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Continua. . .

Definition: A continuum is a compact and connected metrizable space.

Definition: An indecomposable continuum is a continuum that is not the
union of two proper subcontinua.

Examples: The circle S1 is decomposable. The Knaster Continuum (or
bucket handle) is indecomposable.

This is one-half of a Smale Horseshoe. The 2-solenoid over S1 is a
branched double-covering of it.
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Continua. . .

Indecomposable continuum arise naturally as invariant closed sets of
dynamical systems; e.g., attractors and minimal sets for diffeomorphisms.

[Picture courtesy Sanjuan, Kennedy, Grebogi & Yorke, “Indecomposable continua in dynamical systems with noise”, Chaos 1997]
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A Conjecture . . .

Definition: A space X is homogeneous if for every x , y ∈ X there exists a
homeomorphism h : X → X such that h(x) = y . Equivalently, X is
homogeneous if the group Homeo(X ) acts transitively on X .

Question: [Bing1960] If X is a homogeneous continuum and if every
proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

Theorem: [Hagopian 1977] Let X be a homogeneous continuum such
that every proper subcontinuum of X is an arc, then X is an inverse limit
over the circle S1.
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Matchbox manifolds

Question: Let X be a homogeneous continuum such that every proper
subcontinuum of X is an n-dimensional manifold, must X then be an
inverse limit of normal coverings of compact manifolds?

We rephrase the context:

Definition: An n-dimensional matchbox manifold is a continuum M

which is a foliated space with leaf dimension n, and codimension zero.

M is a foliated space if it admits a covering U = {ϕi | 1 ≤ i ≤ ν} with
foliated coordinate charts ϕi : Ui → [−1, 1]n × Ti . The compact metric
spaces Ti are totally disconnected ⇐⇒ M is a matchbox manifold.

The leaves of F are the path components of M.
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Smooth matchbox manifolds

Definition: M is a smooth foliated space if the leafwise transition
functions for the foliation charts ϕi : Ui → [−1, 1]n × Ti are C∞, and vary
continuously on the transverse parameter in the leafwise C∞-topology.
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Automorphisms of matchbox manifolds

A “smooth matchbox manifold” M is analogous to a compact manifold,
with the transverse dynamics of the foliation F on the Cantor-like fibers
Ti representing fundamental groupoid data. They naturally appear in:

• dynamical systems, as minimal sets & attractors
• geometry, as laminations
• complex dynamics, as universal Riemann surfaces
• algebraic geometry, as models for “stacks”.

Bing Question: For which M is the group Homeo(M) transitive?

Klein Question: Do the Riemannian symmetries of M characterize it?

Zimmer Question: What countable groups Λ act effectively on M?

Haefliger Question: What are the topological invariants associated to a
matchbox manifolds, and do they characterize them in some fashion?
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A solution to the Bing Question

Theorem [Clark & Hurder 2009] Let M be an orientable homogeneous
smooth matchbox manifold. Then M is homeomorphic to a McCord (or
normal) solenoid. In particular, M is minimal, so every leaf is dense.

When the dimension of M is n = 1 (that is, F is defined by a flow) then
this recovers the result of Hagopian, but the proof is much closer in spirit
to the later proof of this case by [Aarts, Hagopian and Oversteegen 1991].

The case where M is given as a fibration over Tn with totally disconnected
fibers was proven in [Clark, 2002].
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Two applications

Here are two consequences of the Main Theorem:

Corollary: Let M be an orientable homogeneous n-dimensional smooth
matchbox manifold, which is embedded in a closed (n + 1)-dimensional
manifold. Then M is itself a manifold.

For M a homogeneous continuum with a non-singular flow, this was a
question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding
for solenoids of dimension n ≥ 2 was solved by [Clark & Fokkink, 2002].
Proofs use shape theory and Alexander-Spanier duality for cohomology.

Corollary: Let M be the tiling space associated to a tiling P of Rn. If M

is homogeneous, then the tiling is periodic.
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Generalized solenoids

Let M` be compact, orientable manifolds of dimension n ≥ 1 for ` ≥ 0,
with orientation-preserving covering maps

p`+1−→ M`
p`−→ M`−1

p`−1−→ · · · p2−→ M1
p1−→ M0

The p` are called the bonding maps for the solenoid

S = lim
←
{p` : M` → M`−1} ⊂

∞∏
`=0

M`

Choose basepoints x` ∈ M` with p`(x`) = x`−1. Set G` = π1(M`, x`).

Then we have a descending chain of groups and injective maps

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G1
p1−→ G0

Set q` = p` ◦ · · · ◦ p1 : M` −→ M0.

