▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Self-intersections of foliation cycles

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

Geometry, Topology and Dynamics Seminar

February 27, 2012

Realizing homology classes

New, improved version of result with Yoshihito Mitsumatsu,

"The intersection product of transverse invariant measures", *Indiana Univ. Math. J.*, 1991.

Let M be closed m-manifold.

C a closed, oriented n manifold for 0 < n < m.

 $\iota \colon C \to M$ defines class $[\iota C] \in H_n(M, \mathbb{Z})$.

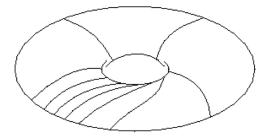
Problem: Which homology classes $x \in H_n(M; \mathbb{Z})$ can be realized by a geometric cycle $\iota: C \to M$?

Thom [1953,1954] solved this problem (up to torsion) in terms of bordism classes.

Problem: Which homology classes $[C] \in H_n(M; \mathbb{R})$ can be realized by a geometric cycle $\iota: C \to M$?

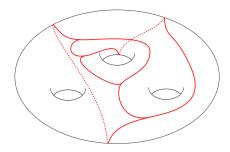
Example: Realize class $x = \alpha \cdot e_1 + \beta \cdot e_2 \in H_1(\mathbb{T}^2, \mathbb{R})$

For $\alpha,\beta\in\mathbb{R}$ construct foliation of \mathbb{T}^2 with slope $\lambda=\beta/\alpha$



Another Example:

Lamination Λ embedded in surface Σ_g (carried by train track) Leaf L defines asymptotic class $[L] \in H_1(\Sigma_g; \mathbb{R}) \cong H_1(\mathbb{T}^{2g}, \mathbb{R})$ Non-trivial if branched cover of algebraic Anosov map of \mathbb{T}^2 .



Asymptotic cycles

L a complete Riemannian *n*-manifold is "closed at infinity" if there is $x \in L$ and sequence $R_\ell \to \infty$ so that

$$\rho(L) = \lim_{\ell \to \infty} \frac{|\partial B(x, R_{\ell})|}{|B(x, R_{\ell})|} = 0$$

 $B(x, R) = \{y \in L \mid d_L(x, y) \leq R\}$ $\partial B(x, R) = \{y \in L \mid R - 1 \leq d_L(x, y) \leq R\}$ $|X| \text{ denotes Riemannian volume of } X \subset L.$

Asymptotic cycles

Theorem: Let *L* be oriented, then $C = \{F_{\ell} = B(x, R_{\ell}) \mid \ell = 1, 2, ...\}$ defines an *asymptotic fundamental class* for the bounded *n*-forms on *L*.

$$\langle [\mathcal{C}],\psi
angle \; = \; \lim_{i
ightarrow\infty}\; rac{1}{|\mathcal{F}_{\ell_i}|}\cdot \int_{\mathcal{F}_{\ell_i}}\;\psi$$

Theorem: Let $\iota: L \to M$ be embedding with bounded geometry, and assume *L* is "closed at infinity" and oriented. Then it defines asymptotic geometric cycle, and homology class $[\iota C] \in H_n(M, \mathbb{R})$.

Problem: Which homology classes $x \in H_n(M; \mathbb{R})$ can be realized by an asymptotic geometric cycle $\iota: C \to M$?

Foliated spaces

Definition: A foliated space of dimension *n* is a continuum Λ with a partition \mathcal{F} into leaves, such that there exists a compact separable metric space \mathfrak{X} , and for each $x \in \Lambda$ there is a compact subset $\mathfrak{T}_x \subset \mathfrak{X}$, an open subset $U_x \subset \Lambda$ with $x \in U_x$, and a homeomorphism defined on the closure $\varphi_x \colon \overline{U}_x \to [-1,1]^n \times \mathfrak{T}_x$ such that for each $y \in U_x$ the connected component of $\mathcal{F}|U_x$ containing y is defined by $\varphi_x^{-1}((-1,1)^n \times w_y)$ for some $w_y \in \mathfrak{T}_x$.

 $\{\Lambda, \mathcal{F}\}$ is smoothly embedded in M if $\Lambda \subset M$, and for each $x \in \Lambda$, there exists a $C^{\infty,0}$ -chart for M, $\psi_x \colon \overline{W}_x \to [-1,1]^m$ about x which restricts to a foliation chart for Λ .

