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The Hirsch foliation is a codimension-one foliation F of a
compact 3-manifold N.

With appropriate choices in its construction, the foliation F is real
analytic with an exceptional minimal set.

• Morris Hirsch, A stable analytic foliation with only exceptional
minimal sets, in Dynamical Systems, Warwick, 1974, Lect.
Notes in Math. vol. 468, 1975, 9–10.



Construction of the Hirsch foliation:

Get a foliated 3-manifold by gluing outer torus T2 to the inner
torus T2 preserving foliation by circles, so is determined by a
covering map φ : S1 → S1 of degree d > 1.

Choose the gluing map φ : S1 → S1 carefully, to obtain a foliation
which is analytic and has an exceptional minimal set, whose
pseudogroup dynamics is determined by the map φ.



Properties of the Hirsch foliation:

The generic leaves of F are “tree-like” surfaces.

There are also a finite number of leaves with “loops”,
corresponding to fixed points for the map φ : S1 → S1.



The geometry, dynamics and topology of “Hirsch-like” foliations
have been well-studied, for example in:

• Alberto Pinto & Dennis Sullivan, The circle and the solenoid,
Discrete Contin. Dyn. Syst., vol. 16, 2006, 463–504.

• Bin Yu, Affine Hirsch foliations on 3-manifolds, Algebr. Geom.
Topol., vol. 17, 2017, 1743–1770.

• Sébastien Alvarez & Pablo Lessa, The Teichmüller space of the
Hirsch foliation, Ann. Inst. Fourier, vol. 68, 2018, 1–51.



Definition: A closed connected manifold M is said to be
non co-Hopfian if it admits a proper self-covering map φ : M → M.

• The circle S1 is non co-Hopfian.

• The n-torus Tn = S1 × · · · × S1 is non co-Hopfian.

• N closed connected manifold, then S1 × N is non co-Hopfian.

• The nilmanifold N = H/Γ where Γ ⊂ H is the integer lattice in
the 3-dimensional Heisenberg Lie group H admits many
inequivalent proper self-covering maps.

There are many other constructions of non co-Hopfian manifolds.

Non co-Hopfian manifolds have applications in dynamical systems,
foliation theory, and spectral theory.



Constructions of generalized Hirsch foliations were given in

• Bis, Hurder & Shive, Hirsch foliations in codimension greater
than one. Foliations 2005, World Sci. Publ., 2006, 71–108.

Theorem: Associated to a proper self-covering map φ : M → M,
there is a generalized Hirsch foliation F on a closed manifold N,
with codimension-q equal to the dimension of M.



Question 1: Which closed manifolds are non co-Hopfian?

Question 2: What are the dynamical properties of Hirsch
foliations?

Question 3: What are the properties of minimal sets for Hirsch
foliations?

The answer to Questions 2 and 3 depend on the choice of the
proper covering map φ : M → M of course.

We address Question 1, using ideas from algebra and dynamics.



The Smale solenoid

For m > 1, let φm : S1 → S1, given by φm(eιθ) = eιmθ.

φm is a proper self-covering map of the circle of degree m.

Iterate the map φm repeatedly to obtain the Smale solenoid:

Sm ≡ lim←− {S
1 φm←− S1 φm←− S1 φm←− · · · } ⊂

∏
`≥0

S1 .



Associated to a proper self-map φ : M → M we can form a
generalized solenoid

Sφ ≡ lim←− {M
φ←− M

φ←− M
φ←− · · · } ⊂

∏
`≥0

M .

These are a special class of the weak solenoids introduced by Chris
McCord in 1966.

Problem: Characterize the properties of the weak solenoids Sφ,
and the dynamics of the induced shift map σφ : Sφ → Sφ.



Group chains

For the Smale solenoid, given the tower of maps

Sm ≡ lim←− {S
1 φm←− S1 φm←− S1 φm←− · · · } ⊂

∏
`≥0

S1 ,

let x0 ∈ S1 be the identity element, then π1(S1, x0) ∼= Z.

We get a chain of subgroups of finite index

Gm = {Z ⊃ m · Z ⊃ m2 · Z ⊃ · · · }



Next, do this for a non co-Hopfian manifold M of dimension n > 1.

Let φ : M → M be a proper self-covering.

Choose a basepoint x1 ∈ M and set x0 = φ(x1). Then we have

φ∗ : π1(M, x1)→ π1(M, x0) ≡ Γ0

Choose an isomorphism π1(M, x1) ∼= π1(M, x0).

? φ∗ induces a self-embedding ϕ : Γ0 → Γ0.

? Γ0 is finitely generated.

? ϕ(Γ0) ⊂ Γ0 is proper subgroup with finite index.

