Homogeneous matchbox manifolds

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

GTDS Seminar, September 28, 2009

3

Definition: A *continuum* is a compact and connected metrizable space. **Definition:** An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Definition: A continuum is a compact and connected metrizable space.

Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Examples: The circle \mathbb{S}^1 is decomposable.

Definition: A continuum is a compact and connected metrizable space.

Definition: An *indecomposable continuum* is a continuum that is not the union of two proper subcontinua.

Examples: The circle S^1 is decomposable. The Knaster Continuum (or *bucket handle*) is indecomposable.

This is one-half of a Smale Horseshoe. The 2-solenoid over \mathbb{S}^1 is a branched double-covering of it.

Indecomposable continuum arise naturally as invariant closed sets of dynamical systems; e.g., attractors and minimal sets for diffeomorphisms.

[Picture courtesy Sanjuan, Kennedy, Grebogi & Yorke, "Indecomposable continua in dynamical systems with noise", Chaos 1997]

(日) (同) (三) (三)

A Conjecture ...

Definition: A space X is *homogeneous* if for every $x, y \in X$ there exists a *homeomorphism* $h: X \to X$ such that h(x) = y. Equivalently, X is homogeneous if the group Homeo(X) acts transitively on X.

Question: [Bing1960] If X is a homogeneous continuum and if every proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

(日) (周) (三) (三)

A Conjecture ...

Definition: A space X is *homogeneous* if for every $x, y \in X$ there exists a *homeomorphism* $h: X \to X$ such that h(x) = y. Equivalently, X is homogeneous if the group Homeo(X) acts transitively on X.

Question: [Bing1960] If X is a homogeneous continuum and if every proper subcontinuum of X is an arc, must X then be a circle or a solenoid?

Theorem: [Hagopian 1977] Let X be a homogeneous continuum such that every proper subcontinuum of X is an arc, then X is an inverse limit over the circle \mathbb{S}^1 .

Matchbox manifolds

Question: Let X be a homogeneous continuum such that every proper subcontinuum of X is an *n*-dimensional manifold, must X then be an inverse limit of normal coverings of compact manifolds?

Matchbox manifolds

Question: Let X be a homogeneous continuum such that every proper subcontinuum of X is an *n*-dimensional manifold, must X then be an inverse limit of normal coverings of compact manifolds?

We rephrase the context:

Definition: An *n*-dimensional *matchbox manifold* is a continuum \mathfrak{M} which is a foliated space with leaf dimension *n*, and codimension zero.

 \mathfrak{M} is a foliated space if it admits a covering $\mathcal{U} = \{\varphi_i \mid 1 \leq i \leq \nu\}$ with foliated coordinate charts $\varphi_i \colon U_i \to [-1, 1]^n \times \mathfrak{T}_i$. The compact metric spaces \mathfrak{T}_i are totally disconnected $\iff \mathfrak{M}$ is a matchbox manifold.

The leaves of $\mathcal F$ are the path components of $\mathfrak M$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Smooth matchbox manifolds

Definition: \mathfrak{M} is a *smooth foliated space* if the leafwise transition functions for the foliation charts $\varphi_i \colon U_i \to [-1,1]^n \times \mathfrak{T}_i$ are C^{∞} , and vary continuously on the transverse parameter in the leafwise C^{∞} -topology.

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which \mathfrak{M} is the group Homeo(\mathfrak{M}) transitive?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which \mathfrak{M} is the group Homeo(\mathfrak{M}) transitive?

Klein Question: Do the Riemannian symmetries of $\mathfrak M$ characterize it?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which \mathfrak{M} is the group Homeo(\mathfrak{M}) transitive?

Klein Question: Do the Riemannian symmetries of ${\mathfrak M}$ characterize it?

Zimmer Question: What countable groups Λ act effectively on \mathfrak{M} ?

A "smooth matchbox manifold" \mathfrak{M} is analogous to a compact manifold, with the transverse dynamics of the foliation \mathcal{F} on the Cantor-like fibers \mathfrak{T}_i representing fundamental groupoid data. They naturally appear in:

- dynamical systems, as minimal sets & attractors
- geometry, as laminations
- complex dynamics, as universal Riemann surfaces
- algebraic geometry, as models for "stacks".