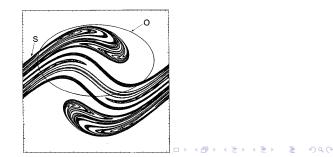
Codimension q = m - n.

Foliated spaces

Remark: $L \subset \Lambda \subset M$ is embedded with bounded geometry. So *L* "closed at infinity" yields asymptotic geometric cycle in *M*.

Remark: Embedded foliated spaces $\Lambda \subset M$ arise naturally as invariant (attractors) in differentiable dynamics. Examples include:

- Hyperbolic invariant set for Axiom A diffeomorphism $f: M \rightarrow M$.
- Orbit closures for diffeomorphism $f: M \to M$:



Transverse invariant measures

A transverse invariant measure μ for a foliated space (Λ, \mathcal{F}) is a family of finite Borel measures $\{\mu_{\alpha} \mid \alpha \in \mathcal{A}\}$ defined on a family of transversals $\mathfrak{T}_{\alpha} \subset \Lambda$ to \mathcal{F} , such that for each holonomy map $h_{\beta,\alpha}$ from an open subset of \mathfrak{T}_{α} to an open subset of \mathfrak{T}_{β} and Borel subset $E \subset \text{Domain}(h_{\beta,\alpha})$ then,

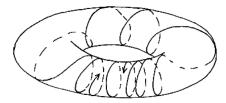
$$\mu_{\beta}(h_{\beta,\alpha}(E)) = \mu_{\alpha}(E)$$

Theorem: [Ruelle-Sullivan, Plante 1976] $L \subset \Lambda$ leaf which is "closed at infinity" yields transverse invariant measure μ for (Λ, \mathcal{F}) .

Atomics

Definition: A measure μ has *atoms* if there exists $x \in \mathfrak{T}_{\alpha}$ such that $\mu_{\alpha}(\{x\}) > 0$.

 $C = \{F_{\ell} = B(x, R_{\ell}) \subset L \mid \ell = 1, 2, ...\}$ defines μ , then an atom for μ corresponds to a compact leaf $L_0 \subset \Lambda$, which is a type of Poincaré-Bendixson limit cycle for \mathcal{F} .



Intersections of cycles

Example: Let $M = \mathbb{S}^2 \times \mathbb{S}^2$, then obtain classes

$$x = [\mathbb{S}^2 \times \{y_0\}] \in H_2(M; \mathbb{Z}) , \ y = [\{x_0\} \times \mathbb{S}^2] \in H_2(M; \mathbb{Z})$$

Their intersection product $x \cap y = [1] \in H_0(M, \mathbb{Z})$

 $x \in H_n(M,\mathbb{Z})$ & $y \in H_q(M,\mathbb{Z})$ represented by geometric cycles

$$\iota_x\colon C_x\to M$$
 , $\iota_y\colon C_y\to M$

Then $x \cap y \in H_0(M; \mathbb{Z})$ can be calculated via counting "signed" points of intersection.

Self-intersections of cycles

For $x \in H_n(M, \mathbb{Z})$ how to calculate $x \cap x \in H_{m-2q}(M; \mathbb{Z})$?

- **Step 1:** Represent *x* by geometric cycle $\iota_x \colon C_x \to M$
- **Step 2:** Choose perturbation $\iota'_{x} \colon C_{x} \to M$
- **Step 3:** Count intersection homology classes $\iota_x(C_x) \cap \iota'_x(C_x)$

Alternate approach: Construct closed form ω on M of degree q = m - n which is Poincaré dual to $[\iota_x C_x]$

 $[\iota_{x}C_{x}] \in H_{n}(M;\mathbb{Z}) \to H_{n}(M;\mathbb{R}) \cong H^{q}(M;\mathbb{R}) \cong H^{q}_{deR}(M)$

Then $([\iota_x C_x] \cap [\iota_x C_x])^* = [\omega \wedge \omega] \in H^{2q}_{deR}(M) \cong H_{m-2q}(M; \mathbb{R}).$

