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Foliations

In Spring 1974, William Thurston gave a colloquium at Rice University,
and spent 20 minutes drawing a picture of a zebra on the blackboard.
The message: this is what foliations are about, a very geometric subject!

Later, in graduate courses by

Franz Kamber, Philippe Tondeur, and also Kuo-Tsai Chen in 1977-79;

plus Riemannian geometry courses by

Richard Bishop and Stephanie Alexander;

more formal approaches emerged.

Still, the definition by Thurston has its attractions, though later his Zebra
was replaced by a Chicago Institution:
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A Foly Cow!

Wikipedia: A foliation is a kind of clothing worn on a manifold, cut from
a stripy fabric. On each sufficiently small piece of the manifold, these
stripes give the manifold a local product structure. This product
structure does not have to be consistent outside local patches: a stripe
followed around long enough might return to a different, nearby stripe.
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Forty years since the subject was energized by Thurston’s works, 1971-75.

This was one theme at the meeting on Geometry and Foliations 2013 last
September in Tokyo: the contributions of Thurston and the subsequent
developments of his ideas in the field. We ignored his famous comment,
that after his work [on foliations], all that was left to do was trivial.

Historical paper by André Haefliger, available at foliations.org,
Naissance des feuilletages, d’Ehresmann-Reeb à Novikov
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Formal Definition

Definition: A foliation F of a manifold M is a “uniform partition” of M
into submanifolds of constant dimension p and codimension q. More
precisely, a smooth manifold of dimension n is foliated if there is a
covering of M by coordinate charts whose change of coordinate functions
preserve the leaves:
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A foliation F of a compact manifold M is also . . .

• a local geometric structure on M , given by a ΓRq -cocycle for a “good
covering”. (Ehresmann, Haefliger)

• a dynamical system on M with multi-dimensional time.

• a groupoid GF →M with fibers complete manifolds, the holonomy
covers of leaves.

Each point of view has advantages and disadvantages.

Problem: How to distinguish and classify foliations?

Convert to a discrete problem:
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Pseudogroups

A section T ⊂M for F is an embedded submanifold of dimension q
which intersects each leaf of F at least once, and always transversally.

Covering by coordinate charts provides local sections, whose union is a
global transversal T . The transverse holonomy along leafwise paths for
F between points in T generates the pseudogroup GF .
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Groupoids

Definition: The groupoid of GF is the space of germs

ΓF = {[g]x | g ∈ GF & x ∈ D(g)} , GF

with source map s[g]x = x and range map r[g]x = g(x) = y.

Definition: The Haefliger groupoid Γrq is the collection of all germs of
local Cr-diffeomorphisms between open subsets of Rq, endowed with the
sheaf topology. The objects of Γrq are points of Rq, and morphisms are
germs of local Cr-diffeomorphisms of Rq.

The derivative defines a groupoid transformation ν : Γrq → GL(Rq).

This space is universal, it is non-Hausdorff, and it is simply huge!
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Haefliger-Thurston classification

BΓrq = “classifying space” of (smooth) codimension q-foliations with
transverse differentiability Cr, introduced by André Haefliger in 1970.

BΓrq
∼= ‖Γrq‖ ≡ the “semi-simplicial fat realization” of the groupoid Γrq.

For r ≥ 1, there is a natural map Bν : BΓrq → BGL(Rq) ∼= BO(Rq)
classifying the normal bundle to the universal foliation on BΓrq.

Observation: [Haefliger] The foliation on BΓrq has a single leaf.

⇒ this is a really strange (non-Hausdorff) space.
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• Theorem: (Haefliger) Each Cr-foliation F on M of codimension q
determines a well-defined map hF : M → BΓrq whose homotopy class in
uniquely defined by F .

Proof: Phillips Transversality, Gromov “h-Principle”

• Theorem: (Thurston) Each “natural” map hF : M → BΓrq ×BOp
corresponds to a Cr-foliation F of codimension q on M , whose
concordance class is determined by hF .

Proof: Draw lots of zebras; that is, very geometric at key steps...

Classification of F on M ↔ calculate homotopy sets [M,BΓrq]
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The Quest

Problem: Understand the homotopy type of the mysterious space BΓrq!

Introduce FΓrq , the homotopy fiber of the map Bν : BΓrq → BO(Rq).

FΓrq is a topological measure of the difference between having a tangent
subbundle F ⊂ TM of rank p, and a Cr-foliation F on M with F = TF .

Theorem: [Bott Vanishing Theorem, 1968]

Bν∗ : H`(BO(Rq);R) −→ H`(BΓrq,R)

is the zero map for r ≥ 2 and ` > 2q.

