ h(G(L), dG(L)) > 0.

Combining these various results, we obtain:

Theorem: If (L, dL) is a complete Riemannian manifold with
metric dL, and hc (L, dL) > 0, then (L, dL) is not quasi-isometric to
a leaf of a C 1-foliation of a compact manifold.

Moreover, the closure space X(L) of the pattern space for the
“leafwise Cayley graph” G(L) has infinite Hausdorff dimension.
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Examples of complete Riemannian manifolds with h(L, dL) > 0 can
be built by explicit construction, using a geometric form of
“fusion” as in the work of [Lukina, 2012].

For example, start with L = H2 the hyperbolic 2-disk.

Then as you go to infinity, attach lots of “water towers”, lots and
lots of water towers.

A “water tower” is a large sphere with a cylinder connector, where
the diameter of the sphere grows increasingly large.

If we place these attachments systematically randomly, then this
makes the coarse geometry “wild” at infinity, while preserving the
homeomorphism class of the space.

See [Attie & Hurder, 1996] for the complicated explanation.

See [Zeghib, 1994] for the beautifully simple version.
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Thank you for your attention.
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