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Realizing homology classes

New, improved version of result with Yoshihito Mitsumatsu,

“The intersection product of transverse invariant measures”,
Indiana Univ. Math. J., 1991.

Let M be closed m-manifold.

C a closed, oriented n manifold for 0 < n < m.

ι : C → M defines class [ιC ] ∈ Hn(M,Z).

Problem: Which homology classes x ∈ Hn(M;Z) can be realized
by a geometric cycle ι : C → M?

Thom [1953,1954] solved this problem (up to torsion) in terms of
bordism classes.
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Problem: Which homology classes [C ] ∈ Hn(M;R) can be
realized by a geometric cycle ι : C → M?

Example: Realize class x = α · e1 + β · e2 ∈ H1(T2,R)

For α, β ∈ R construct foliation of T2 with slope λ = β/α
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Another Example:

Lamination Λ embedded in surface Σg (carried by train track)

Leaf L defines asymptotic class [L] ∈ H1(Σg ;R) ∼= H1(T2g ,R)

Non-trivial if branched cover of algebraic Anosov map of T2.
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Asymptotic cycles

L a complete Riemannian n-manifold is “closed at infinity” if there
is x ∈ L and sequence R` →∞ so that

ρ(L) = lim
`→∞

|∂B(x ,R`)|
|B(x ,R`)|

= 0

B(x ,R) = {y ∈ L | dL(x , y) ≤ R)

∂B(x ,R) = {y ∈ L | R − 1 ≤ dL(x , y) ≤ R)

|X | denotes Riemannian volume of X ⊂ L.



Introduction Application to dynamics Sketch of Proof

Asymptotic cycles

Theorem: Let L be oriented, then
C = {F` = B(x ,R`) | ` = 1, 2, . . .} defines an asymptotic
fundamental class for the bounded n-forms on L.

〈[C], ψ〉 = lim
i→∞

1

|F`i |
·
∫
F`i

ψ

Theorem: Let ι : L→ M be embedding with bounded geometry,
and assume L is “closed at infinity” and oriented. Then it defines
asymptotic geometric cycle, and homology class [ιC] ∈ Hn(M,R).

Problem: Which homology classes x ∈ Hn(M;R) can be realized
by an asymptotic geometric cycle ι : C → M?
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Foliated spaces

Definition: A foliated space of dimension n is a continuum Λ with
a partition F into leaves, such that there exists a compact
separable metric space X, and for each x ∈ Λ there is a compact
subset Tx ⊂ X, an open subset Ux ⊂ Λ with x ∈ Ux , and a
homeomorphism defined on the closure ϕx : Ux → [−1, 1]n × Tx

such that for each y ∈ Ux the connected component of F|Ux

containing y is defined by ϕ−1
x ((−1, 1)n × wy ) for some wy ∈ Tx .

{Λ,F} is smoothly embedded in M if Λ ⊂ M, and for each x ∈ Λ,
there exists a C∞,0-chart for M, ψx : W x → [−1, 1]m about x
which restricts to a foliation chart for Λ.

Codimension q = m − n.
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Foliated spaces

Remark: L ⊂ Λ ⊂ M is embedded with bounded geometry. So L
“closed at infinity” yields asymptotic geometric cycle in M.

Remark: Embedded foliated spaces Λ ⊂ M arise naturally as
invariant (attractors) in differentiable dynamics. Examples include:

• Hyperbolic invariant set for Axiom A diffeomorphism f : M → M.

• Orbit closures for diffeomorphism f : M → M:
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Transverse invariant measures

A transverse invariant measure µ for a foliated space (Λ,F) is a
family of finite Borel measures {µα | α ∈ A} defined on a family of
transversals Tα ⊂ Λ to F , such that for each holonomy map hβ,α
from an open subset of Tα to an open subset of Tβ and Borel
subset E ⊂ Domain(hβ,α) then,

µβ(hβ,α(E )) = µα(E )

Theorem: [Ruelle-Sullivan, Plante 1976] L ⊂ Λ leaf which is
“closed at infinity” yields transverse invariant measure µ for (Λ,F).
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Atomics

Definition: A measure µ has atoms if there exists x ∈ Tα such
that µα({x}) > 0.