Bing Question: For which \mathfrak{M} is the group Homeo(\mathfrak{M}) transitive?

Klein Question: Do the Riemannian symmetries of $\mathfrak M$ characterize it?

Zimmer Question: What countable groups Λ act effectively on \mathfrak{M} ?

Haefliger Question: What are the topological invariants associated to a matchbox manifolds, and do they characterize them in some fashion?

イロト 不得 トイヨト イヨト 二日

A solution to the Bing Question

Theorem [Clark & Hurder 2009] Let \mathfrak{M} be an orientable homogeneous smooth matchbox manifold. Then \mathfrak{M} is homeomorphic to a McCord (or normal) solenoid. In particular, \mathfrak{M} is minimal, so every leaf is dense.

A solution to the Bing Question

Theorem [Clark & Hurder 2009] Let \mathfrak{M} be an orientable homogeneous smooth matchbox manifold. Then \mathfrak{M} is homeomorphic to a McCord (or normal) solenoid. In particular, \mathfrak{M} is minimal, so every leaf is dense.

When the dimension of \mathfrak{M} is n = 1 (that is, \mathcal{F} is defined by a flow) then this recovers the result of Hagopian, but the proof is much closer in spirit to the later proof of this case by [Aarts, Hagopian and Oversteegen 1991].

The case where \mathfrak{M} is given as a fibration over \mathbb{T}^n with totally disconnected fibers was proven in [Clark, 2002].

Two applications

Here are two consequences of the Main Theorem:

Corollary: Let \mathfrak{M} be an orientable homogeneous *n*-dimensional smooth matchbox manifold, which is embedded in a closed (n + 1)-dimensional manifold. Then \mathfrak{M} is itself a manifold.

For \mathfrak{M} a homogeneous continuum with a non-singular flow, this was a question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding for solenoids of dimension $n \ge 2$ was solved by [Clark & Fokkink, 2002]. Proofs use shape theory and Alexander-Spanier duality for cohomology.

Two applications

Here are two consequences of the Main Theorem:

Corollary: Let \mathfrak{M} be an orientable homogeneous *n*-dimensional smooth matchbox manifold, which is embedded in a closed (n + 1)-dimensional manifold. Then \mathfrak{M} is itself a manifold.

For \mathfrak{M} a homogeneous continuum with a non-singular flow, this was a question/conjecture of Bing, solved by [Thomas 1971]. Non-embedding for solenoids of dimension $n \ge 2$ was solved by [Clark & Fokkink, 2002]. Proofs use shape theory and Alexander-Spanier duality for cohomology.

Corollary: Let \mathfrak{M} be the tiling space associated to a tiling \mathcal{P} of \mathbb{R}^n . If \mathfrak{M} is homogeneous, then the tiling is periodic.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \ge 1$ for $\ell \ge 0$, with orientation-preserving covering maps

$$\xrightarrow{p_{\ell+1}} M_{\ell} \xrightarrow{p_{\ell}} M_{\ell-1} \xrightarrow{p_{\ell-1}} \cdots \xrightarrow{p_2} M_1 \xrightarrow{p_1} M_0$$

3

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \ge 1$ for $\ell \ge 0$, with orientation-preserving covering maps

$$\xrightarrow{p_{\ell+1}} M_{\ell} \xrightarrow{p_{\ell}} M_{\ell-1} \xrightarrow{p_{\ell-1}} \cdots \xrightarrow{p_2} M_1 \xrightarrow{p_1} M_0$$

The p_{ℓ} are called the *bonding maps* for the solenoid

$$\mathcal{S} = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \} \subset \prod_{\ell=0}^{\infty} M_{\ell}$$

Generalized solenoids

Let M_{ℓ} be compact, orientable manifolds of dimension $n \ge 1$ for $\ell \ge 0$, with orientation-preserving covering maps

$$\xrightarrow{p_{\ell+1}} M_{\ell} \xrightarrow{p_{\ell}} M_{\ell-1} \xrightarrow{p_{\ell-1}} \cdots \xrightarrow{p_2} M_1 \xrightarrow{p_1} M_0$$

The p_ℓ are called the *bonding maps* for the solenoid

$$\mathcal{S} = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \} \subset \prod_{\ell=0}^{\infty} M_{\ell}$$