FΓrq for r ≥ 2 is definitely not trivial. In contrast, there is the amazing

Theorem: [Tsuboi, 1989] FΓ1
q has the weak homotopy type of a point.
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Godbillon-Vey class

Theorem: (Godbillon-Vey [1971]) For a C2-foliation of codimension q,
there is a cohomology class GV (F) = ∆(h1 · cq1) ∈ H2q+1(M ;R), whose
value depends only on the homotopy class of hF : M → BΓ2

q.

Proof:

I Assume F has oriented normal bundle ⇒ there is a q-form ω with
ker(ω) = TF .

I Froebenius Theorem implies the differential dω = η ∧ ω for 1-form η.

I Calculation shows η ∧ (dη)q is a closed form.

I GV (F) = [η ∧ (dη)q] ∈ H2q+1
deR (M) ∼= H2q+1(M ;R).

• η is the Reeb modular form for F .
• h1 = [η] ∈ H1

deR(F) in leafwise cohomology is well-defined.
• c1 = [dη] represents the first Chern class of the normal bundle to F .
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Theorem: [Roussarie, 1971] The Godbillon-Vey class of the weak-stable
foliation F on the unit sphere bundle M3 for a Riemann surface Σ with
curvature κ = −1 is non-zero.

Proof: F is also described as the foliation by cosets of the parabolic
subgroup of upper triangular matrices in SL(R2), acting on the unit
tangent bundle viewed as the coset space M = T 1Σg = Γ\SL(R2).
• η is the contact form associated to the geodesic flow on M .
• Calculate η ∧ dη is a multiple of the volume form.

Theorem: [Thurston, 1971] For each α ∈ R, there exists a foliation Fα
of codimension-one on S3 with GV (Fα) = α ∈ R ∼= H3(M ;R).

Proof: Glue foliations as above together, using clever a observation about
flows on unit tangent bundles to Riemann surfaces defined by
fundamental domains in H2 (the slopes on boundary tori can be
controlled...)
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Secondary Classes

Theorem: (Bott-Haefliger, Gelfand-Fuks, Kamber-Tondeur [1972])

For each codimension q, and r ≥ 2, there is a non-trivial space of
secondary invariants H∗(WOq) and functorial characteristic map whose
image contains the Godbillon-Vey class

H∗(BΓrq;R)

?�
�
�3

h∗F
∆̃

∆
H∗(WOq) −→ H∗(M ;R)

The image of ∆ depends only on the homotopy class of hF : M → BΓ2
q.
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Cartan approach of Kamber & Tondeur

• F determines a “partially flat connection” ∇ on the GL(Rq)-bundle
of frames orthogonal to the foliation tangent bundle TF ⊂ TM .

• Construct a graded DGA, the“truncated Weil algebra”
W (gl(Rq), O(q))2q with H∗(W (gl(Rq), O(q))2q) ∼= H∗(WOq).

• Calculate characteristic map H∗(W (gl(Rq), O(q))2q)→ H∗(BΓ2
q;R)

using foliations defined by locally homogeneous spaces M = Γ\G, where
G is a semi-simple Lie group of higher rank, with foliation defined by
right cosets of a Borel subgroup P ⊂ G.

• Key observation is that the non-triviality of the characteristic map
follows from non-vanishing of the normal Euler class associated to the
action of Γ on the compact quotient space X = G/P .

This became the model for almost all examples constructed in the 1970’s
of foliations which had non-trivial maps to BΓ2

q.
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Foliation dynamics

• A continuous dynamical system on a compact manifold M is a flow
ϕ : M × R→M , where the orbit Lx = {ϕt(x) = ϕ(x, t) | t ∈ R} is
thought of as the “time evolution” of the point x ∈M . The trajectories
of the points of M are necessarily points, circles or lines immersed in M ,
and the study of their aggregate and statistical behavior is the subject of
foliation dynamics and ergodic theory for flows.

• Foliation dynamics, ergodic theory for foliations of leaf dimension ≥ 2.
Replace the concept of time-ordered trajectories with multi-dimensional
futures for points. The study of the dynamics of F asks for properties of
the limiting and statistical behavior of the collection of its leaves, and for
ergodic theory look for measurable invariants.
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Growth of leaves

An ergodic property of foliations: Riemannian metric on M yields
complete Riemannian metrics on leaves.

For x ∈M and leaf Lx, consider leafwise balls of radius R,

BF (x,R) = {y ∈ Lx | dF (x, y) ≤ R}

Gr(F , x) = lim sup
R→∞

ln{VolLx
(BF (x,R))}
R

<∞

Gr(F , x) is measurable orbit invariant.

