Cantor dynamics of renormalizable groups

Steve Hurder, UIC Joint work with Olga Lukina, University of Vienna Wouter Van Limbeek, UIC

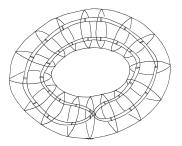
http://www.math.uic.edu/~hurder/talks/Tokyo20200623.pdf

The Hirsch foliation is a codimension-one foliation \mathcal{F} of a compact 3-manifold N.

With appropriate choices in its construction, the foliation \mathcal{F} is real analytic with an exceptional minimal set.

• <u>Morris Hirsch</u>, *A stable analytic foliation with only exceptional minimal sets*, in **Dynamical Systems, Warwick, 1974**, Lect. Notes in Math. vol. 468, 1975, 9–10.

Construction of the Hirsch foliation:

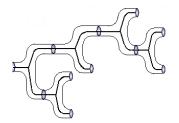


Get a foliated 3-manifold by gluing outer torus \mathbb{T}^2 to the inner torus \mathbb{T}^2 preserving foliation by circles, so is determined by a covering map $\phi \colon \mathbb{S}^1 \to \mathbb{S}^1$ of degree d > 1.

Choose the gluing map $\phi \colon \mathbb{S}^1 \to \mathbb{S}^1$ carefully, to obtain a foliation which is analytic and has an exceptional minimal set, whose pseudogroup dynamics is determined by the map ϕ .

Properties of the Hirsch foliation:

The generic leaves of \mathcal{F} are "tree-like" surfaces.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

There are also a finite number of leaves with "loops", corresponding to fixed points for the map $\phi \colon \mathbb{S}^1 \to \mathbb{S}^1$.

The geometry, dynamics and topology of "Hirsch-like" foliations have been well-studied, for example in:

• <u>Alberto Pinto</u> & <u>Dennis Sullivan</u>, *The circle and the solenoid*, **Discrete Contin. Dyn. Syst.**, vol. 16, 2006, 463–504.

• <u>Bin Yu</u>, Affine Hirsch foliations on 3-manifolds, Algebr. Geom. Topol., vol. 17, 2017, 1743–1770.

• <u>Sébastien Alvarez</u> & <u>Pablo Lessa</u>, *The Teichmüller space of the Hirsch foliation*, **Ann. Inst. Fourier**, vol. 68, 2018, 1–51.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition: A closed connected manifold M is said to be non co-Hopfian if it admits a proper self-covering map $\phi: M \to M$.

- The circle \mathbb{S}^1 is non co-Hopfian.
- The *n*-torus $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ is non co-Hopfian.
- *N* closed connected manifold, then $\mathbb{S}^1 \times N$ is non co-Hopfian.
- The nilmanifold $N = \mathcal{H}/\Gamma$ where $\Gamma \subset \mathcal{H}$ is the integer lattice in the 3-dimensional Heisenberg Lie group \mathcal{H} admits many inequivalent proper self-covering maps.

There are many other constructions of non co-Hopfian manifolds.

Non co-Hopfian manifolds have applications in dynamical systems, foliation theory, and spectral theory.

Constructions of generalized Hirsch foliations were given in

• <u>Bis, Hurder & Shive</u>, *Hirsch foliations in codimension greater than one*. **Foliations 2005**, World Sci. Publ., 2006, 71–108.

Theorem: Associated to a proper self-covering map $\phi: M \to M$, there is a generalized Hirsch foliation \mathcal{F} on a closed manifold N, with codimension-q equal to the dimension of M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question 1: Which closed manifolds are non co-Hopfian?

Question 2: What are the dynamical properties of Hirsch foliations?

Question 3: What are the properties of minimal sets for Hirsch foliations?

The answer to Questions 2 and 3 depend on the choice of the proper covering map $\phi: M \to M$ of course.