Choose basepoints $x_{\ell} \in M_{\ell}$ with $p_{\ell}(x_{\ell}) = x_{\ell-1}$. Set $G_{\ell} = \pi_1(M_{\ell}, x_{\ell})$. Then we have a descending chain of groups and injective maps

$$\xrightarrow{p_{\ell+1}} G_\ell \xrightarrow{p_\ell} G_{\ell-1} \xrightarrow{p_{\ell-1}} \cdots \xrightarrow{p_2} G_1 \xrightarrow{p_1} G_0$$

Set $q_{\ell} = p_{\ell} \circ \cdots \circ p_1 \colon M_{\ell} \longrightarrow M_0.$

10 / 21

McCord solenoids

Definition: S is a *McCord solenoid* for some fixed $\ell_0 \ge 0$, for all $\ell \ge \ell_0$ the image H_ℓ of G_ℓ in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable homogeneous smooth matchbox manifold.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

McCord solenoids

Definition: S is a *McCord solenoid* for some fixed $\ell_0 \ge 0$, for all $\ell \ge \ell_0$ the image H_{ℓ} of G_{ℓ} in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable homogeneous smooth matchbox manifold.

Remark: $\pi_1(M_0, x_0)$ nilpotent implies that S is a McCord solenoid.

McCord solenoids

Definition: S is a *McCord solenoid* for some fixed $\ell_0 \ge 0$, for all $\ell \ge \ell_0$ the image H_{ℓ} of G_{ℓ} in $H_{\ell_0} \equiv G_{\ell_0}$ is a normal subgroup.

Theorem [McCord 1965] A McCord solenoid S is an orientable homogeneous smooth matchbox manifold.

Remark: $\pi_1(M_0, x_0)$ nilpotent implies that S is a McCord solenoid.

Caution: There are constructions of inverse limits S as above where the bonding maps are not normal coverings, and the McCord condition does not hold, but S is homogeneous [Fokkink & Oversteegen 2002].

Our technique of proof of the main theorem for such examples presents the inverse limit space S as homeomorphic to a normal tower of coverings.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

- 3

A B M A B M

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Theorem [Effros 1965] Suppose that a completely metrizable group G acts *transitively* on a second category space X, then it acts micro-transitively on X.

Let X be a separable and metrizable topological space. Let G be a topological group with identity e.

For $U \subseteq G$ and $x \in X$, let $Ux = \{gx \mid g \in U\}$.

Definition: An action of G on X is *transitive* if Gx = X for all $x \in X$.

Definition: An action of G on X is *micro-transitive* if for every $x \in X$ and every neighborhood U of e, Ux is a neighborhood of x.

Theorem [Effros 1965] Suppose that a completely metrizable group G acts *transitively* on a second category space X, then it acts micro-transitively on X.

Alternate proofs of have been given by [Ancel 1987] and [van Mill 2004]. Remarkably, Van Mill shows that Effros Theorem is equivalent to the *Open Mapping Principle* of Functional Analysis. This appeared in the American Mathematical Monthly, pages 801–806, 2004.

Interpretation for compact metric spaces

The metric on the group Homeo(X) for (X, d_X) a separable, locally compact, metric space is given by

$$\begin{array}{ll} d_{H}\left(f,g\right) &:= & \sup\left\{d_{X}\left(f(x),g(x)\right) \mid x \in X\right\} \\ & + \sup\left\{d_{X}\left(f^{-1}(x),g^{-1}(x)\right) \mid x \in X\right\} \end{array}$$

Interpretation for compact metric spaces

The metric on the group Homeo(X) for (X, d_X) a separable, locally compact, metric space is given by

$$\begin{array}{ll} d_{H}\left(f,g\right) &:= & \sup\left\{d_{X}\left(f(x),g(x)\right) \mid x \in X\right\} \\ & + \sup\left\{d_{X}\left(f^{-1}(x),g^{-1}(x)\right) \mid x \in X\right\} \end{array}$$

Corollary: Let X be a homogeneous compact metric space. Then for any given $\epsilon > 0$ there is a corresponding $\delta > 0$ so that if $d_X(x, y) < \delta$, there is a homeomorphism $h: X \to X$ with $d_H(h, id_X) < \epsilon$ and h(x) = y.

