
Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Minimal sets for foliations

Steve Hurder

University of Illinois at Chicago
www.math.uic.edu/∼hurder



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Given one derivative,

What can you do with one derivative?

Topological dynamics for flows (and foliations) is a very wild world.

But along with a derivative, sometimes arrives order.

Model example for this: attractors for Axiom A diffeomorphisms,
and Williams’ results on their topological structure.

Goal: Classify (exceptional) minimal sets for C 1-foliations.

Study the “simplest” cases.
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Themes in classification of foliations:

2↔ 1↔ 0↔ 1↔ 2

• “2” — C 2-invariants, such as characteristic classes

• “1” — C 1-invariants, such as entropy & Lyapunov spectrum

• “0” — C 0-invariants, topological dynamics of foliations

• “1” — Lipshitz invariants, tempered cocycles, measure properties

• “2” — Classification of cycles in BΓ2
q

Discuss some aspects about transitioning from “0” to “1”.
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Classification of foliations in the 1970’s and 80’s

• Haefliger, Thurston =⇒
Classifying spaces BΓr

q for r ≥ 1

• Bott–Haefliger, Gelfand–Fuks, Kamber–Tondeur =⇒
Secondary classes and how to calculate them

• Mizutani, Morita, Tsuboi, Duminy, Sergiescu =⇒
Decompose foliations, Godbillon-Vey class of constituents

• Ghys, Hector, Langevin, Moussu, Rosenberg, Roussarie,
Cantwell, Conlon, Plante, Sullivan, Walczak, Williams,
Inaba, Matsumoto, Mizutani, Nishimori, Tsuchiya =⇒

Foliations as dynamical systems
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A minimal set Z ⊂ M is exceptional if the intersection Z ∩ T is
totally disconnected for every transversal T to F .

Leaves of F are recurrent in a minimal set =⇒ Z ∩T is Cantor set.

Holonomy of F along paths in Z defines pseudogroup on Z ∩ T .

Problem: Study the properties of minimal pseudogroup actions on
Cantor sets. Look for properties characterizing their “C 1-ness”.

Or, a little more precisely:

Problem: Given a pseudogroup GX acting on a Cantor set X,
determine if it came from a minimal set in a C r -foliation, r ≥ 1.
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The action must be minimal & compactly generated:

Definition: A pseudogroup GX acting on a Cantor set X is
compactly generated, if there exists two collections of clopen
subsets {U1, . . . ,Uk} and {V1, . . . ,Vk} of X and homeomorphisms
{hi : Ui → Vi | 1 ≤ i ≤ k} which generate all elements of GX.

G∗X is defined to be the compositions of the generators
{hi : Ui → Vi | 1 ≤ i ≤ k} and their inverses, on the maximal
domains for which the composition is defined.
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There must be given a well-defined Lipshitz class of metrics on X:

dX and d ′X are bi-Lipshitz equivalent, if they satisfy a Lipshitz
condition for some C ≥ 1,

C−1 · dX(x , y) ≤ d ′X(x , y) ≤ C · dX(x , y) for all x , y ∈ X

Lipshitz geometry of the pair (X, dX) investigates the geometric
properties common to all metrics in the Lipshitz class of the given
metric dX. Example: Hausdorff dimension.

Cantor set has many metrics, need not be “locally homogeneous,”
or satisfy a “doubling property” of Assouad, which is necessary if
there is an embedding in some Euclidean space.
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Definition: The action of a compactly-supported pseudogroup GX
is Lipshitz with respect to dX if there exists C ≥ 1 such that for
each 1 ≤ i ≤ k then for all w ,w ′ ∈ Ui = Dom(hi ) we have

C−1 · dX(w ,w ′) ≤ dX(hi (w), hi (w ′)) ≤ C · dX(w ,w ′) .

We then say that G∗X is C -Lipshitz with respect to dX.

Proposition: Let GX be a compactly-generated pseudogroup
acting on a Cantor set X. If GX is the defined by the restriction of
the holonomy of a C 1-foliation to a transversal Z ∩ T , then X
admits a metric dX such that the action is Lipshitz.
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Let GX be a minimal pseudogroup acting on a Cantor space X, and
let V ⊂ X be a clopen subset. GX|V is defined as the restrictions
of all maps in GX with domain and range in V .

Definition: Let GX be a minimal pseudogroup action on the
Cantor set X via Lipshitz homeomorphisms with respect to the
metric dX. Likewise, let GY be a minimal pseudogroup action on
the Cantor set Y via Lipshitz homeomorphisms for the metric dY.

1. (GX,X, dX) is Morita equivalent to (GY,Y, dY) if there exist
clopen subsets V ⊂ X and W ⊂ Y, and a homeomorphism
h : V →W which conjugates GX|V to GY|W .