Steven Hurder (UIC) Homogeneous matchbox manifolds September 28, 2009 10 / 21



Generalized solenoids

Let M` be compact, orientable manifolds of dimension n ≥ 1 for ` ≥ 0,
with orientation-preserving covering maps

p`+1−→ M`
p`−→ M`−1

p`−1−→ · · · p2−→ M1
p1−→ M0

The p` are called the bonding maps for the solenoid

S = lim
←
{p` : M` → M`−1} ⊂

∞∏
`=0

M`

Choose basepoints x` ∈ M` with p`(x`) = x`−1. Set G` = π1(M`, x`).

Then we have a descending chain of groups and injective maps

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G1
p1−→ G0

Set q` = p` ◦ · · · ◦ p1 : M` −→ M0.

Steven Hurder (UIC) Homogeneous matchbox manifolds September 28, 2009 10 / 21



Generalized solenoids

Let M` be compact, orientable manifolds of dimension n ≥ 1 for ` ≥ 0,
with orientation-preserving covering maps

p`+1−→ M`
p`−→ M`−1

p`−1−→ · · · p2−→ M1
p1−→ M0

The p` are called the bonding maps for the solenoid

S = lim
←
{p` : M` → M`−1} ⊂

∞∏
`=0

M`

Choose basepoints x` ∈ M` with p`(x`) = x`−1. Set G` = π1(M`, x`).

Then we have a descending chain of groups and injective maps

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G1
p1−→ G0

Set q` = p` ◦ · · · ◦ p1 : M` −→ M0.

Steven Hurder (UIC) Homogeneous matchbox manifolds September 28, 2009 10 / 21



McCord solenoids

Definition: S is a McCord solenoid for some fixed `0 ≥ 0, for all ` ≥ `0
the image H` of G` in H`0 ≡ G`0 is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable
homogeneous smooth matchbox manifold.

Remark: π1(M0, x0) nilpotent implies that S is a McCord solenoid.

Caution: There are constructions of inverse limits S as above where the
bonding maps are not normal coverings, and the McCord condition does
not hold, but S is homogeneous [Fokkink & Oversteegen 2002].

Our technique of proof of the main theorem for such examples presents
the inverse limit space S as homeomorphic to a normal tower of coverings.
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Effros Theorem

Let X be a separable and metrizable topological space. Let G be a
topological group with identity e.

For U ⊆ G and x ∈ X , let Ux = {gx | g ∈ U}.
Definition: An action of G on X is transitive if Gx = X for all x ∈ X .

Definition: An action of G on X is micro-transitive if for every x ∈ X and
every neighborhood U of e, Ux is a neighborhood of x .

Theorem [Effros 1965] Suppose that a completely metrizable group G
acts transitively on a second category space X , then it acts
micro-transitively on X .

Alternate proofs of have been given by [Ancel 1987] and [van Mill 2004].
Remarkably, Van Mill shows that Effros Theorem is equivalent to the Open
Mapping Principle of Functional Analysis. This appeared in the
American Mathematical Monthly, pages 801–806, 2004.
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Interpretation for compact metric spaces

The metric on the group Homeo(X ) for (X , dX ) a separable, locally
compact, metric space is given by

dH (f , g) := sup {dX (f (x), g(x)) | x ∈ X}
+ sup

{
dX

(
f −1(x), g−1(x)

)
| x ∈ X

}

Corollary: Let X be a homogeneous compact metric space. Then for any
given ε > 0 there is a corresponding δ > 0 so that if dX (x , y) < δ, there is
a homeomorphism h : X → X with dH(h, idX ) < ε and h(x) = y .

In particular, for a homogeneous foliated space M this conclusion holds.

This observation was used by [Aarts, Hagopian, & Oversteegen 1991] and
[Clark 2002] in their study of matchbox manifolds.
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Holonomy groupoids

Let ϕi : Ui → [−1, 1]n ×Ti for 1 ≤ i ≤ ν be the covering of M by foliation
charts. For Ui ∩ Uj 6= ∅ we obtain the holonomy transformation

hji : D(hji ) ⊂ Ti −→ R(hji ) ⊂ Tj

These transformations generate the holonomy pseudogroup GF of M,
modeled on the transverse metric space T = T1 ∪ · · · ∪ Tν

Typical element of GF is a composition, for I = (i0, i1, . . . , ik) where
Ui` ∩ Ui`−1

6= ∅ for 1 ≤ ` ≤ k,

hI = hik ik−1
◦ · · · ◦ hi1i0 : D(hI) ⊂ Ti0 −→ R(hI) ⊂ Tik

x ∈ T is a point of holonomy for GF if there exists some hI ∈ GF with
x ∈ D(hI) such that hI(x) = x and the germ of hI at x is non-trivial.

We say F is without holonomy if there are no points of holonomy.