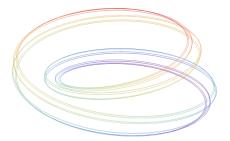
We address Question 1, using ideas from algebra and dynamics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Smale solenoid

For m > 1, let $\phi_m \colon \mathbb{S}^1 \to \mathbb{S}^1$, given by $\phi_m(e^{\iota\theta}) = e^{\iota m\theta}$. ϕ_m is a proper self-covering map of the circle of degree m. Iterate the map ϕ_m repeatedly to obtain the Smale solenoid:

$$\mathcal{S}_m \equiv \varprojlim \{ \mathbb{S}^1 \xleftarrow{\phi_m} \mathbb{S}^1 \xleftarrow{\phi_m} \mathbb{S}^1 \xleftarrow{\phi_m} \cdots \} \subset \prod_{\ell \ge 0} \mathbb{S}^1$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Associated to a proper self-map $\phi \colon M \to M$ we can form a generalized solenoid

$$\mathcal{S}_{\phi} \equiv \varprojlim \{ M \xleftarrow{\phi} M \xleftarrow{\phi} M \xleftarrow{\phi} \cdots \} \subset \prod_{\ell \geq 0} M .$$

These are a special class of the <u>weak solenoids</u> introduced by Chris McCord in 1966.

Problem: Characterize the properties of the weak solenoids S_{ϕ} , and the dynamics of the induced shift map $\sigma_{\phi} \colon S_{\phi} \to S_{\phi}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Group chains

For the Smale solenoid, given the tower of maps

$$\mathcal{S}_m \equiv \lim_{\ell \ge 0} \{ \mathbb{S}^1 \stackrel{\phi_m}{\longleftarrow} \mathbb{S}^1 \stackrel{\phi_m}{\longleftarrow} \mathbb{S}^1 \stackrel{\phi_m}{\longleftarrow} \cdots \} \subset \prod_{\ell \ge 0} \mathbb{S}^1 ,$$

let $x_0 \in \mathbb{S}^1$ be the identity element, then $\pi_1(\mathbb{S}^1, x_0) \cong \mathbb{Z}$.

We get a chain of subgroups of finite index

$$\mathcal{G}_m = \{\mathbb{Z} \supset m \cdot \mathbb{Z} \supset m^2 \cdot \mathbb{Z} \supset \cdots \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Next, do this for a non co-Hopfian manifold M of dimension n > 1.

Let $\phi \colon M \to M$ be a proper self-covering.

Choose a basepoint $x_1 \in M$ and set $x_0 = \phi(x_1)$. Then we have

$$\phi_* \colon \pi_1(M, x_1) \to \pi_1(M, x_0) \equiv \Gamma_0$$

Choose an isomorphism $\pi_1(M, x_1) \cong \pi_1(M, x_0)$.

- * ϕ_* induces a self-embedding $\varphi \colon \Gamma_0 \to \Gamma_0$.
- * Γ_0 is finitely generated.
- ★ $\varphi(\Gamma_0) \subset \Gamma_0$ is proper subgroup with finite index.
- * Group chain $\mathcal{G}_{\varphi} = \{ \Gamma_0 \supset \Gamma_1 = \varphi(\Gamma_0) \supset \Gamma_2 = \varphi(\Gamma_1) \supset \cdots \}.$

A finite index inclusion $\varphi \colon \mathbb{Z}^n \to \mathbb{Z}^n$ is called a <u>renormalization</u> of the lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ in the percolation & physics literature.

Definition: Let Γ be a finitely generated group, then an inclusion $\varphi \colon \Gamma \to \Gamma$ with finite index image is called a <u>renormalization</u> of Γ .

 Γ is said to be <u>renormalizable</u> if it admits a renormalization.

 Γ is also called a finitely non-co-Hopfian group.

Fact: *M* is non co-Hopfian $\Leftrightarrow \pi_1(M, x)$ is renormalizable.

Questions:

- 1. What finitely-generated groups are renormalizable?
- 2. What are the invariants of renormalization maps?