In particular, for a homogeneous foliated space \mathfrak{M} this conclusion holds. This observation was used by [Aarts, Hagopian, & Oversteegen 1991] and [Clark 2002] in their study of matchbox manifolds.

Holonomy groupoids

Let $\varphi_i \colon U_i \to [-1, 1]^n \times \mathfrak{T}_i$ for $1 \leq i \leq \nu$ be the covering of \mathfrak{M} by foliation charts. For $U_i \cap U_j \neq \emptyset$ we obtain the holonomy transformation

$$h_{ji} \colon D(h_{ji}) \subset \mathfrak{T}_i \longrightarrow R(h_{ji}) \subset \mathfrak{T}_j$$

These transformations generate the holonomy pseudogroup $\mathcal{G}_{\mathcal{F}}$ of \mathfrak{M} , modeled on the transverse metric space $\mathfrak{T} = \mathfrak{T}_1 \cup \cdots \cup \mathfrak{T}_{\nu}$

Typical element of $\mathcal{G}_{\mathcal{F}}$ is a composition, for $\mathcal{I} = (i_0, i_1, \ldots, i_k)$ where $U_{i_{\ell}} \cap U_{i_{\ell-1}} \neq \emptyset$ for $1 \leq \ell \leq k$,

$$h_{\mathcal{I}} = h_{i_k i_{k-1}} \circ \cdots \circ h_{i_1 i_0} \colon D(h_{\mathcal{I}}) \subset \mathfrak{T}_{i_0} \longrightarrow R(h_{\mathcal{I}}) \subset \mathfrak{T}_{i_k}$$

 $x \in \mathfrak{T}$ is a point of holonomy for $\mathcal{G}_{\mathcal{F}}$ if there exists some $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ with $x \in D(h_{\mathcal{I}})$ such that $h_{\mathcal{I}}(x) = x$ and the germ of $h_{\mathcal{I}}$ at x is non-trivial. We say \mathcal{F} is without holonomy if there are no points of holonomy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

 $x, y \in D(h_{\mathcal{I}}) ext{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

 $x, y \in D(h_{\mathcal{I}}) ext{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$

Theorem: A homogeneous matchbox manifold \mathfrak{M} is equicontinuous without holonomy.

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

 $x, y \in D(h_{\mathcal{I}}) ext{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$

Theorem: A homogeneous matchbox manifold \mathfrak{M} is equicontinuous without holonomy.

The proof relies on one basic observation and extensive technical analysis. **Lemma:** Let $h: \mathfrak{M} \to \mathfrak{M}$ be a homeomorphism. Then h maps the leaves of \mathcal{F} to leaves of \mathcal{F} . That is, every $h \in \operatorname{Homeo}(\mathfrak{M})$ is foliation-preserving. Proof: The leaves of \mathcal{F} are the path components of \mathfrak{M} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Definition: \mathfrak{M} is an *equicontinuous matchbox manifold* if it admits some covering by foliation charts as above, such that for all $\epsilon > 0$, there exists $\delta > 0$ so that for all $h_{\mathcal{I}} \in \mathcal{G}_{\mathcal{F}}$ we have

 $x, y \in D(h_{\mathcal{I}}) ext{ with } d_{\mathfrak{T}}(x, y) < \delta \implies d_{\mathfrak{T}}(h_{\mathcal{I}}(x), h_{\mathcal{I}}(y)) < \epsilon$

Theorem: A homogeneous matchbox manifold \mathfrak{M} is equicontinuous without holonomy.

The proof relies on one basic observation and extensive technical analysis. **Lemma:** Let $h: \mathfrak{M} \to \mathfrak{M}$ be a homeomorphism. Then h maps the leaves of \mathcal{F} to leaves of \mathcal{F} . That is, every $h \in \operatorname{Homeo}(\mathfrak{M})$ is foliation-preserving. Proof: The leaves of \mathcal{F} are the path components of \mathfrak{M} .