Lx has exponential growth if Gr(F , x) > 0.

Sullivan Conjecture:[1975] If GV (F) 6= 0 then the set of leaves with
exponential growth is non-empty.
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Theorem: [Hurder, Jour. Diff. Geom. 1984]

If GV (F) 6= 0 for F a codimension q ≥ 1 foliation, then the set of leaves
with exponential growth has positive Lebesgue measure.

Idea of Proof: Uses joint work with James Heitsch, inspired by work of
Gerard Duminy, and cocycle tempering à la Pesin Theory.

The Reeb modular class [η] ∈ H1
deR(F) is an ergodic property of F , and

the operator norm of [η] has estimate,

‖[η]‖ ∼
∫
M

Gr(F , x) dvolM (x)
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More refined ergodic invariants, use cocycles in spirit of Zimmer program.

Derivative map gives measurable cocycle Dν : ΓF → GL(Rn)

For any parabolic subgroup P ⊂ GL(Rn) get an action on homogeneous
space XP = GL(Rn)/P

Theorem:[Hurder & Katok, Annals of Math 1987]

• [Dν]e ∈ H1
erg(ΓF ;XP ) is ergodic invariant

• Equivalence relation defined by F measurably amenable ⇒ [Dν]e = 0.

• If [Dν]e = 0 then many of the secondary classes vanish.

Conclusion:

BΓ2
q Foliation Classification ⇔ Foliation Dynamics & Ergodic Properties.
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Foliation Dynamics & Ergodic Theory

Major theme of work in the field since 1980:

• Random walks on leaves, leafwise harmonic measures
[Garnett, 1980] , [Ghys, 1995], [Candel, 2003], [Deroin & Klepsyn, 2007],
[Deroin, Klepsyn & Navas, 2007]

• Foliation geometric entropy [Ghys, Langevin & Walczak, 1988]

• Lyapunov spectrum and foliation dynamics [Hurder, Walczak, 1988]

• Rigidity of Anosov systems [Hurder & Katok, 1990], [Hurder, 1992],
[Katok, Spatzier, et al, 1993 onwards]

• Regularity of weak stable foliations [Hasselblatt, 1992 onwards],
[Pugh, Shub &Wilkinson, 1997 onwards], etc
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Mather-Thurston Theorem

Diffc(Rq) = compactly supported C∞-diffeomorphisms of Rq.

Diffdc(Rq) = Diffc(Rq) with discrete topology. HUGE!

Most amazing “unknown” theorem:

Theorem: [Mather & Thurston, 1974] There is a natural map
σ : Diffdc(Rq)→ ΩqFΓ∞q which induces isomorphisms on homology

H∗(ΣqDiffdc(Rq);Z) ∼= H∗(FΓ∞q )

FΓ∞q is the homotopy fiber of the universal map Bν : BΓrq → BO(Rq).

Question: What are the cycles in H∗(ΣqDiffdc(Rq);Z)?

Propose to construct cycles using dynamical systems!
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Lipschitz Cantor Geometries

Only one “Cantor set”, call it X, but has many metrics:

dX and d′X are Lipschitz equivalent, if they satisfy a Lipschitz condition:

C−1 · dX(x, y) ≤ d′X(x, y) ≤ C · dX(x, y) for all x, y ∈ X

Definition: A compactly generated pseudogroup GX = 〈g1, . . . , gk〉
acting on a Cantor set X is Lipschitz with respect to a metric dX on X, if
there exists C ≥ 1 such that for each 1 ≤ i ≤ k then

C−1·dX(w,w′) ≤ dX(hi(w), hi(w
′)) ≤ C·dX(w,w′) , ∀ w,w′ ∈ Dom(gi).

Definition: Lipschitz Cantor Geometry investigates properties of minimal
Lipschitz pseudogroups actions on metric Cantor sets (X, dX).

Work with coauthors Alex Clark and Olga Lukina during past 5 years has
studied properties of matchbox manifolds, which are foliated spaces with
transversal Cantor model X, and holonomy is pseudogroup action on X.
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Definition: Cr Cantor Geometry, r ≥ 1, investigates the properties of
Cantor actions satisfying:

I X ⊂ Rq is an embedding,

I GX = 〈g1, . . . , gk〉 is generated by restrictions of Cr-diffeomorphisms
on some open neighborhood of X ⊂ U ⊂ Rq.

Why study these objects?

• Interesting in their own right – invariant sets for C2-dynamical systems.