Irreducibility:

Let $\varphi \colon \Gamma \to \Gamma$ be a renormalization. Recursively define a descending chain of subgroups $\Gamma_{\ell+1} = \varphi(\Gamma_{\ell})$ for $\ell \ge 0$, so

 $\Gamma\equiv\Gamma_0\supset\Gamma_1\supset\Gamma_2\supset\cdots$

Let $\mathcal{G}_{\varphi} = \{ \Gamma_{\ell} \equiv \varphi^{\ell}(\Gamma) \mid \ell \geq 0 \}$ be the descending chain of subgroups of finite index associated to φ , then

$$\mathcal{K}(\varphi) = \bigcap_{\ell \geq 0} \ \mathsf{\Gamma}_{\ell}$$

is called the kernel of the chain.

Definition: A renormalization $\varphi \colon \Gamma \to \Gamma$ is said to be <u>irreducible</u> if $K(\varphi)$ is the trivial group, and <u>almost irreducible</u> if $K(\varphi)$ is finite.

Definition: Γ is said to be strongly scale-invariant if there is an almost irreducible renormalization for Γ .

This terminology was introduced in

• *Nekrashevych and Pete*, **Scale-invariant groups**, Groups Geom. Dyn., 2011

Question: Is a strongly scale-invariant group Γ virtually nilpotent?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This question is inspired by a celebrated result of Gromov .

Example: Expanding manifolds

Let M be a closed Riemannian manifold. A smooth map $f: M \to M$ is expanding if there exists some $\lambda > 1$ such that

 $\|df(\vec{v})\| \ge \lambda \|\vec{v}\|$ for all $x \in M$ and $\vec{V} \in T_x M$

The map f must be a proper covering.

Theorem: [Franks 1968] If *M* admits an expanding map, then $\Gamma_0 = \pi_1(M, x_0)$ has polynomial growth rate.

Theorem: [Gromov 1979] If Γ is a finitely generated group with polynomial growth rate, then Γ admits a nilpotent subgroup $\Lambda \subset \Gamma$ with finite index. i.e., Γ is virtually nilpotent.

Our work is motivated by a result in

• <u>Van Limbeek</u>, *Towers of regular self-covers and linear endomorphisms of tori*, **Geom. Topol.**, 2018.

Theorem: Let Γ be a strongly scale-invariant group, with a renormalization $\varphi \colon \Gamma \to \Gamma$ such that $\Gamma_{\ell} = \varphi^{\ell}(\Gamma)$ is <u>normal</u> in Γ . Then $\Gamma/K(\varphi)$ is abelian.

Question: Is there a weaker assumption than normality for the subgroups Γ_{ℓ} that yields a solution to the nilpotent question?

We approach this using ideas from Cantor dynamical systems,

• <u>Hurder, Lukina & Van Limbeek</u>, *Cantor dynamics of renormalizable groups*, **arxiv:2002.01565**

Construction of Cantor actions

Consider again the Smale solenoid. Fix the integer m > 1, so we have an embedding $\varphi \colon \mathbb{Z} \to \mathbb{Z}$, given by $\varphi(k) = m \cdot k$.

Then $\Gamma_{\ell} = m^{\ell} \cdot \mathbb{Z} \subset \mathbb{Z}$.

Pass to quotient groups and form the inverse limit space

$$\mathfrak{X} \equiv \varprojlim \{ 0 = \mathbb{Z}/\mathbb{Z} \xleftarrow{m_*} \mathbb{Z}/m\mathbb{Z} \xleftarrow{m_*} \mathbb{Z}/m^2\mathbb{Z} \xleftarrow{m_*} \cdots \}$$

The inverse limit \mathfrak{X} is a Cantor group, the *m*-adic integers $\widehat{\mathbb{Z}}_m$.

The group $\Gamma = \mathbb{Z}$ acts by addition on each quotient group $\mathbb{Z}/m^{\ell}\mathbb{Z}$.

Get dynamical system $\mathbb{Z} \times \mathfrak{X} \to \mathfrak{X}$ which is *m*-adic odometer.

Let Γ be a finitely generated group.

Let $\mathcal{G} = \{ \Gamma_{\ell} \mid \ell \geq 0 \}$ be a group chain, where $\Gamma_0 = \Gamma$ and $\Gamma_{\ell+1} \subset \Gamma_{\ell}$ is a proper subgroup of finite index.