? Group chain Gϕ = {Γ0 ⊃ Γ1 = ϕ(Γ0) ⊃ Γ2 = ϕ(Γ1) ⊃ · · · }.



A finite index inclusion ϕ : Zn → Zn is called a renormalization of
the lattice Zn ⊂ Rn in the percolation & physics literature.

Definition: Let Γ be a finitely generated group, then an inclusion
ϕ : Γ→ Γ with finite index image is called a renormalization of Γ.

Γ is said to be renormalizable if it admits a renormalization.

Γ is also called a finitely non-co-Hopfian group.

Fact: M is non co-Hopfian ⇔ π1(M, x) is renormalizable.

Questions:

1. What finitely-generated groups are renormalizable?

2. What are the invariants of renormalization maps?



Irreducibility:

Let ϕ : Γ→ Γ be a renormalization. Recursively define a
descending chain of subgroups Γ`+1 = ϕ(Γ`) for ` ≥ 0, so

Γ ≡ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · ·

Let Gϕ = {Γ` ≡ ϕ`(Γ) | ` ≥ 0} be the descending chain of
subgroups of finite index associated to ϕ, then

K (ϕ) =
⋂
`≥0

Γ`

is called the kernel of the chain.

Definition: A renormalization ϕ : Γ→ Γ is said to be irreducible if
K (ϕ) is the trivial group, and almost irreducible if K (ϕ) is finite.



Definition: Γ is said to be strongly scale-invariant if there is an
almost irreducible renormalization for Γ.

This terminology was introduced in

• Nekrashevych and Pete, Scale-invariant groups, Groups Geom.
Dyn., 2011

Question: Is a strongly scale-invariant group Γ virtually nilpotent?

This question is inspired by a celebrated result of Gromov .



Example: Expanding manifolds

Let M be a closed Riemannian manifold. A smooth map
f : M → M is expanding if there exists some λ > 1 such that

‖df (~v)‖ ≥ λ‖~v‖ for all x ∈ M and ~V ∈ TxM

The map f must be a proper covering.

Theorem: [Franks 1968] If M admits an expanding map, then
Γ0 = π1(M, x0) has polynomial growth rate.

Theorem: [Gromov 1979] If Γ is a finitely generated group with
polynomial growth rate, then Γ admits a nilpotent subgroup Λ ⊂ Γ
with finite index. i.e., Γ is virtually nilpotent.



Our work is motivated by a result in

• Van Limbeek, Towers of regular self-covers and linear
endomorphisms of tori, Geom. Topol., 2018.

Theorem: Let Γ be a strongly scale-invariant group, with a
renormalization ϕ : Γ→ Γ such that Γ` = ϕ`(Γ) is normal in Γ.
Then Γ/K (ϕ) is abelian.

Question: Is there a weaker assumption than normality for the
subgroups Γ` that yields a solution to the nilpotent question?

We approach this using ideas from Cantor dynamical systems,

• Hurder, Lukina & Van Limbeek, Cantor dynamics of
renormalizable groups, arxiv:2002.01565



Construction of Cantor actions

Consider again the Smale solenoid. Fix the integer m > 1, so we
have an embedding ϕ : Z→ Z, given by ϕ(k) = m · k .

Then Γ` = m` · Z ⊂ Z.

Pass to quotient groups and form the inverse limit space

X ≡ lim←− {0 = Z/Z m∗←− Z/mZ m∗←− Z/m2Z m∗←− · · · }

The inverse limit X is a Cantor group, the m-adic integers Ẑm.

The group Γ = Z acts by addition on each quotient group Z/m`Z.

Get dynamical system Z× X→ X which is m-adic odometer.



Let Γ be a finitely generated group.

Let G = {Γ` | ` ≥ 0} be a group chain, where Γ0 = Γ and
Γ`+1 ⊂ Γ` is a proper subgroup of finite index.

X` = Γ/Γ` is a finite set with transitive left Γ-action.

Inclusion Γ`+1 ⊂ Γ` induces a surjection p`+1 : X`+1 → X`. Define

X ≡ lim←− {p`+1 : X`+1 → X` | ` ≥ 0} ⊂
∏
`≥0

X` .

The product of finite sets is given the Tychonoff topology -
cylinder sets generate the topology.

Then X is a closed subset, so is a Cantor space with left Γ-action.

Obtain minimal Γ-action Φ: Γ× X→ X.

Called a subodometer by Cortez and Petite.



A Cantor action Φ: Γ× X→ X is equicontinuous if for some
metric dX on X, for every ε > 0 there exists δ > 0 such that

dX(x , y) < δ =⇒ dX(Φ(g)(x),Φ(g)(y)) < ε for all g ∈ Γ.

For the ultrametric metric on X, the action Φ is isometric:

• (X, Γ,Φ) is an equicontinuous Cantor action.