2. (GX,X, dX) is Lipshitz equivalent to (GY,Y, dY) if the
conjugation h is Lipshitz.
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Two very interesting problems:

Problem: Given a compactly-generated pseudogroup GX acting
minimally on a Cantor set X, and suppose there exists a metric dX

on X such that the generators are Lipshitz, when is there a Lipshitz
equivalence to the pseudogroup defined by an exceptional minimal
set of a C 1 foliation?

Problem: Classify the compactly-generated Lipshitz pseudogroups
acting minimally on a Cantor set X, up to Lipshitz equivalence.
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Classify means, for example, that we are looking for effective
invariants that distinguish the actions.

There are several known “types” of standard examples, of
compactly-generated pseudogroups GX acting minimally on a
Cantor set X, which we recall. But first, there are some “bad
characters” that the Lipshitz condition rules out.
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Theorem: There exist compactly-generated pseudogroups GX
acting minimally on a Cantor set X, such that there is no metric
on X for which the generators of GX satisfy a Lipshitz condition.

This is related to the construction of complete Riemannian
manifolds which cannot be realized as the leaf of a C 1-foliation.

Sketch of proof – for details see “Lipshitz matchbox manifolds”,
arXiv:1309.1512.
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Begin by constructing the model for the Cantor set X, with dX.

Let G` = Z/(2` Z) be the cyclic group of order 2`.

Let p`+1 : G`+1 → G` be the natural quotient map. Set:

X = lim
←−
{p`+1 : G`+1 → G`} ⊂

∏
`≥1

Z/(2` Z) .

Metric on X: x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .), then

dX (x , y) =
∞∑
`=1

3−`δ(x`, y`),

where δ(x`, y`) = 0 if x` = y`, and is equal to 1 otherwise.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Begin by constructing the model for the Cantor set X, with dX.

Let G` = Z/(2` Z) be the cyclic group of order 2`.

Let p`+1 : G`+1 → G` be the natural quotient map. Set:

X = lim
←−
{p`+1 : G`+1 → G`} ⊂

∏
`≥1

Z/(2` Z) .

Metric on X: x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .), then

dX (x , y) =
∞∑
`=1

3−`δ(x`, y`),

where δ(x`, y`) = 0 if x` = y`, and is equal to 1 otherwise.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Define action A : Z× X→ X, where Z acts on each factor
Z/(2` Z) by translation.

Action of A on Z on X is minimal.

Let σ : X→ X be the shift map, σ(x1, x2, . . .) = (x2, x3, . . .).

σ is a 2− 1 map, and so is not invertible.

σ is a 3-times expanding map.

Partition X into clopen subsets, for i = 0, 1,

U1(i) = {(i , x2, x3, . . .) | 0 ≤ xj < 2j , pj+1(xj+1) = xj , j > 1}.

diamX(U1(0)) = diamX(U1(1)) = dX(U1(0),U1(1)) = 1/3.

Inverse map τi = σ−1
i : X→ U1(i) given by the usual formula for

the section, τi (x1, x2, x3, . . .) = (i , x1, x2, x3, . . .).
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For x ∈ X, set x` = (x1, . . . , x`).

For ` ≥ 1, define the clopen neighborhood of x ,

U`(x) = {(x1, . . . , x`, ξ`+1, ξ`+2, . . .)

| 0 ≤ ξj < 2j , pj+1(ξj+1) = ξj , j > `}.

The restriction σ` : U`(x)→ X is 1− 1 and onto, 3`-expansive.

diamX(U`(x)) = 3−`/2.

So far, this is just the standard shift model.

A standard example of a Cantor minimal action by affine group.
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The key point: construct hypercontraction ϕ : Z× X→ X.

Choose two distinct points y , z ∈ X, and choose a sequence
{xk | −∞ < k <∞} ⊂ X− {y , z} of distinct points with
lim
k→∞

xk = y and lim
k→−∞

xk = z .

Recursively, choose disjoint clopen neighborhoods xk ∈ Vk ⊂ X

diamX(Vk) = diamX(V−k) < ρk/(3 `k !)

ρk is distance between all previous choices.
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ϕ : X→ X defined by, for all −∞ < k <∞,

• restriction ϕk : Vk → Vk+1 is a homeomorphism onto, and

• ϕ defined to be the identity on the complement of the union
V = ∪{Vk | −∞ < k <∞}.

The map ϕ is a homeomorphism.

Let GX = 〈A, τ1, τ2, ϕ〉 be pseudogroup they generate.
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Claim: There does not exists a metric d ′X on X such that the
generators {A, τ1, τ2, ϕ} of GX satisfy a Lipshitz condition.