 $X_{\ell} = \Gamma / \Gamma_{\ell}$ is a finite set with transitive left Γ -action.

Inclusion $\Gamma_{\ell+1} \subset \Gamma_{\ell}$ induces a surjection $p_{\ell+1} \colon X_{\ell+1} \to X_{\ell}$. Define

$$\mathfrak{X} \equiv \varprojlim \{ p_{\ell+1} \colon X_{\ell+1} \to X_{\ell} \mid \ell \geq 0 \} \subset \prod_{\ell \geq 0} X_{\ell} \; .$$

The product of finite sets is given the Tychonoff topology - cylinder sets generate the topology.

Then \mathfrak{X} is a closed subset, so is a Cantor space with left Γ -action.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Obtain minimal Γ -action $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$.

Called a subodometer by Cortez and Petite.

A Cantor action $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ is equicontinuous if for some metric $d_{\mathfrak{X}}$ on \mathfrak{X} , for every $\epsilon > 0$ there exists $\delta > 0$ such that

 $d_{\mathfrak{X}}(x,y) < \delta \implies d_{\mathfrak{X}}(\Phi(g)(x), \Phi(g)(y)) < \epsilon \quad \text{for all } g \in \Gamma.$

For the ultrametric metric on \mathfrak{X} , the action Φ is isometric:

• $(\mathfrak{X}, \Gamma, \Phi)$ is an equicontinuous Cantor action.

Remark: A smooth equicontinuous action on a manifold is analogous to an isometric action.

Remark: A minimal equicontinuous Cantor action can also be viewed as a group action on a rooted tree.

Let $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ be an equicontinuous Cantor action. This defines a homomorphism $\Phi \colon \Gamma \to \operatorname{Homeo}(\mathfrak{X})$ $\widehat{\Gamma} = \overline{\mathfrak{X}(\Gamma)}$ there $\mathfrak{X}(\mathfrak{X})$ is closed as the set of \mathfrak{X}

 $\widehat{\Gamma}=\overline{\Phi(\Gamma)}\subset \textbf{Homeo}(\mathfrak{X})$ is the closure in uniform topology

Theorem: [Ellis, 1969] Φ equicontinuous implies that $\widehat{\Gamma}$ is a profinite group, compact and totally disconnected.

This result of Ellis is the analog in topological dynamics for the method used to study Riemannian pseudogroups in:

• <u>André Haefliger</u> and <u>Éliane Salem</u>, *Pseudogroupes d'holonomie* des feuilletages riemanniens sur des variétés compactes 1-connexes, in **Géométrie différentielle (Paris, 1986)**, 1988.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma: Let $\varphi \colon \Gamma \to \Gamma$ be a renormalization for Γ with associated Cantor action $(\mathfrak{X}_{\varphi}, \Gamma, \Phi_{\varphi})$. Then ker $(\Phi_{\varphi}) \subset K(\varphi)$, where $\Phi_{\varphi} \colon \Gamma \to \widehat{\Gamma}_{\varphi}$ is the map to the completion.

Strategy: For $\mathcal{K}(\varphi)$ finite, find conditions on renormalization $\varphi \colon \Gamma \to \Gamma$ which imply that $\widehat{\Gamma}_{\varphi}$ is a virtually nilpotent group, and hence Γ is virtually nilpotent.

Lemma: Φ_{φ} induces an equicontinuous action $\widehat{\Phi}_{\varphi} \colon \widehat{\Gamma} \times \mathfrak{X}_{\varphi} \to \mathfrak{X}_{\varphi}$. For a sequence $\widehat{\gamma} = \{ \Phi_{\varphi}(\gamma_i) \in \operatorname{Homeo}(\mathfrak{X}) \mid i > 0 \} \in \widehat{\Gamma}$ which converges in the uniform topology of maps, given $x \in \mathfrak{X}_{\varphi}$ set $\widehat{\gamma} \cdot x = \lim \Phi_{\varphi}(\gamma_i)(x)$.

Lemma: Φ_{φ} minimal implies that $\widehat{\Gamma}_{\varphi}$ acts transitively on \mathfrak{X}_{φ} .