Steven Hurder (UIC) Homogeneous matchbox manifolds September 28, 2009 14 / 21



Equicontinuous matchbox manifolds

Definition: M is an equicontinuous matchbox manifold if it admits some
covering by foliation charts as above, such that for all ε > 0, there exists
δ > 0 so that for all hI ∈ GF we have

x , y ∈ D(hI) with dT(x , y) < δ =⇒ dT(hI(x), hI(y)) < ε

Theorem: A homogeneous matchbox manifold M is equicontinuous
without holonomy.

The proof relies on one basic observation and extensive technical analysis.

Lemma: Let h : M→M be a homeomorphism. Then h maps the leaves
of F to leaves of F . That is, every h ∈ Homeo(M) is foliation-preserving.

Proof: The leaves of F are the path components of M.

Theorem: An equicontinuous matchbox manifold M is minimal.
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Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let M be an equicontinuous matchbox manifold without
holonomy. Then M is homeomorphic to a solenoid

S = lim
←
{p` : M` → M`−1}

Theorem 2: Let M be a homogeneous matchbox manifold. Then the
bonding maps above can be chosen so that q` : M` −→ M0 is a normal
covering for all ` ≥ 0. That is, S is McCord.

Theorem 3: Let M be a homogeneous matchbox manifold. Then there
exists a clopen subset V ⊂ T such that the restricted groupoid
H(F ,V ) ≡ GF |V is a group, and M is homeomorphic to the suspension
of the action of H(F ,V ) on V . Thus, the fibers of the map
q∞ : M→ M0 are homeomorphic to a profinite completion of H(F ,V ).
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Coding & Quasi-Tiling

Let M be an equicontinuous matchbox manifold without holonomy.

Fix basepoint w0 ∈ int(T1) with corresponding leaf L0 ⊂M.

The equivalence relation on T induced by F is denoted Γ, and we have the
following subsets:

ΓW =
{

(w ,w ′) | w ∈W , w ′ ∈ O(w)
}

ΓW
W =

{
(w ,w ′) | w ∈W , w ′ ∈ O(w) ∩W

}
Γ0 =

{
w ′ ∈W | (w0,w

′) ∈ ΓW
W

}
= O(w0) ∩W

Note that ΓW
W is a groupoid, with object space W . The assumption that

F is without holonomy implies ΓW
W is equivalent to the groupoid of germs

of local holonomy maps induced from the restriction of GF to W .
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Equicontinuity & uniform domains

Proposition: Let M be an equicontinuous matchbox manifold without
holonomy. Given ε∗ > 0, then there exists δ∗ > 0 such that:

for all (w ,w ′) ∈ ΓW
W the corresponding holonomy map hw ,w ′ satisfies

DT(w , δ∗) ⊂ D(hw ,w ′)

dT(hw ,w ′(z), hw ,w ′(z
′)) < ε∗ for all z , z ′ ∈ DT(w , δ∗).

Let W ⊂ T1 be a clopen subset with w0 ∈W . Decompose W into clopen
subsets of diameter ε` > 0,

W = W `
1 ∪ · · · ∪W `

β`

Set η` = min
{

dT(W `
i ,W

`
j ) | 1 ≤ i 6= j ≤ β`

}
> 0 and let δ` > 0 be the

constant of equicontinuity as above.
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The orbit coding function

• The code space C` = {1, . . . , β`}
• For w ∈W , the C`w -code of u ∈W is the function C `

w ,u : Γw → C`
defined as: for w ′ ∈ Γw set C `

w ,u(w ′) = i if hw ,w ′(u) ∈W `
i .

• Define V ` =
{

u ∈W `
1 | C `

w0,u(w ′) = C `
w0,w0

(w ′) for all w ′ ∈ Γ0

}

Lemma: If u, v ∈W with dT(u, v) < δ` then C `
w ,u(w ′) = C `

w ,v (w ′) for all

w ′ ∈ Γw . Hence, the function C `
w (u) = C `

w ,u is locally constant in u.

Thus, V ` is open, and the translates of this set define a Γ0-invariant
clopen decomposition of W .
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The coding decomposition

The Thomas tube Ñ` for M is the “saturation” of V ` by F .

The saturation is necessarily all of M. But the tube structure comes with
a vertical fibration, which allows for collapsing the tube in foliation charts.
This is the basis of the main technical result:

Theorem: For diam(V `) sufficiently small, there is a quotient map
Π` : Ñ` → M` whose fibers are the transversal sections isotopic to V `, and
whose base if a compact manifold. This yields compatible maps
Π` : M→ M` which induce the solenoid structure on M.

Furthermore, if M is homogeneous, then Homeo(M) acts transitively on
the fibers of the tower induced by the maps Π` : M→ M`, hence the
tower is normal.
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Leeuwenbrug Conjecture
Conjecture: Let M be an equicontinuous matchbox manifold, and V ⊂ T

a clopen set. Then M is characterized up to homeomorphism by the
restricted groupoid H(F ,V ) ≡ GF |V and any partial quotient M`.

This is known for flows [Dye 1957, Fokkink 1991].
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