Remark: A smooth equicontinuous action on a manifold is
analogous to an isometric action.

Remark: A minimal equicontinuous Cantor action can also be
viewed as a group action on a rooted tree.



Let Φ: Γ× X→ X be an equicontinuous Cantor action.

This defines a homomorphism Φ: Γ→ Homeo(X)

Γ̂ = Φ(Γ) ⊂ Homeo(X) is the closure in uniform topology

Theorem: [Ellis, 1969] Φ equicontinuous implies that Γ̂ is a
profinite group, compact and totally disconnected.

This result of Ellis is the analog in topological dynamics for the
method used to study Riemannian pseudogroups in:

• André Haefliger and Éliane Salem, Pseudogroupes d’holonomie
des feuilletages riemanniens sur des variétés compactes 1-connexes,
in Géométrie différentielle (Paris, 1986), 1988.



Lemma: Let ϕ : Γ→ Γ be a renormalization for Γ with associated
Cantor action (Xϕ, Γ,Φϕ). Then ker(Φϕ) ⊂ K (ϕ), where

Φϕ : Γ→ Γ̂ϕ is the map to the completion.

Strategy: For K (ϕ) finite, find conditions on renormalization
ϕ : Γ→ Γ which imply that Γ̂ϕ is a virtually nilpotent group, and
hence Γ is virtually nilpotent.



Lemma: Φϕ induces an equicontinuous action Φ̂ϕ : Γ̂× Xϕ → Xϕ.

For a sequence γ̂ = {Φϕ(γi ) ∈ Homeo(X) | i > 0} ∈ Γ̂ which
converges in the uniform topology of maps, given x ∈ Xϕ set
γ̂ · x = lim Φϕ(γi )(x).

Lemma: Φϕ minimal implies that Γ̂ϕ acts transitively on Xϕ.

For x ∈ Xϕ, define the isotropy subgroup

Dx = {γ̂ ∈ Γ̂ϕ | Φ̂ϕ(γ̂)(x) = x}

Isomorphism class of Dx is independent of choice of x and
invariant of isomorphism of actions.



Proposition: Xϕ is a homogeneous space for Γ̂ϕ. That is,

Xϕ ∼= Γ̂ϕ/Dx as left Γ− spaces

Remark: If Γ is abelian group, then Dx is trivial, so Xϕ is a
profinite group and Γ acts on Xϕ by group multiplication.

Say that (Xϕ, Γ,Φϕ) is a generalized odometer.



Strategy: We obtain invariants of the self-embedding ϕ by
studying the dynamics of the adjoint action of Dx on Γ̂ϕ.

First, there is a canonical basepoint for (Xϕ, Γ,Φϕ):

Proposition: There is a rescaling λϕ : Xϕ → Xϕ whose image
U1 = λϕ(Xϕ) is a clopen subset of Xϕ. Moreover, the action
(Xϕ, Γ,Φϕ) is conjugate to the restricted action (U1, ΓU1 ,ΦU1).

Idea of proof: ϕ induces a map of quotients ϕ : Γ/Γ` → Γ1/Γ`+1.
This induces the shift map λϕ : Xϕ → U1 ⊂ Xϕ.

Definition: Dϕ ⊂ Homeo(Xϕ) is the isotropy subgroup at the
unique fixed-point xϕ of the contraction map λϕ.



The study of invariants for the adjoint action of Dϕ on Γ̂ϕ leads
into analyzing the regularity properties of Cantor actions.

Let Φ: Γ× X→ X be a Cantor action of a countable group Γ.

The action is:

? effective, or faithful, if Φ: Γ→ Homeo(X) has trivial kernel.

? free if for all x ∈ X and g ∈ Γ, g · x = x implies that g = e

? isotropy group of x ∈ X is Γx = {g ∈ Γ | g · x = x}

? Fix(g) = {x ∈ X | g · x = x}, and isotropy set

Iso(Φ) = {x ∈ X | ∃ g ∈ Γ , g 6= id , g · x = x} =
⋃

e 6=g∈Γ

Fix(g)



Cantor action Φ: Γ× X→ X is topologically free if Iso(Φ) is
meager in X =⇒ Iso(Φ) has empty interior.

For Γ a countable group, this is a natural hypothesis to impose.

However, for a Cantor action Φ: H × X→ X where H is not
countable, we introduce another definition of regularity.

First, recall the topology of Cantor space X is generated by clopen
subsets: U is closed and open. A non-empty clopen U ⊂ X is
adapted if the return times to U form a subgroup:

ΓU = {g ∈ Γ | Φ(g)(U) = U} ⊂ Γ

Lemma: For x ∈ X and open x ∈ V , there is adapted U with
x ∈ U ⊂ V .