C = {F` = B(x ,R`) ⊂ L | ` = 1, 2, . . .} defines µ, then an atom for
µ corresponds to a compact leaf L0 ⊂ Λ, which is a type of
Poincaré-Bendixson limit cycle for F .
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Intersections of cycles

Example: Let M = S2 × S2, then obtain classes

x = [S2 × {y0}] ∈ H2(M;Z) , y = [{x0} × S2] ∈ H2(M;Z)

Their intersection product x ∩ y = [1] ∈ H0(M,Z)

x ∈ Hn(M,Z) & y ∈ Hq(M,Z) represented by geometric cycles

ιx : Cx → M , ιy : Cy → M

Then x ∩ y ∈ H0(M;Z) can be calculated via counting “signed”
points of intersection.
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Self-intersections of cycles

For x ∈ Hn(M,Z) how to calculate x ∩ x ∈ Hm−2q(M;Z)?

Step 1: Represent x by geometric cycle ιx : Cx → M

Step 2: Choose perturbation ι′x : Cx → M

Step 3: Count intersection homology classes ιx(Cx) ∩ ι′x(Cx)

Alternate approach: Construct closed form ω on M of degree
q = m − n which is Poincaré dual to [ιxCx ]

[ιxCx ] ∈ Hn(M;Z)→ Hn(M;R) ∼= Hq(M;R) ∼= Hq
deR(M)

Then ([ιxCx ] ∩ [ιxCx ])∗ = [ω ∧ ω] ∈ H2q
deR(M) ∼= Hm−2q(M;R).
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Main Theorem

Theorem: Let F be a C∞,0-foliation of a foliated space Λ ⊂ M
embedded in a closed oriented manifold M, such that the leaves of
F are oriented, immersed C 1-submanifolds of M. Let µ be a
transverse invariant measure for F without atoms. Let Cµ be the
closed foliation n-current associated to µ. Then the
self-intersection product [Cµ] ∩ [Cµ] ∈ Hm−2q(M;R) vanishes.

More precisely, for the Poincaré dual closed q-form ωµ on M,

0 = [ωµ ∧ ωµ] ∈ H2q
deR(M)

Corollary: If x ∈ Hn(M;R) can be realized by an asymptotic
geometric cycle L ⊂ Λ ⊂ M with no atoms, then x ∩ x = 0.
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Anosov diffeomorphisms

f : M → M is Anosov diffeomeorphism if there exists λ > 1, and

• TM = E− ⊕ E +, E− dimension n, E + dimension q, n + q = m

• E± are invariant under the differential Df ,

• Df |E + is uniformly expanding: ‖DF (~X )‖ ≥ λ‖~X‖, ~X ∈ E +

• Df |E− is uniformly contracting: ‖DF (~X )‖ ≤ λ−1‖~X‖, ~X ∈ E−

The distributions E + and E− are uniquely integrable, giving
foliations F±, whose leaves are smoothly immersed submanifolds
with polynomial growth rate.

The foliations are C∞,0 - continuous, with smooth leaves - but
rarely smooth unless the map f is algebraic.
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Ruelle-Sullivan currents

Ruelle and Sullivan [1976] showed that the leaves L± ⊂ M for F±
define closed n-currents:

[C−] ∈ Hn(M,R) and [C+] ∈ Hq(M,R)

with [C−] ∩ [C+] = 1. Thus both classes are non-zero.

The result holds more generally for Axiom A diffeomorphisms.

The leaves define invariant measures without atoms.

Main Theorem implies [C±] ∩ [C±] = 0.
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Example

Theorem: [Kleptsyn & Kudryashov (2009)] M = S2 × S2 admits
no Axiom A diffeomorphism f : M → M.

Note that H2(M;Z) ∼= Z⊕ Z, so there does exists a smooth map
f : M → M whose action on homology is hyperbolic.

Proof: If exists, then 0 6= [C−] = α · e1 + β · e2 ∈ H2(S2 × S2;R)

[C−] ∩ [C−] = 0 implies α = 0, or β = 0.