For $x\in\mathfrak{X}_{arphi}$, define the isotropy subgroup

$$\mathcal{D}_x = \{\widehat{\gamma} \in \widehat{\mathsf{\Gamma}}_{\varphi} \mid \widehat{\Phi}_{\varphi}(\widehat{\gamma})(x) = x\}$$

Isomorphism class of D_x is independent of choice of x and invariant of isomorphism of actions.

Proposition: \mathfrak{X}_{φ} is a homogeneous space for $\widehat{\Gamma}_{\varphi}$. That is,

$$\mathfrak{X}_{\varphi} \cong \widehat{\Gamma}_{\varphi} / \mathcal{D}_{x}$$
 as left Γ – spaces

Remark: If Γ is abelian group, then \mathcal{D}_x is trivial, so \mathfrak{X}_{φ} is a profinite group and Γ acts on \mathfrak{X}_{φ} by group multiplication.

Say that $(\mathfrak{X}_{\varphi}, \Gamma, \Phi_{\varphi})$ is a generalized odometer.

Strategy: We obtain invariants of the self-embedding φ by studying the dynamics of the adjoint action of \mathcal{D}_x on $\widehat{\Gamma}_{\varphi}$.

First, there is a canonical basepoint for $(\mathfrak{X}_{\varphi}, \Gamma, \Phi_{\varphi})$:

Proposition: There is a rescaling $\lambda_{\varphi} \colon X_{\varphi} \to X_{\varphi}$ whose image $U_1 = \lambda_{\varphi}(X_{\varphi})$ is a clopen subset of X_{φ} . Moreover, the action $(X_{\varphi}, \Gamma, \Phi_{\varphi})$ is conjugate to the restricted action $(U_1, \Gamma_{U_1}, \Phi_{U_1})$.

Idea of proof: φ induces a map of quotients $\overline{\varphi} \colon \Gamma/\Gamma_{\ell} \to \Gamma_1/\Gamma_{\ell+1}$. This induces the shift map $\lambda_{\varphi} \colon X_{\varphi} \to U_1 \subset X_{\varphi}$.

Definition: $\mathcal{D}_{\varphi} \subset \text{Homeo}(X_{\varphi})$ is the isotropy subgroup at the unique fixed-point x_{φ} of the contraction map λ_{φ} .

The study of invariants for the adjoint action of \mathcal{D}_{φ} on $\widehat{\Gamma}_{\varphi}$ leads into analyzing the regularity properties of Cantor actions.

Let $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ be a Cantor action of a countable group Γ . The action is:

- * <u>effective</u>, or <u>faithful</u>, if $\Phi \colon \Gamma \to \text{Homeo}(\mathfrak{X})$ has trivial kernel.
- * <u>free</u> if for all $x \in \mathfrak{X}$ and $g \in \Gamma$, $g \cdot x = x$ implies that g = e
- * isotropy group of $x \in \mathfrak{X}$ is $\Gamma_x = \{g \in \Gamma \mid g \cdot x = x\}$
- * Fix $(g) = \{x \in \mathfrak{X} \mid g \cdot x = x\}$, and isotropy set

 $\operatorname{Iso}(\Phi) = \{x \in \mathfrak{X} \mid \exists \ g \in \Gamma \ , \ g \neq id \ , \ g \cdot x = x\} = \bigcup_{e \neq g \in \Gamma} \operatorname{Fix}(g)$

Cantor action $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ is topologically free if $\operatorname{Iso}(\Phi)$ is meager in $\mathfrak{X} \Longrightarrow \operatorname{Iso}(\Phi)$ has empty interior.

For Γ a countable group, this is a natural hypothesis to impose.

However, for a Cantor action $\Phi: H \times \mathfrak{X} \to \mathfrak{X}$ where H is not countable, we introduce another definition of regularity.

First, recall the topology of Cantor space \mathfrak{X} is generated by clopen subsets: U is closed and open. A non-empty clopen $U \subset \mathfrak{X}$ is adapted if the return times to U form a subgroup:

$$\Gamma_U = \{g \in \Gamma \mid \Phi(g)(U) = U\} \subset \Gamma$$

Lemma: For $x \in \mathfrak{X}$ and open $x \in V$, there is adapted U with $x \in U \subset V$.