Main Theorem

Theorem: Let \mathcal{F} be a $C^{\infty,0}$ -foliation of a foliated space $\Lambda \subset M$ embedded in a closed oriented manifold M, such that the leaves of \mathcal{F} are oriented, immersed C^1 -submanifolds of M. Let μ be a transverse invariant measure for \mathcal{F} without atoms. Let C_{μ} be the closed foliation *n*-current associated to μ . Then the self-intersection product $[C_{\mu}] \cap [C_{\mu}] \in H_{m-2q}(M; \mathbb{R})$ vanishes. More precisely, for the Poincaré dual closed *q*-form ω_{μ} on M,

$$0 = [\omega_{\mu} \wedge \omega_{\mu}] \in H^{2q}_{deR}(M)$$

Corollary: If $x \in H_n(M; \mathbb{R})$ can be realized by an asymptotic geometric cycle $L \subset \Lambda \subset M$ with no atoms, then $x \cap x = 0$.

Anosov diffeomorphisms

 $f \colon M \to M$ is Anosov diffeomeorphism if there exists $\lambda > 1$, and

• $TM = E^- \oplus E^+$, E^- dimension *n*, E^+ dimension *q*, n + q = m

- E^{\pm} are invariant under the differential Df,
- $Df|E^+$ is uniformly expanding: $\|DF(\vec{X})\| \ge \lambda \|\vec{X}\|, \vec{X} \in E^+$
- $Df|E^-$ is uniformly contracting: $\|DF(\vec{X})\| \le \lambda^{-1}\|\vec{X}\|, \ \vec{X} \in E^-$

The distributions E^+ and E^- are uniquely integrable, giving foliations \mathcal{F}^{\pm} , whose leaves are smoothly immersed submanifolds with *polynomial growth rate*.

The foliations are $C^{\infty,0}$ - continuous, with smooth leaves - but rarely smooth unless the map f is algebraic.

Ruelle-Sullivan currents

Ruelle and Sullivan [1976] showed that the leaves $L^{\pm} \subset M$ for \mathcal{F}^{\pm} define closed *n*-currents:

 $[C_{-}] \in H_n(M, \mathbb{R})$ and $[C_{+}] \in H_q(M, \mathbb{R})$

with $[C_{-}] \cap [C_{+}] = 1$. Thus both classes are non-zero.

The result holds more generally for Axiom A diffeomorphisms.

The leaves define invariant measures without atoms. Main Theorem implies $[C_+] \cap [C_+] = 0$.

Example

Theorem: [Kleptsyn & Kudryashov (2009)] $M = \mathbb{S}^2 \times \mathbb{S}^2$ admits no Axiom A diffeomorphism $f: M \to M$.

Note that $H_2(M; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$, so there does exists a smooth map $f: M \to M$ whose action on homology is hyperbolic.

Proof: If exists, then $0 \neq [C_-] = \alpha \cdot e_1 + \beta \cdot e_2 \in H_2(\mathbb{S}^2 \times \mathbb{S}^2; \mathbb{R})$ $[C_-] \cap [C_-] = 0$ implies $\alpha = 0$, or $\beta = 0$. If $[C_-] = \alpha \cdot e_1$ then $(f^{\ell})_*[C_-] = \lambda^{-\ell} \cdot [C_-] \rightarrow 0$. But e_1 is an integral class, so this is impossible. Ditto for $[C_-] = \beta \cdot e_2$. Shiraiwa [1973] proved using machinery of Axiom A dynamics.

Two key ideas

(1) A finite Borel measure μ on \mathfrak{T} has no atoms iff the diagonal $\Delta \subset \mathfrak{T} \times \mathfrak{T}$ has measure 0 for $\mu \times \mu$.

(2) For a closed (m-2q)-form ψ on M, the pairing

$$\langle [\psi], [C_{\mu}] \cap C_{\mu}] \rangle = \int_{\mathcal{M}} \psi \wedge \omega_{\mu} \wedge \omega_{\mu}$$

reduces to calculating the mass of the diagonal in $\bigcup_{\alpha \in \mathcal{A}} \mathfrak{T}_{\alpha} \times \mathfrak{T}_{\alpha}$ for the measure $\mu \times \mu$.

Constructing the normal bundle

Each $L \subset \Lambda$ is smoothly embedded, with normal bundle $Q_L = TL^{\perp}$. Together these give $Q_{\Lambda} = T\mathcal{F}^{\perp} \subset TM$.