Definition: An action Φ: H × X→ X, where

• H is a topological group and

• X is a Cantor space

is quasi-analytic if for each clopen set U ⊂ X, g ∈ H

• if Φ(g)(U) = U and the restriction Φ(g)|U is the identity map
on U, then Φ(g) acts as the identity on all of X.

For H a countable group, this is equivalent to topologically free.



Profinite Actions:

? ϕ : Γ→ Γ is a renormalization for Γ

? associated Cantor action (Xϕ, Γ,Φϕ)

? induced profinite action Φ̂ϕ : Γ̂ϕ × Xϕ → Xϕ

Here are our key results:

Theorem 1: The action Φ̂ϕ is quasi-analytic.

Corollary 1: Let γ̂ ∈ Γ̂ϕ. The homeomorphism Φ̂ϕ(γ̂) : Xϕ → Xϕ
is uniquely determined by its restriction to an adapted subset of X.



Theorem 2: A renormalization map ϕ induces a contraction map
on the closure, ϕ̂ : Γ̂ϕ → Γ̂ϕ with open image.

The proof of Theorem 2 looks “obvious”, except that it isn’t.

Here is the issue:

The renormalization ϕ induces a map ϕ̂ : Γ̂ϕ → Homeo(U1).

We need to show that the maps in the image of ϕ̂ have unique
extensions to Homeo(Xϕ).

This is exactly what Theorem 1 says is true.



Theorem 3: Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ) ⊂ Γ̂ϕ

This connects the discriminant invariant for a Cantor action, with
an invariant for a contraction profinite group.

The proof of Theorem 3 follows almost directly from the algebraic
definition for Dϕ developed in

• Jessica Dyer, Dynamics of Equicontinuous Group Actions on
Cantor Sets, Thesis UIC, 2015.



Theorems 2 and 3 are applied to show that Γ̂ϕ is virtually nilpotent.

There is an extensive literature on the structure of profinite groups
with an open contraction mapping, in particular by:

? Baumgartner, Caprace, Reid, Wesolek, Willis, Wilson

The following result is based on results of

Udo Baumgartner & George Willis, and Colin Reid:



Theorem: Let ϕ̂ : Γ̂ϕ → Γ̂ϕ be a contraction map with open
image. Then there is an isomorphism with a semi-direct product

Γ̂ϕ ∼= Nϕ oDϕ

Nϕ = {ĝ ∈ Γ̂ϕ | lim
`→∞

ϕ̂`(ĝ) = ê}

Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ) ⊂ Γ̂ϕ

Moreover, the contraction factor Nϕ is pro-nilpotent.



We use this structure theorem for contraction maps to show:

Theorem [HLvL2020]: Let ϕ be a renormalization of the finitely
generated group Γ. Suppose that

K (ϕ) =
⋂
`>0

ϕ`(Γ) ⊂ Γ , Dϕ =
⋂
n>0

ϕ̂n
0(Γ̂ϕ) ⊂ Γ̂ϕ

are both finite groups, then

• Γ is virtually nilpotent,

• If both groups are trivial, then Γ is nilpotent.

Remark: The normality assumption in Van Limbeek’s Theorem is
replaced by the assumption that Dϕ is a finite group.



Next Steps:

? Let ϕ be an irreducible renormalization of a finitely generated
group Γ. Show that Dϕ is nilpotent, and thus Γ is virtually
nilpotent.

This is true in all examples calculated. Need better understanding
of closed subgroups of profinite groups to complete the proof.

? Develop general “formula” for calculating the discriminant
invariant Dϕ for renormalization map ϕ



Dynamics:

A proper self-covering proper φ : M → M is called an
endomorphism in the dynamical systems literature.

• Michael Shub, Endomorphisms of compact differentiable
manifolds, Amer. J. Math., Vol. 91, 1969.

When φ is an expanding map on M, the induced dynamics on the
weak solenoid Sφ is of hyperbolic type, and well-studied.

Let ϕ = φ∗ : Γ→ Γ be the renormalization associated to
φ : M → M which is not assumed to be expansive.



Question 1: What can be said about the dynamics on the
minimal sets of the induced action on Sφ?

Question 2: Suppose the discriminant Dϕ is a Cantor group. How
does this influence the dynamics of the shift map on Sφ?

Problem 3: Let Fφ be the Hirsch foliation associated to a proper
self-covering φ : M → M. Show the discriminant group Dϕ is a
Morita equivalence invariant of the holonomy pseudogroup of Fφ.

The discriminant group Dφ is an example of the phenomenon of
shape dynamics discussed in Section 6 of:

• Hurder, Lectures on Foliation Dynamics: Barcelona 2010, in
Foliations: Dynamics, Geometry and Topology, Advanced
Courses in Mathematics CRM Barcelona, 2014.
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