Definition: An action $\Phi \colon H \times \mathfrak{X} \to \mathfrak{X}$, where

- *H* is a topological group and
- \mathfrak{X} is a Cantor space

is quasi-analytic if for each clopen set $U \subset \mathfrak{X}, \ g \in H$

• if $\Phi(g)(U) = U$ and the restriction $\Phi(g)|U$ is the identity map on U, then $\Phi(g)$ acts as the identity on all of \mathfrak{X} .

For H a countable group, this is equivalent to topologically free.

Profinite Actions:

* $\varphi \colon \Gamma \to \Gamma$ is a renormalization for Γ

- \star associated Cantor action $(\mathfrak{X}_{\varphi}, \mathsf{\Gamma}, \Phi_{\varphi})$
- \star induced profinite action $\widehat{\Phi}_{arphi} \colon \widehat{\Gamma}_{arphi} imes X_{arphi} o X_{arphi}$

Here are our key results:

Theorem 1: The action $\widehat{\Phi}_{\varphi}$ is quasi-analytic.

Corollary 1: Let $\widehat{\gamma} \in \widehat{\Gamma}_{\varphi}$. The homeomorphism $\widehat{\Phi}_{\varphi}(\widehat{\gamma})$: $\mathfrak{X}_{\varphi} \to \mathfrak{X}_{\varphi}$ is uniquely determined by its restriction to an adapted subset of \mathfrak{X} .

Theorem 2: A renormalization map φ induces a contraction map on the closure, $\hat{\varphi} \colon \hat{\Gamma}_{\varphi} \to \hat{\Gamma}_{\varphi}$ with open image.

The proof of Theorem 2 looks "obvious", except that it isn't. Here is the issue:

The renormalization φ induces a map $\widehat{\varphi} \colon \widehat{\Gamma}_{\varphi} \to \operatorname{Homeo}(U_1)$.

We need to show that the maps in the image of $\hat{\varphi}$ have unique extensions to **Homeo**(X_{φ}).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is exactly what Theorem 1 says is true.

Theorem 3:
$$\mathcal{D}_{\varphi} = \bigcap_{n>0} \widehat{\varphi}^n(\widehat{\Gamma}_{\varphi}) \subset \widehat{\Gamma}_{\varphi}$$

This connects the discriminant invariant for a Cantor action, with an invariant for a contraction profinite group.

The proof of Theorem 3 follows almost directly from the algebraic definition for \mathcal{D}_φ developed in

• Jessica Dyer, Dynamics of Equicontinuous Group Actions on Cantor Sets, Thesis UIC, 2015.

Theorems 2 and 3 are applied to show that $\widehat{\Gamma}_{\varphi}$ is virtually nilpotent.

There is an extensive literature on the structure of profinite groups with an open contraction mapping, in particular by:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

* Baumgartner, Caprace, Reid, Wesolek, Willis, Wilson

The following result is based on results of Udo Baumgartner & George Willis, and Colin Reid:

Theorem: Let $\widehat{\varphi} \colon \widehat{\Gamma}_{\varphi} \to \widehat{\Gamma}_{\varphi}$ be a contraction map with open image. Then there is an isomorphism with a semi-direct product

$$\widehat{\mathsf{\Gamma}}_{\varphi} \cong \mathcal{N}_{\varphi} \rtimes \mathcal{D}_{\varphi}$$

$$egin{array}{rcl} \mathcal{N}_arphi &=& \{\widehat{m{g}}\in\widehat{\Gamma}_arphi \mid \lim_{\ell
ightarrow\infty}\,\widehat{arphi}^\ell(\widehat{m{g}})=\widehat{e}\}\ \mathcal{D}_arphi &=& igcap_{n>0}\,\,\widehat{arphi}^n(\widehat{\Gamma}_arphi)\subset\widehat{\Gamma}_arphi \end{array}$$