Proof: If such a metric d ′X exists, then some power of the
contractions τi are contractions for the new metric d ′X.

But then the Lipshitz condition on ϕ becomes impossible.

What is going on?

This is a “toy problem” for a broader geometric problem.

Return to minimal sets, and construct a graph which cannot be
embedded quasi-isometrically in a C 1-foliation.
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Definition: A matchbox manifold is a continuum with the
structure of a smooth foliated space M, such that the transverse
model space X is totally disconnected, and for each x ∈M, the
transverse model space Xx ⊂ X is a clopen subset, hence is
homeomorphic to a Cantor set.

All matchbox manifolds are assumed to be smooth with a given
leafwise Riemannian metric.

Figure: Blue tips are points in Cantor set Xx
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Examples

• Exceptional minimal set for foliation F on M, with metric
induced from Riemannian metric on M.

• Given a repetitive, aperiodic tiling of the Euclidean space Rn

with finite local complexity, the associated tiling space Ω is the
closure of the set of translations by Rn of the given tiling, in an
appropriate Gromov-Hausdorff topology on the space of tilings.
Metric is induced from “tiling matching”, so a type of ultra-metric.
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• Ghys-Kenyon construction of laminations, for Cayley graphs of
finitely-generated groups, and for foliated Cayley graphs.

[Ghys, 1999] Laminations par surfaces de Riemann.

[Blanc, 2001] Propriétés génériques des laminations.

[Lozano-Rojo, 2006] Cayley foliated space of a graphed pseudogroup.

[Lukina, 2012] Hierarchy of graph matchbox manifolds.

[Lozano-Rojo and Lukina, 2013] Suspensions of Bernoulli shifts.

Remark: L ⊂ Z a leaf of minimal set for foliation, ΓL the graph of
the pseudogroup restricted to L, then there is an associated graph
matchbox manifold M(ΓL) which captures the dynamics of L in Z,
and is transversally Cantor set. Plus, can keep all leaves as sticks,
no need to fatten them up, so really does look like matchboxes.

Matchbox dynamics captures dynamics of foliation minimal sets.
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Example above, tilings, trees, etc:

expansive ←→ shifts on trees ←→ parabolic groups

Need to also also look for rotational part of geometry, as in the
decomposition of a semi-simple Lie group G = P × K :

equicontinuous ←→ Cantor rotations ←→ compact groups

The weak solenoids correspond to the Cantor rotations, or maximal
compact factors in Bruhat decomposition.
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Presentation is a collection P = {p`+1 : M`+1 → M` | ` ≥ 0},
• each M` is a connected compact simplicial complex, dimension n,

• each “bonding map” p`+1 is a proper surjective map of simplicial
complexes with discrete fibers.

The generalized solenoid

SP ≡ lim
←−
{p`+1 : M`+1 → M`} ⊂

∏
`≥0

M`

SP is given the product topology.

Presentation is stationary if M` = M0 for all ` ≥ 0, and the
bonding maps p` = p1 for all ` ≥ 1.
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Definition: SP is a weak solenoid if for each ` ≥ 0, M` is a
compact manifold without boundary, and the map p`+1 is a proper
covering map of degree m`+1 > 1.

Classic example: Vietoris solenoid, defined by tower of coverings:

−→ S1 n`+1−→ S1 n`−→ · · · n2−→ S1 n1−→ S1

where all covering degrees n` > 1.

Weak solenoids are the most general form of this construction.

Proposition: A weak solenoid is a matchbox manifold.

Remark: A generalized solenoid may be a matchbox manifold,
such as for Williams solenoids, and Anderson-Putnam construction
of finite approximations to tiling spaces. Or, it may not be.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Definition: SP is a weak solenoid if for each ` ≥ 0, M` is a
compact manifold without boundary, and the map p`+1 is a proper
covering map of degree m`+1 > 1.

Classic example: Vietoris solenoid, defined by tower of coverings:

−→ S1 n`+1−→ S1 n`−→ · · · n2−→ S1 n1−→ S1

where all covering degrees n` > 1.

Weak solenoids are the most general form of this construction.

Proposition: A weak solenoid is a matchbox manifold.

Remark: A generalized solenoid may be a matchbox manifold,
such as for Williams solenoids, and Anderson-Putnam construction
of finite approximations to tiling spaces. Or, it may not be.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Definition: SP is a weak solenoid if for each ` ≥ 0, M` is a
compact manifold without boundary, and the map p`+1 is a proper
covering map of degree m`+1 > 1.

Classic example: Vietoris solenoid, defined by tower of coverings:

−→ S1 n`+1−→ S1 n`−→ · · · n2−→ S1 n1−→ S1

where all covering degrees n` > 1.