If [C−] = α · e1 then (f `)∗[C−] = λ−` · [C−]→ 0.

But e1 is an integral class, so this is impossible.

Ditto for [C−] = β · e2. �

Shiraiwa [1973] proved using machinery of Axiom A dynamics.
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Two key ideas

(1) A finite Borel measure µ on T has no atoms iff the diagonal
∆ ⊂ T× T has measure 0 for µ× µ.

(2) For a closed (m − 2q)-form ψ on M, the pairing

〈[ψ], [Cµ] ∩ Cµ]〉 =

∫
M
ψ ∧ ωµ ∧ ωµ

reduces to calculating the mass of the diagonal in
⋃
α∈A

Tα × Tα

for the measure µ× µ.
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Constructing the normal bundle

Each L ⊂ Λ is smoothly embedded, with normal bundle QL = TL⊥.
Together these give QΛ = TF⊥ ⊂ TM.

Let Gm(TM) be the Grassmann bundle of n-dimensional subspaces
of TM. Obtain σΛ : Λ→ Gm(TM).

Λ ⊂ M is ANR, so there is open neighborhood Λ ⊂W ⊂ M and
extension σW : W → Gm(TM).

Choose smooth approximation to σW , obtain smooth subbundle
Q ⊂ TM, πW : Q →W , transverse to TF .
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Thom classes

ΦW denotes a Thom form on πW : QW →W with support
contained in the unit disk subbundle Q1

W .

• ΦW is closed q-form with fiberwise compact support

•
∫
Qx

ΦW = 1 for each fiber Qx = π−1
W (x)

• Integration over the fiber map, for Ωp
π,c(QW ) the space of

p-forms on QW with fiberwise compact supports,∫
π

: Ωp
π,c(QW )→ Ωp−q(W )
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Properties of fiberwise integration

• For φ ∈ Ωp(W ) and ψ̃ ∈ Ωp(QW ) with bounded uniform norm,∫
π
π∗Wφ ∧ ΦW = φ , d

∫
π
ψ̃ ∧ ΦW =

∫
π

d ψ̃ ∧ ΦW

• Uniform norm estimate

‖
∫
π
ψ̃ ∧ ΦW ‖W ≤ BΦ · ‖ψ̃‖QW
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Renormalization

For s > 0, νs : QW → QW is the fiberwise linear map defined by
multiplication by s. Qs

W denotes s-disk subbundle.

• νs maps Q1
W diffeomorphically to Qs

W .

• Define Φs
W = ν∗1/s(ΦW ), then ν∗s (Φs

W ) = ΦW .

• Φs
W is a smooth form on QW with support in Qs

W ,

• integral of Φs
W over each fiber of πW equals 1.
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Poincaré dual classes

expM : TM → M is geodesic exponential map.

expQ
W : Q → M is restriction to Q ⊂ TM.

For compact subset K ⊂ L, there is push-forward map

ωs
K =

1

|K |
· (expQ

W )∗(Φs
W ) ∈ Ωq(M)

Proposition: For each 0 < s < ε0, and sequence of compact sets
K` which are closed at infinity, then the following limit exists,

lim
`→∞

ωs
K`

= ωs

Poincaré dual to [C] where C is closed n-current defined by the K`.
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Bounds

For a closed (m − 2q)-form ψ on M, calculate∫
M
ψ ∧ ωs

K`
∧ ωs

K`

Use exponential coordinates given by expQ
L : Qs

L → M to reduce to
an integral over normal bundle Qs

L → L if all K` ⊂ L.

Local embedding expQ
L : Qs

L → M is recurrent, so must estimate
values of ωs

K`
∧ ωs

K`
where image overlaps. This estimate is most

delicate, and is heart of extension of original result from
C 1-foliations, to C∞,0-foliated spaces.

Assumption of “no atoms” implies that tame estimates exist for
integrals as `→∞, and the limit tends to 0.
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Further applications

• Obstructions to existence of Axiom A diffeomorphisms

• Higher-order intersection products for laminations dimensions at
least 2, analogous to self-linking numbers for flows [Gambaudo and
Ghys, Khesin, Kotschick and Vogel]
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