Theorem: An equicontinuous matchbox manifold \mathfrak{M} is minimal.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Then \mathfrak{M} is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Then \mathfrak{M} is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Theorem 2: Let \mathfrak{M} be a homogeneous matchbox manifold. Then the bonding maps above can be chosen so that $q_{\ell} \colon M_{\ell} \longrightarrow M_0$ is a normal covering for all $\ell \geq 0$. That is, S is McCord.

Three Structure Theorems

We can now state the three main structure theorems.

Theorem 1: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Then \mathfrak{M} is homeomorphic to a solenoid

$$\mathcal{S} = \lim_{\leftarrow} \{ p_{\ell} \colon M_{\ell} \to M_{\ell-1} \}$$

Theorem 2: Let \mathfrak{M} be a homogeneous matchbox manifold. Then the bonding maps above can be chosen so that $q_{\ell} \colon M_{\ell} \longrightarrow M_0$ is a normal covering for all $\ell \geq 0$. That is, S is McCord.

Theorem 3: Let \mathfrak{M} be a homogeneous matchbox manifold. Then there exists a clopen subset $V \subset \mathfrak{T}$ such that the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv \mathcal{G}_{\mathcal{F}} | V$ is a group, and \mathfrak{M} is homeomorphic to the suspension of the action of $\mathcal{H}(\mathcal{F}, V)$ on V. Thus, the fibers of the map $q_{\infty} \colon \mathfrak{M} \to M_0$ are homeomorphic to a profinite completion of $\mathcal{H}(\mathcal{F}, V)$.

イロト 不得下 イヨト イヨト 二日

Coding & Quasi-Tiling

Let ${\mathfrak M}$ be an equicontinuous matchbox manifold without holonomy.

Fix basepoint $w_0 \in int(\mathfrak{T}_1)$ with corresponding leaf $L_0 \subset \mathfrak{M}$.

The equivalence relation on $\mathfrak T$ induced by $\mathcal F$ is denoted $\Gamma,$ and we have the following subsets:

$$\begin{split} &\Gamma_W = \left\{ (w,w') \mid w \in W , \ w' \in \mathcal{O}(w) \right\} \\ &\Gamma^W_W = \left\{ (w,w') \mid w \in W , \ w' \in \mathcal{O}(w) \cap W \right\} \\ &\Gamma_0 = \left\{ w' \in W \mid (w_0,w') \in \Gamma^W_W \right\} = \mathcal{O}(w_0) \cap W \end{split}$$

Note that Γ_W^W is a groupoid, with object space W. The assumption that \mathcal{F} is without holonomy implies Γ_W^W is equivalent to the groupoid of germs of local holonomy maps induced from the restriction of $\mathcal{G}_{\mathcal{F}}$ to W.

Equicontinuity & uniform domains

Proposition: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Given $\epsilon_* > 0$, then there exists $\delta_* > 0$ such that:

- for all $(w, w') \in \Gamma_W^W$ the corresponding holonomy map $h_{w,w'}$ satisfies $D_{\mathfrak{T}}(w, \delta_*) \subset D(h_{w,w'})$
- $d_{\mathfrak{T}}(h_{w,w'}(z),h_{w,w'}(z')) < \epsilon_*$ for all $z,z' \in D_{\mathfrak{T}}(w,\delta_*)$.

Equicontinuity & uniform domains

Proposition: Let \mathfrak{M} be an equicontinuous matchbox manifold without holonomy. Given $\epsilon_* > 0$, then there exists $\delta_* > 0$ such that:

- for all $(w, w') \in \Gamma_W^W$ the corresponding holonomy map $h_{w,w'}$ satisfies $D_{\mathfrak{T}}(w, \delta_*) \subset D(h_{w,w'})$
- $d_{\mathfrak{T}}(h_{w,w'}(z), h_{w,w'}(z')) < \epsilon_*$ for all $z, z' \in D_{\mathfrak{T}}(w, \delta_*)$.