Weak solenoids are the most general form of this construction.

Proposition: A weak solenoid is a matchbox manifold.

Remark: A generalized solenoid may be a matchbox manifold,
such as for Williams solenoids, and Anderson-Putnam construction
of finite approximations to tiling spaces. Or, it may not be.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

Associated to a presentation: sequence of proper surjective maps

q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M` → M0.

and a fibration map Π` : SP → M` obtained by projection onto the
`-th factor. Π0 = Π` ◦ q` : SP → M0 for all ` ≥ 1.

Choice of a basepoint x ∈ SP gives basepoints x` = Π`(x) ∈ M`.

H` = image(q` : π1(M`, x`)) ⊂ H0.

Definition: SP is a McCord (or normal) solenoid if for each ` ≥ 1,
H` is a normal subgroup of H0.

P normal presentation =⇒ fiber Xx = (Π0)−1(x) of Π0 : SP → M0

is a Cantor group, and monodromy action of H0 on Xx is minimal.



Classification Topological Dynamics Non-embedding Matchbox manifolds Solenoids Conclusion

A continuum Ω is homogeneous if its group of homeomorphisms is
point-transitive. Alex Clark and I proved the following in 2010.

Theorem: Let M be a matchbox manifold.

• If M has equicontinuous pseudogroup, then M is homeomorphic
to a weak solenoid as foliated spaces.

• If M is homogeneous, then M is homeomorphic to a McCord
solenoid as foliated spaces.

This looks almost like the Molino Theorem for TP foliations!

Though one point was troubling...
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Solenoids have many possible Lipshitz classes of metrics.

For a weak solenoid, choose a metric d` on each X`.

Choose a series {a` | a` > 0} with total sum <∞.

Define a metric on Xx by setting, for u, v ∈ Xx so

u = (x0, u1, u2, . . .) and v = (x0, v1, v2, . . .),

dX(u, v) = a1d1(u1, v1) + a2d1(u2, v2) + · · ·

Problem: What is the classification of weak (or McCord)
solenoids, up to Lipshitz equivalence?

This problem seems to be wide open.
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We give a simple example, in the case of Vietoris solenoids.

Let m` be the covering degrees for a presentation P with base
M0 = S1 , given by m` = 2 for ` odd, and m` = 3 for ` even.

Let n` be the covering degrees for a presentation Q with base
M0 = S1 , given by {n1, n2, n3, . . .} = {2, 3, 2, 2, 3, 2, 2, 2, 2, 3, . . .}.
The `-th cover of degree 3 is followed by 2` covers of degree 2.

Sequences are equivalent for Baer classification of solenoids,

=⇒ SP ∼= SQ.

But for the metrics they define, the solenoids SP and SQ are not
Lipshitz equivalent as matchbox manifolds.
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Let m` be the covering degrees for a presentation P with base
M0 = S1 , given by m` = 2 for ` odd, and m` = 3 for ` even.

Let n` be the covering degrees for a presentation Q with base
M0 = S1 , given by {n1, n2, n3, . . .} = {2, 3, 2, 2, 3, 2, 2, 2, 2, 3, . . .}.
The `-th cover of degree 3 is followed by 2` covers of degree 2.

Sequences are equivalent for Baer classification of solenoids,

=⇒ SP ∼= SQ.

But for the metrics they define, the solenoids SP and SQ are not
Lipshitz equivalent as matchbox manifolds.
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Recent result by Alex Clark, Olga Lukina and myself.

Theorem: Let M be a minimal matchbox manifold without
holonomy. Then there exists a presentation P by simplicial maps
between compact branched manifolds such that M is
homeomorphic to SP as foliated spaces.

This implies a sort of generalization of the Denjoy/Sacksteder:

Corollary: Let M be an exceptional minimal set for a C 1-foliation
F of a compact manifold M. If all leaves of F|M are simply
connected, then there is a Lipshitz homeomorphism of M with the
inverse limit space SP defined by a presentation P, given by
simplicial maps between compact branched manifolds.

Problem: How to “classify” C 1-minimal sets which are inverse
limit spaces of branched manifolds.
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Amidst the vast wasteland formed by the class of all minimal
Cantor actions by compactly generated-pseudogroups:

• Study the Lipshitz subclass, and its classification by invariants
such as Bratteli diagrams and ordered K-Theory, dimension
properties, and possibly other invariants such as secondary classes
associated to their embeddings into C 1-foliations, which reflect
their “inner C 1-ness”.

• Study the Zygmund subclass, such as C 2-embedded normal
solenoids, and their geometric and cohomological invariants, such
as secondary classes associated to their embeddings into
C 2-foliations, which reflect their “inner C 2-ness”.
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Thank you for your attention!
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