Let $G_m(TM)$ be the Grassmann bundle of *n*-dimensional subspaces of *TM*. Obtain $\sigma_{\Lambda} \colon \Lambda \to G_m(TM)$.

 $\Lambda \subset M$ is ANR, so there is open neighborhood $\Lambda \subset W \subset M$ and extension $\sigma_W : W \to G_m(TM)$.

Choose smooth approximation to σ_W , obtain smooth subbundle $Q \subset TM$, $\pi_W \colon Q \to W$, transverse to $T\mathcal{F}$.

Thom classes

 Φ_W denotes a Thom form on $\pi_W \colon Q_W \to W$ with support contained in the unit disk subbundle Q_W^1 .

- Φ_W is closed *q*-form with fiberwise compact support • $\int_{Q_x} \Phi_W = 1$ for each fiber $Q_x = \pi_W^{-1}(x)$
- Integration over the fiber map, for $\Omega^{p}_{\pi,c}(Q_{W})$ the space of *p*-forms on Q_{W} with fiberwise compact supports,

$$\int_{\pi} : \Omega^{p}_{\pi,c}(Q_{W}) \to \Omega^{p-q}(W)$$

Properties of fiberwise integration

• For $\phi \in \Omega^p(W)$ and $\widetilde{\psi} \in \Omega^p(Q_W)$ with bounded uniform norm,

$$\int_{\pi} \pi_W^* \phi \wedge \Phi_W = \phi \quad , \quad d \int_{\pi} \widetilde{\psi} \wedge \Phi_W = \int_{\pi} d \, \widetilde{\psi} \wedge \Phi_W$$

• Uniform norm estimate

$$\|\int_{\pi} \widetilde{\psi} \wedge \Phi_{W}\|_{W} \leq B_{\Phi} \cdot \|\widetilde{\psi}\|_{Q_{W}}$$

Renormalization

For s > 0, $\nu_s \colon Q_W \to Q_W$ is the fiberwise linear map defined by multiplication by s. Q_W^s denotes s-disk subbundle.

- ν_s maps Q_W^1 diffeomorphically to Q_W^s .
- Define $\Phi_W^s = \nu_{1/s}^*(\Phi_W)$, then $\nu_s^*(\Phi_W^s) = \Phi_W$.
- Φ_W^s is a smooth form on Q_W with support in Q_W^s ,
- integral of Φ_W^s over each fiber of π_W equals 1.

Poincaré dual classes

 $exp_M \colon TM \to M$ is geodesic exponential map. $exp_W^Q \colon Q \to M$ is restriction to $Q \subset TM$. For compact subset $K \subset L$, there is push-forward map

$$\omega_{K}^{s}=rac{1}{|K|}\cdot(\exp_{W}^{Q})_{*}(\Phi_{W}^{s})\in\Omega^{q}(M)$$

Proposition: For each $0 < s < \epsilon_0$, and sequence of compact sets K_ℓ which are closed at infinity, then the following limit exists,

$$\lim_{\ell\to\infty} \ \omega^s_{K_\ell} = \omega^s$$

Poincaré dual to [C] where C is closed *n*-current defined by the K_{ℓ} .

Bounds

For a closed (m-2q)-form ψ on M, calculate

$$\int_{M} \psi \wedge \omega_{K_{\ell}}^{s} \wedge \omega_{K_{\ell}}^{s}$$

Use exponential coordinates given by $\exp_L^Q : Q_L^s \to M$ to reduce to an integral over normal bundle $Q_I^s \to L$ if all $K_\ell \subset L$.

Local embedding $\exp_L^Q : Q_L^s \to M$ is *recurrent*, so must estimate values of $\omega_{K_\ell}^s \wedge \omega_{K_\ell}^s$ where image overlaps. This estimate is most delicate, and is heart of extension of original result from C^1 -foliations, to $C^{\infty,0}$ -foliated spaces.

Assumption of "no atoms" implies that tame estimates exist for integrals as $\ell \to \infty$, and the limit tends to 0.

Further applications

- Obstructions to existence of Axiom A diffeomorphisms
- Higher-order intersection products for laminations dimensions at least 2, analogous to self-linking numbers for flows [Gambaudo and Ghys, Khesin, Kotschick and Vogel]