Let $W \subset \mathfrak{T}_1$ be a clopen subset with $w_0 \in W$. Decompose W into clopen subsets of diameter $\epsilon_{\ell} > 0$,

$$W = W_1^\ell \cup \dots \cup W_{eta_\ell}^\ell$$

Set $\eta_{\ell} = \min \left\{ d_{\mathfrak{T}}(W_{i}^{\ell}, W_{j}^{\ell}) \mid 1 \leq i \neq j \leq \beta_{\ell} \right\} > 0$ and let $\delta_{\ell} > 0$ be the constant of equicontinuity as above.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The orbit coding function

• The code space $\mathcal{C}_\ell = \{1, \ldots, \beta_\ell\}$

• For $w \in W$, the \mathcal{C}_w^{ℓ} -code of $u \in W$ is the function $\mathcal{C}_{w,u}^{\ell} \colon \Gamma_w \to \mathcal{C}_{\ell}$ defined as: for $w' \in \Gamma_w$ set $\mathcal{C}_{w,u}^{\ell}(w') = i$ if $h_{w,w'}(u) \in W_i^{\ell}$.

• Define
$$V^\ell = \left\{ u \in W_1^\ell \mid C^\ell_{w_0,u}(w') = C^\ell_{w_0,w_0}(w') \text{ for all } w' \in \Gamma_0 \right\}$$

The orbit coding function

• The code space
$$\mathcal{C}_\ell = \{1,\ldots,eta_\ell\}$$

• For $w \in W$, the \mathcal{C}_w^{ℓ} -code of $u \in W$ is the function $\mathcal{C}_{w,u}^{\ell} \colon \Gamma_w \to \mathcal{C}_{\ell}$ defined as: for $w' \in \Gamma_w$ set $\mathcal{C}_{w,u}^{\ell}(w') = i$ if $h_{w,w'}(u) \in W_i^{\ell}$.

• Define
$$V^{\ell} = \left\{ u \in W_1^{\ell} \mid C_{w_0,u}^{\ell}(w') = C_{w_0,w_0}^{\ell}(w') \text{ for all } w' \in \Gamma_0 \right\}$$

Lemma: If $u, v \in W$ with $d_{\mathfrak{T}}(u, v) < \delta_{\ell}$ then $C_{w,u}^{\ell}(w') = C_{w,v}^{\ell}(w')$ for all $w' \in \Gamma_w$. Hence, the function $C_w^{\ell}(u) = C_{w,u}^{\ell}$ is locally constant in u.

Thus, V^{ℓ} is open, and the translates of this set define a Γ_0 -invariant clopen decomposition of W.

The coding decomposition

The Thomas tube $\widetilde{\mathfrak{N}}_{\ell}$ for \mathfrak{M} is the "saturation" of V^{ℓ} by \mathcal{F} .

The saturation is necessarily all of \mathfrak{M} . But the tube structure comes with a vertical fibration, which allows for collapsing the tube in foliation charts. This is the basis of the main technical result:

The coding decomposition

The Thomas tube $\widetilde{\mathfrak{N}}_{\ell}$ for \mathfrak{M} is the "saturation" of V^{ℓ} by \mathcal{F} .

The saturation is necessarily all of \mathfrak{M} . But the tube structure comes with a vertical fibration, which allows for collapsing the tube in foliation charts. This is the basis of the main technical result:

Theorem: For diam(V^{ℓ}) sufficiently small, there is a quotient map $\Pi_{\ell} : \widetilde{\mathfrak{N}}_{\ell} \to M_{\ell}$ whose fibers are the transversal sections isotopic to V^{ℓ} , and whose base if a compact manifold. This yields compatible maps $\Pi_{\ell} : \mathfrak{M} \to M_{\ell}$ which induce the solenoid structure on \mathfrak{M} .

Furthermore, if \mathfrak{M} is homogeneous, then $\operatorname{Homeo}(\mathfrak{M})$ acts transitively on the fibers of the tower induced by the maps $\Pi_{\ell} \colon \mathfrak{M} \to M_{\ell}$, hence the tower is normal.

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

This is known for flows [Dye 1957, Fokkink 1991].

Leeuwenbrug Conjecture

Conjecture: Let \mathfrak{M} be an equicontinuous matchbox manifold, and $V \subset \mathfrak{T}$ a clopen set. Then \mathfrak{M} is characterized up to homeomorphism by the restricted groupoid $\mathcal{H}(\mathcal{F}, V) \equiv \mathcal{G}_{\mathcal{F}}|V$ and any partial quotient M_{ℓ} .

This is known for flows [Dye 1957, Fokkink 1991].

Steven Hurder (UIC)

Homogeneous matchbox manifolds