Moreover, the contraction factor \mathcal{N}_{φ} is pro-nilpotent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

We use this structure theorem for contraction maps to show:

Theorem [HLvL2020]: Let φ be a renormalization of the finitely generated group Γ . Suppose that

$$\mathcal{K}(arphi) = igcap_{\ell > 0} arphi^{\ell}(\Gamma) \subset \Gamma \quad, \quad \mathcal{D}_{arphi} = igcap_{n > 0} \; \, \widehat{arphi}_{0}^{n}(\widehat{\Gamma}_{arphi}) \subset \widehat{\Gamma}_{arphi}$$

are both finite groups, then

- Γ is virtually nilpotent,
- If both groups are trivial, then Γ is nilpotent.

Remark: The normality assumption in Van Limbeek's Theorem is replaced by the assumption that \mathcal{D}_{φ} is a finite group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Next Steps:

* Let φ be an irreducible renormalization of a finitely generated group Γ . Show that \mathcal{D}_{φ} is nilpotent, and thus Γ is virtually nilpotent.

This is true in all examples calculated. Need better understanding of closed subgroups of profinite groups to complete the proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\star\,$ Develop general "formula" for calculating the discriminant invariant \mathcal{D}_{φ} for renormalization map φ

Dynamics:

A proper self-covering proper $\phi: M \to M$ is called an endomorphism in the dynamical systems literature.

• *Michael Shub*, Endomorphisms of compact differentiable manifolds, Amer. J. Math., Vol. 91, 1969.

When ϕ is an expanding map on M, the induced dynamics on the weak solenoid S_{ϕ} is of hyperbolic type, and well-studied.

Let $\varphi = \phi_* \colon \Gamma \to \Gamma$ be the renormalization associated to $\phi \colon M \to M$ which is not assumed to be expansive.

Question 1: What can be said about the dynamics on the minimal sets of the induced action on S_{ϕ} ?

Question 2: Suppose the discriminant \mathcal{D}_{φ} is a Cantor group. How does this influence the dynamics of the shift map on \mathcal{S}_{ϕ} ?

Problem 3: Let \mathcal{F}_{ϕ} be the Hirsch foliation associated to a proper self-covering $\phi: M \to M$. Show the discriminant group \mathcal{D}_{φ} is a Morita equivalence invariant of the holonomy pseudogroup of \mathcal{F}_{ϕ} .

The discriminant group \mathcal{D}_{ϕ} is an example of the phenomenon of shape dynamics discussed in Section 6 of:

• <u>Hurder</u>, *Lectures on Foliation Dynamics: Barcelona 2010*, in **Foliations: Dynamics, Geometry and Topology**, Advanced Courses in Mathematics CRM Barcelona, 2014.

U. Baumgartner and G. Willis, *Contraction groups and scales of automorphisms of totally disconnected locally compact groups*, Israel J. Math., 2004.

J. Dyer, S. Hurder and O. Lukina, *The discriminant invariant of Cantor group actions*, **Topology and Its Applications**, 2017.

J. Dyer, S. Hurder and O. Lukina, *Molino theory for matchbox manifolds*, **Pac. Jour. Math.**, 2016.

M. Gromov, *Groups of polynomial growth and expanding maps*, Inst. Hautes Études Sci. Publ. Math., 1981.

S. Hurder and O. Lukina, Wild solenoids, Trans. A.M.S., 2019.

S. Hurder and O. Lukina, *Orbit equivalence and classification of weak solenoids*, **Indiana Univ. Math. J.**, to appear; arXiv:1803.02098.

S. Hurder, O. Lukina and W. Van Limbeek, *Cantor dynamics of renormalizable groups*, submitted; arXiv:2002.01565.

V. Nekrashevych and G. Pete, Scale-invariant groups, Groups Geom. Dyn., 2011.

C. Reid, Endomorphisms of profinite groups, Groups Geom. Dyn., 2014.

M. Shub, *Expanding maps*, In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970.

W. Van Limbeek, *Towers of regular self-covers and linear endomorphisms of tori*, **Geom. Topol.**, 2018.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●