• For r ≥ 2, examples which yield non-trivial classes in H∗(FΓrq;R), not
in the image of the usual secondary characteristic maps.
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Smoothly embedded solenoids

Cantor Set X → Solenoid in R3

The holonomy along leaves of F “twist” to the points of X.

Pseudogroup maps on X extend to open neighborhoods of X.

Solenoids naturally arise as hyperbolic attractors of smooth flows.
[Smale, 1967], [Gambaudo, Sullivan, Tresser, 1990 – onwards]
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Theorem: [Clark & Hurder, 2011] For p ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ p, so that the
suspension of the induced action Zp on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rp

• The isotropy groups of periodic orbits form a profinite series

· · ·Γi ⊂ · · ·Γ1 ⊂ Γ0 = Zn

• X ∼= lim
←

(Γ0/Γi) is an “adic-completion” of Zp.

• Every open neighborhood of X contains periodic open domains for the
action of Zp on Sq
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Question: What is relation to the quest?

Theorem: [Heitsch’s Thesis, 1970]
The Bott Vanishing Theorem is false for Z coefficients.

Example: Let (Z/pZ)m act on D2m via rotations {ϕ1, . . . , ϕm} with
period p on each of the m-factors of D2.

Form the suspension flat bundle E = S∞ × D2m/ϕ. Then

ν∗E : H∗(BSO(2m);Z/pZ)→ H∗(BΓ+
2m;Z/pZ)→ H∗(E;Z/pZ)

is injective. Let p→∞, then observe associated lim1-terms not zero, so
Pontrjagin classes do not vanish in H∗(BΓ2

q;Z).
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For any open neighborhood Z ⊂ U of the solenoidal minimal set, there
are infinite sequences of “Heitsch Examples” embedded in F|U .

The restricted foliation F|U yields a map hZ : BΓU |F → BΓ∞q .

Theorem: Let S be the solenoidal minimal set above. Then the
homotopy class of hZ : BΓU |F → BΓ2

q is non-trivial.

Moreover, for ` > q/2 there is a natural surjection

h∗Z : H4`−1(BΓ2
q;R)→ H4`−1(S,F ;R)

Proof: The Cheeger-Simons classes derived from H∗(BSO(q);R) are in
the image of h∗Z . . .

These solenoidal cycles are just the simplest type of iterated braids.

There are many more C2 Cantor geometries...
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After 40 years, the study of the classification problem for foliations has
produced wide-ranging new techniques, and new perspectives on
traditional and more recent topics in dynamics.

As for the quest to “find” BΓrq – not even close to understanding this
mysterious space!

Thank you for your attention!
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des Sciences et des Arts, Paris. Available at http://www.unige.ch/math/folks/haefliger/Feuilletages.pdf
S. Hurder, Dual homotopy invariants for G-foliations, Topology, 20:365–387, 1981.
S. Hurder, The Godbillon measure of amenable foliations, Jour. Differential Geom., 23:347–365, 1986.
S. Hurder and A. Katok, Ergodic Theory and Weil measures for foliations, Ann. of Math. (2), 126:221–275, 1987.
S. Hurder, Lectures on Foliation Dynamics: Barcelona 2010, Foliations: Dynamics, Geometry and Topology, Advanced Courses in
Mathematics CRM Barcelona, to appear 2013.
S. Hurder, Lipshitz matchbox manifolds, preprint, arXiv:1309.1512.
J.N. Mather, Loops and foliations, In Manifolds—Tokyo 1973, Univ. Tokyo Press, Tokyo, 1975, 175–180.
J.N. Mather, On the homology of Haefliger’s classifying space, In Differential topology (Varenna, 1976), 1979, 71–116.
A. Phillips, Foliations on open manifolds. I,II, Comment. Math. Helv., 43:204–211, 1968; 44:367–370, 1969.
F.W. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lect. Notes in Math. Vol. 493, Springer-Verlag, 1975.

W.P. Thurston, Noncobordant foliations of S3 Bull. Amer. Math. Soc. 78:511–514, 1972.
W.P. Thurston, Foliations and groups of diffeomorphisms Bull. Amer. Math. Soc. 80:304–307, 1974.
W.P. Thurston, The theory of foliations of codimension greater than one Comment. Math. Helv. 49:214–231, 1974.
W.P. Thurston, Existence of codimension-one foliations Ann. of Math. (2) 104: 249–268, 1976.

T. Tsuboi, On the foliated products of class C1 , Ann. of Math. (2), 130:227–271, 1989.

Steve Hurder UIC

Thurston Zebras to Cantor Geometries


	Zebras
	Lie Groups
	Ergodic Theory
	Cantor Geometries

